1
|
Wang LF, Li Q, Le Zhao J, Wen K, Zhang YT, Zhao QH, Ding Q, Li JH, Guan XH, Xiao YF, Deng KY, Xin HB. CD38 deficiency prevents diabetic nephropathy by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway. Biochem Cell Biol 2025; 103:1-12. [PMID: 39116458 DOI: 10.1139/bcb-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes. Our previous study showed that CD38 knockout (CD38KO) mice had protective effects on many diseases. However, the roles and mechanisms of CD38 in DN remain unknown. Here, DN mice were generated by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection in male CD38KO and CD38flox mice. Mesangial cells (SV40 MES 13 cells) were used to mimic the injury of DN with palPagination Donemitic acid (PA) treatment in vitro. Our results showed that CD38 expression was significantly increased in kidney of diabetic CD38flox mice and SV40 MES 13 cells treated with PA. CD38KO mice were significantly resistant to diabetes-induced renal injury. Moreover, CD38 deficiency markedly decreased HFD/STZ-induced lipid accumulation, fibrosis, and oxidative stress in kidney tissue. In contrast, overexpression of CD38 aggravated PA-induced lipid accumulation and oxidative stress. CD38 deficiency increased expression of SIRT3, while overexpression of CD38 decreased its expression. More importantly, 3-TYP, an inhibitor of SIRT3, significantly enhanced PA-induced lipid accumulation and oxidative stress in CD38 overexpressing cell lines. In conclusion, our results demonstrated that CD38 deficiency prevented DN by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.
Collapse
Affiliation(s)
- Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ya-Ting Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia-Hui Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Camerini L, Zurchimitten G, Bock B, Xavier J, Bastos CR, Martins E, Ardais AP, Dos Santos Motta JV, Pires AJ, de Matos MB, de Ávila Quevedo L, Pinheiro RT, Ghisleni G. Genetic Variations in Elements of the Oxytocinergic Pathway are Associated with Attention/Hyperactivity Problems and Anxiety Problems in Childhood. Child Psychiatry Hum Dev 2024; 55:552-563. [PMID: 36087156 DOI: 10.1007/s10578-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic alterations related to oxytocin system seem to influence the neurobiology of attention-deficit hyperactivity disorder and anxiety problems leading to greater functional, social and emotional impairment. Here, we analyzed the association of OXTR rs2254298 and CD38 rs6449182 variants with attention/hyperactivity problems and anxiety problems in children. The study enrolled 292 children and adjusted regression model revealed OXTR rs2254298 AA genotype as a risk factor for attention deficit/hyperactivity problems (PR: 2.37; PadjFDR = 0.006), attention problems (PR: 2.71; PadjFDR = 0.003) and anxiety problems (PR: 1.92; PadjFDR = 0.018). CD38 rs6449182 G allele showed as a risk factor for attention deficit/hyperactivity problems (PR: 1.56; PadjFDR = 0.028). Moreover, in silico approach for regulatory roles found markers that influence chromatin accessibility and transcription capacity. Together, these data provide genetic information of oxytocin in developmental and behavioral disorders opening a range of opportunities for future studies that clarify their neurobiology in childhood.
Collapse
Affiliation(s)
- Laísa Camerini
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Zurchimitten
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bertha Bock
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaína Xavier
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Department of Neurosciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Evânia Martins
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Andressa Jacondino Pires
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Bonati de Matos
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana de Ávila Quevedo
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Post-Graduation Program of Health and Behavior, Laboratory of Clinical Neuroscience, Catholic University of Pelotas - UCPel, Center of Health Science, Rua Gonçalves Chaves 373, sala 324, CEP 96010-280, Pelotas, RS, Brasil.
| |
Collapse
|
3
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
4
|
Association of Toll-like receptors polymorphisms with the risk of acute lymphoblastic leukemia in the Brazilian Amazon. Sci Rep 2022; 12:15159. [PMID: 36071076 PMCID: PMC9452670 DOI: 10.1038/s41598-022-19130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children in childhood. Single-nucleotide polymorphism (SNPs) in key molecules of the immune system, such as Toll-like receptors (TLRs) and CD14 molecules, are associated with the development of several diseases. However, their role in ALL is unknown. A case–control study was performed with 152 ALL patients and 187 healthy individuals to investigate the role of SNPs in TLRs and the CD14 gene in ALL. In this study, TLR6 C > T rs5743810 [OR: 3.20, 95% CI: 1.11–9.17, p = 0.003) and TLR9 C > T rs187084 (OR: 2.29, 95% CI: 1.23–4.26, p = 0.000) seems to be a risk for development of ALL. In addition, the TLR1 T > G rs5743618 and TLR6 C > T rs5743810 polymorphisms with protection against death (OR: 0.17, 95% IC: 0.04–0.79, p = 0.008; OR: 0.48, 95% IC: 0.24–0.94, p = 0.031, respectively). Our results show that SNPs in TLRs genes may be involved in the pathogenesis of ALL and may influence clinical prognosis; however, further studies are necessary to elucidate the role of TLR1, TLR4, TLR5, TLR6, TLR9 and CD14 polymorphisms in this disease.
Collapse
|
5
|
Xie L, Wen K, Li Q, Huang CC, Zhao JL, Zhao QH, Xiao YF, Guan XH, Qian YS, Gan L, Wang LF, Deng KY, Xin HB. CD38 Deficiency Protects Mice from High Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Activating NAD +/Sirtuins Signaling Pathways-Mediated Inhibition of Lipid Accumulation and Oxidative Stress in Hepatocytes. Int J Biol Sci 2021; 17:4305-4315. [PMID: 34803499 PMCID: PMC8579443 DOI: 10.7150/ijbs.65588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA β-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Cong-Cong Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Jia-Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Yi-Song Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine
- School of Pharmacy, Nanchang University, Nanchang 330031, P.R. China
- School of Life Science, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
6
|
Amici SA, Young NA, Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, Papenfuss TL, Torrelles JB, Jarjour WN, Guerau-de-Arellano M. CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions. Front Immunol 2018; 9:1593. [PMID: 30042766 PMCID: PMC6048227 DOI: 10.3389/fimmu.2018.01593] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.
Collapse
Affiliation(s)
- Stephanie A Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nicholas A Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Janiret Narvaez-Miranda
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Kyle A Jablonski
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Lucia Rosas
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Tracey L Papenfuss
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Ali YB, Foad RM, Abdel-Wahed E. Lack of Associations between TLR9 and MYD88 Gene Polymorphisms and Risk of Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev 2017; 18:3245-3250. [PMID: 29286214 PMCID: PMC5980878 DOI: 10.22034/apjcp.2017.18.12.3245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Genetic factors like single nucleotide polymorphisms (SNPs) may play an important role in the etiology of chronic lymphocytic leukemia (CLL). Mutations in Toll like receptor 9 (TLR9) and myeloid differentiation primary response 88 (MYD88) genes may lead to an abnormal immune response that may cause greater cell proliferation and thus alter an individual’s susceptibility to haematological malignancies including CLL. Objective: This work was designed to study any association of the TLR9 (rs2066807C/G and rs187084T/C) and MYD88 (L265P) single nucleotide polymorphism (SNPs) with risk of CLL in Egyptians. Materials and methods: One hundred patients with CLL and 100 healthy controls from the Egyptian population were genotyped by the polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) method. Results: With TLR9 rs2066807C/G the CC genotype was more frequent in both control and patient groups while for TLR9 rs187084T/C the TT genotype was most common. There were no significant associations with CLL risk. With MYD88 (L265P) only the TT genotype was detected. Conclusion: Our preliminary data suggest that polymorphisms in the TLR9 and MYD88 genes may not contribute to CLL susceptibility. To the best of our knowledge, this study is the first dealing with TLR9 and MYD88 gene polymorphisms in CLL patients. Further studies with larger sample size should be conducted to validate these results in the Egyptian population.
Collapse
Affiliation(s)
- Yasser B.M Ali
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | | | | |
Collapse
|
8
|
Benkisser-Petersen M, Buchner M, Dörffel A, Dühren-von-Minden M, Claus R, Kläsener K, Leberecht K, Burger M, Dierks C, Jumaa H, Malavasi F, Reth M, Veelken H, Duyster J, Zirlik K. Spleen Tyrosine Kinase Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia. PLoS One 2016; 11:e0169159. [PMID: 28036404 PMCID: PMC5201248 DOI: 10.1371/journal.pone.0169159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022] Open
Abstract
The survival and proliferation of CLL cells depends on microenvironmental contacts in lymphoid organs. CD38 is a cell surface receptor that plays an important role in survival and proliferation signaling in CLL. In this study we demonstrate SYK's direct involvement in the CD38 signaling pathway in primary CLL samples. CD38 stimulation of CLL cells revealed SYK activation. SYK downstream target AKT was subsequently induced and MCL-1 expression was increased. Concomitant inhibition of SYK by the SYK inhibitor R406 resulted in reduced activation of AKT and prevented upregulation of MCL-1. Moreover, short-term CD38 stimulation enhanced BCR-signaling, as indicated by increased ERK phosphorylation. CXCL12-dependent migration was increased after CD38 stimulation. Treating CLL cells with R406 inhibited CD38-mediated migration. In addition, we observed marked downregulation of CD38 expression for CLL cells treated with R406 compared to vehicle control. Finally, we observed a clear correlation between CD38 expression on CLL cells and SYK-inhibitor efficacy. In conclusion, our study provides deeper mechanistic insight into the effect of SYK inhibition in CLL.
Collapse
Affiliation(s)
- Marco Benkisser-Petersen
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maike Buchner
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, München, Germany
| | - Arlette Dörffel
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Rainer Claus
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kerstin Leberecht
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Meike Burger
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Dierks
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hassan Jumaa
- Department of Immunology, University Medical Center, Ulm, Germany
| | - Fabio Malavasi
- Department of Medical Sciences, Laboratory of Immunogenetics and CeRMS, University of Torino, and Transplant Immunology, Torino, Italy
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Justus Duyster
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Zirlik
- Department of Hematology, Oncology and Stem cell transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Abstract
In human T cell development, the mechanisms that regulate cell fate decisions after TCRβ expression remain unclear. We defined the stages of T cell development that flank TCRβ expression and found distinct patterns of human T cell development. In half the subjects, T cell development progressed from the CD4(-)CD8(-) double-negative stage to the CD4(+)CD8(+) double-positive (DP) stage through an immature single-positive (ISP) CD4(+) intermediate. However, in some patients, CD4 and CD8 were expressed simultaneously and the ISP population was small. In each group of patients, CD3(-) ISP and DP thymocytes were subdivided into ISP1, ISP2, DP1, DP2, DP3, DP4, and DP5 developmental stages according to their expression of CD28, CD44, CD1a, CD7, CD45RO, and CD38. The ISP2, DP2, and DP3 thymocyte populations proliferated more robustly than ISP1 and DP1 and expressed markers consistent with TCRβ expression. After the DP3 stage, proliferation returned to baseline levels. We then analyzed protein levels of Ikaros, Helios, and Aiolos, the three Ikaros family members most abundantly expressed in human thymocytes. Ikaros and Helios expression increased transiently at the ISP2, DP2, and DP3 populations. Aiolos expression also increased at the ISP2, DP2, and DP3 stages, but its expression remained elevated throughout the DP4 and DP5 stages. In summary, we propose a model of human T cell development that reflects the asynchronous nature of TCRβ expression and we define the subpopulations of thymocytes that are highly proliferative and express Ikaros family members.
Collapse
|
10
|
Van Cappellen P, Way BM, Isgett SF, Fredrickson BL. Effects of oxytocin administration on spirituality and emotional responses to meditation. Soc Cogn Affect Neurosci 2016; 11:1579-87. [PMID: 27317929 DOI: 10.1093/scan/nsw078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/31/2016] [Indexed: 11/12/2022] Open
Abstract
The oxytocin (OT) system, critically involved in social bonding, may also impinge on spirituality, which is the belief in a meaningful life imbued with a sense of connection to a Higher Power and/or the world. Midlife male participants (N = 83) were randomly assigned to receive intranasal OT or placebo. In exploratory analyses, participants were also genotyped for polymorphisms in two genes critical for OT signaling, the oxytocin receptor gene (OXTR rs53576) and CD38 (rs6449182 and rs3796863). Results showed that intranasal OT increased self-reported spirituality on two separate measures and this effect remained significant a week later. It also boosted participants' experience of specific positive emotions during meditation, at both explicit and implicit levels. Furthermore, the effect of OT on spirituality was moderated by OT-related genotypes. These results provide the first experimental evidence that spirituality, endorsed by millions worldwide, appears to be supported by OT.
Collapse
Affiliation(s)
- Patty Van Cappellen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Baldwin M Way
- Department of Psychology, The Ohio State University, Columbus Ohio, OH, USA
| | - Suzannah F Isgett
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara L Fredrickson
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
El Ghannam D, Fawzy IM, Azmy E, Hakim H, Eid I. Relation of interleukin-10 Promoter Polymorphisms to Adult Chronic Immune Thrombocytopenic Purpura in a Cohort of Egyptian Population. Immunol Invest 2016; 44:616-26. [PMID: 26436850 DOI: 10.3109/08820139.2015.1064948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Adult chronic immune thrombocytopenic purpura (chronic ITP) is an autoimmune multifactorial bleeding disorder that occurs because of enhanced peripheral platelet destruction. Treatment decisions can be challenging because the goal of treatment is to prevent severe bleeding, but the risk of bleeding can be difficult to estimate for any individual patient. OBJECTIVE This case-control study was planned to investigate the relationship of interleukin (IL)-10 promoter (IL-10-1082, -819 and -592) polymorphisms with the susceptibility, severity and outcome of adult chronic ITP in a cohort of Egyptian population. SUBJECTS AND METHODS Typing of IL-10 promoter polymorphisms was done using restriction fragment length polymorphism for 62 adult patients with chronic ITP and 73 age- and sex-matched healthy controls. RESULTS No significant differences were found between ITP patients and controls regarding the frequency of IL-10 promoter genotypes, alleles or haplotypes. IL-10-592 AA genotype and ATA (IL-10-1082, -819 and -592) haplotype were associated with severe ITP (p = 0.003, 0.043, respectively). CONCLUSION Our findings suggest that the IL-10 promoter polymorphisms are unlikely to affect the development or treatment outcome of chronic adult ITP in Egyptian population, but IL-10-592 AA genotype and IL-10 (-1082, -819 and -592) ATA haplotype may be associated with disease severity. Because ITP is a complex disease, it is recommended that a multicenter study should be done with large sample size and unified typing technique.
Collapse
Affiliation(s)
- Doaa El Ghannam
- a Department of Clinical Pathology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Iman M Fawzy
- b Laboratory Medicine Department , Mansoura Fever Hospital , Mansoura , Egypt
| | - Emad Azmy
- c Department of Clinical Hematology , and
| | - Hazem Hakim
- d Internal Medicine Department, Faculty of Medicine, Mansoura University , Mansoura , Egypt
| | - Islam Eid
- d Internal Medicine Department, Faculty of Medicine, Mansoura University , Mansoura , Egypt
| |
Collapse
|
12
|
van de Donk NWCJ, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, Lokhorst HM, Parren PWHI. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev 2016; 270:95-112. [PMID: 26864107 PMCID: PMC4755228 DOI: 10.1111/imr.12389] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD38 is a multifunctional cell surface protein that has receptor as well as enzyme functions. The protein is generally expressed at low levels on various hematological and solid tissues, while plasma cells express particularly high levels of CD38. The protein is also expressed in a subset of hematological tumors, and shows especially broad and high expression levels in plasma cell tumors such as multiple myeloma (MM). Together, this triggered the development of various therapeutic CD38 antibodies, including daratumumab, isatuximab, and MOR202. Daratumumab binds a unique CD38 epitope and showed strong anti-tumor activity in preclinical models. The antibody engages diverse mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, modulation of enzymatic activity, and immunomodulatory activity. CD38-targeting antibodies have a favorable toxicity profile in patients, and early clinical data show a marked activity in MM, while studies in other hematological malignancies are ongoing. Daratumumab has single agent activity and a limited toxicity profile, allowing favorable combination therapies with existing as well as emerging therapies, which are currently evaluated in the clinic. Finally, CD38 antibodies may have a role in the treatment of diseases beyond hematological malignancies, including solid tumors and antibody-mediated autoimmune diseases.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/antagonists & inhibitors
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Clinical Studies as Topic
- Cytotoxicity, Immunologic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/drug effects
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/metabolism
- Humans
- Immunomodulation/drug effects
- Protein Binding
- Recurrence
- Treatment Outcome
Collapse
Affiliation(s)
| | | | - Tuna Mutis
- Department of HematologyVU University Medical CenterAmsterdamthe Netherlands
| | | | | | | | - Henk M. Lokhorst
- Department of HematologyVU University Medical CenterAmsterdamthe Netherlands
| | - Paul W. H. I. Parren
- GenmabUtrechtthe Netherlands
- Department of Cancer and inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
13
|
Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E, Gizdic B, Rossi FM, Bomben R, Zucchetto A, Benedetti D, Degan M, D'Arena G, Chiarenza A, Zaja F, Pozzato G, Rossi D, Gaidano G, Del Poeta G, Deaglio S, Gattei V, Dal Bo M. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 2015; 30:182-9. [PMID: 26165233 DOI: 10.1038/leu.2015.182] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
In chronic lymphocytic leukemia (CLL), NOTCH1 mutations have been associated with clinical resistance to the anti-CD20 rituximab, although the mechanisms behind this peculiar behavior remain to be clarified. In a wide CLL series (n=692), we demonstrated that CLL cells from NOTCH1-mutated cases (87/692) were characterized by lower CD20 expression and lower relative lysis induced by anti-CD20 exposure in vitro. Consistently, CD20 expression by CLL cells was upregulated in vitro by γ-secretase inhibitors or NOTCH1-specific small interfering RNA and the stable transfection of a mutated (c.7541-7542delCT) NOTCH1 intracellular domain (NICD-mut) into CLL-like cells resulted in a strong downregulation of both CD20 protein and transcript. By using these NICD-mut transfectants, we investigated protein interactions of RBPJ, a transcription factor acting either as activator or repressor of NOTCH1 pathway when respectively bound to NICD or histone deacetylases (HDACs). Compared with controls, NICD-mut transfectants had RBPJ preferentially complexed to NICD and showed higher levels of HDACs interacting with the promoter of the CD20 gene. Finally, treatment with the HDAC inhibitor valproic acid upregulated CD20 in both NICD-mut transfectants and primary CLL cells. In conclusion, NOTCH1 mutations are associated with low CD20 levels in CLL and are responsible for a dysregulation of HDAC-mediated epigenetic repression of CD20 expression.
Collapse
Affiliation(s)
- F Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - T Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - F Arruga
- Immunogenetics Unit, Human Genetics Foundation (HuGeF), Torino, Italy
| | - P Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - P Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - E Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - B Gizdic
- Immunogenetics Unit, Human Genetics Foundation (HuGeF), Torino, Italy
| | - F M Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - R Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - A Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - D Benedetti
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - M Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - G D'Arena
- Onco-Hematology Department, Centro di Riferimento Oncologico della Basilicata, I.R.C.C.S., Rionero in Vulture, Italy
| | - A Chiarenza
- Division of Hematology, Ferrarotto Hospital, Catania, Italy
| | - F Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari 'Carlo Melzi' DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - G Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | - D Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - G Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - G Del Poeta
- Division of Hematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - S Deaglio
- Immunogenetics Unit, Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - V Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - M Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| |
Collapse
|
14
|
Talaat RM, Abdel-Aziz AM, El-Maadawy EA, Abdel-Bary N. CD38 and Interleukin 6 Gene Polymorphism in Egyptians with Diffuse Large B-Cell Lymphoma (DLBCL). Immunol Invest 2015; 44:265-78. [DOI: 10.3109/08820139.2014.989328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Algoe SB, Way BM. Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude. Soc Cogn Affect Neurosci 2014; 9:1855-61. [PMID: 24396004 PMCID: PMC4249462 DOI: 10.1093/scan/nst182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/17/2013] [Accepted: 12/28/2013] [Indexed: 01/01/2023] Open
Abstract
Oxytocin is thought to play a central role in promoting close social bonds via influence on social interactions. The current investigation targeted interactions involving expressed gratitude between members of romantic relationships because recent evidence suggests gratitude and its expression provides behavioral and psychological 'glue' to bind individuals closer together. Specifically, we took a genetic approach to test the hypothesis that social interactions involving expressed gratitude would be associated with variation in a gene, CD38, which has been shown to affect oxytocin secretion. A polymorphism (rs6449182) that affects CD38 expression was significantly associated with global relationship satisfaction, perceived partner responsiveness and positive emotions (particularly love) after lab-based interactions, observed behavioral expression of gratitude toward a romantic partner in the lab, and frequency of expressed gratitude in daily life. A separate polymorphism in CD38 (rs3796863) previously associated with plasma oxytocin levels and social engagement was also associated with perceived responsiveness in the benefactor after an expression of gratitude. The combined influence of the two polymorphisms was associated with a broad range of gratitude-related behaviors and feelings. The consistent pattern of findings suggests that the oxytocin system is associated with solidifying the glue that binds adults into meaningful and important relationships.
Collapse
Affiliation(s)
- Sara B Algoe
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, and Department of Psychology and the Ohio State Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Baldwin M Way
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, and Department of Psychology and the Ohio State Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
16
|
Quarona V, Ferri V, Chillemi A, Bolzoni M, Mancini C, Zaccarello G, Roato I, Morandi F, Marimpietri D, Faccani G, Martella E, Pistoia V, Giuliani N, Horenstein AL, Malavasi F. Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Ann N Y Acad Sci 2014; 1335:10-22. [DOI: 10.1111/nyas.12485] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Quarona
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
| | - Valentina Ferri
- Hematology and Blood and Marrow Transplantation (BMT) Center; University of Parma; Parma Italy
| | - Antonella Chillemi
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
| | - Marina Bolzoni
- Hematology and Blood and Marrow Transplantation (BMT) Center; University of Parma; Parma Italy
| | - Cristina Mancini
- Anatomia e Istologia Patologica; Azienda Ospedaliero-Universitaria di Parma; Parma Italy
| | - Gianluca Zaccarello
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
| | - Ilaria Roato
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
| | - Fabio Morandi
- Laboratorio di Oncologia; Istituto Giannina Gaslini; Genova Italy
| | | | | | - Eugenia Martella
- Anatomia e Istologia Patologica; Azienda Ospedaliero-Universitaria di Parma; Parma Italy
| | - Vito Pistoia
- Laboratorio di Oncologia; Istituto Giannina Gaslini; Genova Italy
| | - Nicola Giuliani
- Hematology and Blood and Marrow Transplantation (BMT) Center; University of Parma; Parma Italy
| | - Alberto L. Horenstein
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics; Department of Medical Sciences and CeRMS; University of Torino; Torino Italy
- Transplantation Immunology; Città della Salute e della Scienza; Torino Italy
| |
Collapse
|
17
|
Interleukin 10 gene promoter polymorphism and risk of diffuse large B cell lymphoma (DLBCL). EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Chillemi A, Zaccarello G, Quarona V, Ferracin M, Ghimenti C, Massaia M, Horenstein AL, Malavasi F. Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule. Mol Med 2013; 19:99-108. [PMID: 23615966 DOI: 10.2119/molmed.2013.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/16/2013] [Indexed: 01/20/2023] Open
Abstract
In vivo use of monoclonal antibodies (mAbs) has become a mainstay of routine clinical practice in the treatment of various human diseases. A number of molecules can serve as targets, according to the condition being treated. Now entering human clinical trials, CD38 molecule is a particularly attractive target because of its peculiar pattern of expression and its twin role as receptor and ectoenzyme. This review provides a range of analytical perspectives on the current progress in and challenges to anti-CD38 mAb therapy. We present a synopsis of the evidence available on CD38, particularly in myeloma and chronic lymphocytic leukemia (CLL). Our aim is to make the data from basic science helpful and accessible to a diverse clinical audience and, at the same time, to improve its potential for in vivo use. The topics covered include tissue distribution and signal implementation by mAb ligation and the possibility of increasing cell density on target cells by exploiting information about the molecule's regulation in combination with drugs approved for in vivo use. Also analyzed is the behavior of CD38 as an enzyme: CD38 is a component of a pathway leading to the production of adenosine in the tumor microenvironment, thus inducing local anergy. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes.
Collapse
Affiliation(s)
- Antonella Chillemi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino Medical School, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, Funaro A, Horenstein AL, Malavasi F. CD38 and CD157: a long journey from activation markers to multifunctional molecules. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:207-17. [PMID: 23576305 DOI: 10.1002/cyto.b.21092] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/21/2013] [Indexed: 12/17/2022]
Abstract
CD38 (also known as T10) was identified in the late 1970s in the course of pioneering work carried out at the Dana-Farber Cancer Center (Boston, MA) that focused on the identification of surface molecules involved in antigen recognition. CD38 was initially found on thymocytes and T lymphocytes, but today we know that the molecule is found throughout the immune system, although its expression levels vary. Because of this, CD38 was considered an "activation marker," a term still popular in routine flow cytometry. This review summarizes the findings obtained from different approaches, which led to CD38 being re-defined as a multifunctional molecule. CD38 and its homologue CD157 (BST-1), contiguous gene duplicates on human chromosome 4 (4p15), are part of a gene family encoding products that modulate the social life of cells by means of bidirectional signals. Both CD38 and CD157 play dual roles as receptors and ectoenzymes, endowed with complex activities related to signaling and cell homeostasis. The structure-function analysis presented here is intended to give clinical scientists and flow cytometrists a background knowledge of these molecules. The link between CD38/CD157 and human diseases will be explored here in the context of chronic lymphocytic leukemia, myeloma and ovarian carcinoma, although other disease associations are also known. Thus CD38 and CD157 have evolved from simple leukocyte activation markers to multifunctional molecules involved in health and disease. Future tasks will be to explore their potential as targets for in vivo therapeutic interventions and as regulators of the immune response.
Collapse
Affiliation(s)
- Valeria Quarona
- Department of Medical Sciences, Laboratory of Immunogenetics, University of Torino Medical School, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Long CL, Berry WL, Zhao Y, Sun XH, Humphrey MB. E proteins regulate osteoclast maturation and survival. J Bone Miner Res 2012; 27:2476-89. [PMID: 22807064 PMCID: PMC3495082 DOI: 10.1002/jbmr.1707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 11/08/2022]
Abstract
Osteoclasts are bone-specific polykaryons derived from myeloid precursors under the stimulation of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). E proteins are basic helix-loop-helix (bHLH) transcription factors that modulate lymphoid versus myeloid cell fate decisions. To study the role of E proteins in osteoclasts, myeloid-specific E protein gain-of-function transgenic mice were generated. These mice have high bone mass due to decreased osteoclast numbers and increased osteoclast apoptosis leading to overall reductions in resorptive capacity. The molecular mechanism of decreased osteoclast numbers and resorption is in part a result of elevated expression of CD38, a regulator of intracellular calcium pools with known antiosteoclastogenic properties, which increases sensitivity to apoptosis. In vivo, exogenous RANKL stimulation can overcome this inhibition to drive osteoclastogenesis and bone loss. In vitro-derived ET2 osteoclasts are more spread and more numerous with increases in RANK, triggering receptor expressed on myeloid cells 2 (TREM2), and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) compared to wild type. However, their resorptive capacity does not increase accordingly. Thus, E proteins participate in osteoclast maturation and survival in homeostatic bone remodeling.
Collapse
Affiliation(s)
- Courtney L. Long
- Microbiology and Immunology, Graduate College, University of Oklahoma Health Science Center, Oklahoma City, OK
| | - William L. Berry
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK
| | - Ying Zhao
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xiao-Hong Sun
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Mary Beth Humphrey
- Microbiology and Immunology, Graduate College, University of Oklahoma Health Science Center, Oklahoma City, OK
- Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK
- Veteran Affairs Medical Center, Oklahoma City, OK
| |
Collapse
|
21
|
Abramenko IV, Bilous NI, Pleskach GV, Chumak AA, Kryachok IA, Martina ZV, Dyagil IS. CD38 gene polymorphism and risk of chronic lymphocytic leukemia. Leuk Res 2012; 36:1237-40. [DOI: 10.1016/j.leukres.2012.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 12/15/2022]
|
22
|
Cahill N, Bergh AC, Kanduri M, Göransson-Kultima H, Mansouri L, Isaksson A, Ryan F, Smedby KE, Juliusson G, Sundström C, Rosén A, Rosenquist R. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 2012; 27:150-8. [DOI: 10.1038/leu.2012.245] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Variants of CD38 gene and lipid metabolism: a link in chronic lymphocytic leukemia? Leuk Res 2012; 36:1227-8. [PMID: 22824068 DOI: 10.1016/j.leukres.2012.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022]
|
24
|
Polzonetti V, Carpi FM, Micozzi D, Pucciarelli S, Vincenzetti S, Napolioni V. Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs. Mol Genet Metab 2012; 105:502-7. [PMID: 22236458 DOI: 10.1016/j.ymgme.2011.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/17/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
CD38 (EC 3.2.2.6, NAD(+)-glycohydrolase) is a multifunctional enzyme catalyzing the synthesis and hydrolysis of cyclic ADP-ribose from NAD(+) to ADP-ribose. The loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications. Notably, it has been linked to HIV infection, leukemias, myelomas, solid tumors, Type II Diabetes mellitus, bone metabolism, as well as Autism Spectrum Disorder. Taking into account the crucial role played by CD38 in many diseases and in clinical practice, here we assessed the distribution of CD38 NADase activity in a healthy population (104 sex-matched unrelated individuals, 12-98 years) and determined its main predictors among genetic and physiological factors (age and sex). The mean value of CD38 NADase activity was 0.051±0.023 mU/mg (0.010-0.099 mU/mg), following a normal distribution in the study population (Kolmogorov-Smirnov test P=0.200). The TNF-α -308G>A (rs1800629) resulted the main predictor (β=0.364, P=0.00008), followed by Age (β=0.280, P=0.002) and the CD38 184C>G (rs6449182) (β=0.193, P=0.033). Our study contributes to understanding CD38 enzyme physiological functions, by reporting, for the first time, its activity distribution in healthy individuals and demonstrating a significant positive correlation with age. Moreover, the possible use of TNF-α -308G>A (rs1800629) and the CD38 184C>G (rs6449182) SNPs as predictive genetic markers of CD38 activity, clearly point toward possible pharmacogenomic applications and to a more refined use of CD38 in clinical settings.
Collapse
Affiliation(s)
- Valeria Polzonetti
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
25
|
The cumulative amount of serum-free light chain is a strong prognosticator in chronic lymphocytic leukemia. Blood 2011; 118:6353-61. [PMID: 21998207 DOI: 10.1182/blood-2011-04-345587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identification of patients at risk of early disease progression is the mainstay of tailored management in chronic lymphocytic leukemia (CLL). Although application of established biomarkers is limited by intrinsic detection/readout complexities, abnormality of κ and λ serum-free light chain ratio [sFLC (κ/λ)] was proposed as a straightforward prognosticator in CLL. By analyzing 449 therapy-naive patients, we show that an abnormal sFLC(κ/λ), along with CD38, ZAP-70, IGHV mutations, cytogenetics and stage, independently predicts treatment-free survival (TFS) but becomes prognostically irrelevant if the cumulative amount of clonal and nonclonal FLCs [sFLC(κ + λ)], a variable associated with cytogenetic risk, exceeds the threshold of 60.6 mg/mL. Patients with sFLC(κ + λ) above cut-off displayed a poorer TFS outcome, irrespective of sFLC(κ/λ). Only ZAP-70, cytogenetics, stage, and TFS remained associated with sFLC(κ + λ) in a multivariate model. By assigning 1 point each for these variables, the 3-year probability of TFS was 94.8%, 84.5%, 61.6%, and 21.1% for patients scoring 0, 1, 2, and 3 + 4, respectively (P < .0001). These data, and the demonstration that monoclonal and polyclonal B cells concur to FLC synthesis in tumor tissues, suggest that sFLC(κ/λ) and sFLC(κ + λ) mirror distinct biologic processes in CLL. sFLC(κ + λ) assessment represents a sensitive and cost-effective tool for identifying CLL patients requiring early treatment.
Collapse
|
26
|
Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118:3470-8. [PMID: 21765022 PMCID: PMC3574275 DOI: 10.1182/blood-2011-06-275610] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the host's microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/physiology
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Research/trends
- Time Factors
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Fabio Malavasi
- Department of Genetics, Biology and Biochemistry, University of Torino School of Medicine, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Audrito V, Vaisitti T, Rossi D, Gottardi D, D'Arena G, Laurenti L, Gaidano G, Malavasi F, Deaglio S. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res 2011; 71:4473-83. [PMID: 21565980 DOI: 10.1158/0008-5472.can-10-4452] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because of its relatively indolent clinical course, chronic lymphocytic leukemia (CLL) offers a versatile model for testing novel therapeutic regimens and drug combinations. Nicotinamide is the main NAD(+) precursor and a direct inhibitor of four classes of enzymes, including the sirtuins. SIRT1, the main member of the sirtuin family, inactivates p53 by deacetylating a critical lysine residue. In this study, we showed that CLL cells express high levels of functional SIRT1, which is inhibited by exogenous nicotinamide. This agent blocks proliferation and promotes apoptosis selectively in leukemic cells that express wild-type (wt) p53. Nicotinamide modulates the p53-dependent genes p21, NOXA, BAX, and Mcl-1, indicating an activation of the p53 pathway and of caspase-3. DNA-damaging chemotherapeutics, such as etoposide, activate a functional loop linking SIRT1 and p53 through the induction of miR-34a. When leukemic cells are simultaneously exposed to nicotinamide and etoposide, we observe a significant increase in miR-34a levels with a concomitant inhibition of SIRT1. Furthermore, p53 acetylation levels are higher than with either agent used alone. Overall, treatment with both nicotinamde and etoposide shows strongly synergistic effects in the induction of apoptosis. We therefore concluded that nicotinamide has the dual property of inhibiting SIRT1 through a noncompetitive enzymatic block (p53 independent) and at the same time through miR-34a induction (p53 dependent). These observations suggested the therapeutic potential of nicotinamide, a novel, safe, and inexpensive drug, to be used in addition to chemotherapy for CLL patients with wt p53.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Turin, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett 2011; 585:1529-36. [PMID: 21557943 DOI: 10.1016/j.febslet.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that the nonapeptide, oxytocin (OT), helps shape social and affiliative behaviors not only in lower mammals but also in humans. Recently, an essential mediator of brain OT release has been discovered, ADP-ribosyl cyclase and/or CD38. We have subsequently shown that polymorphisms across the CD38 gene are associated with autism spectrum disorders (ASD). Notably, CD38 expression in lymphoblastoid cells (LBC) is reduced in cell lines derived from ASD subjects compared to parental cell lines. Intriguingly, a correlation was observed between CD38 expression and measures of social function in ASD. Finally, we have shown that all-trans retinoic acid (ATRA), a known inducer of CD38 transcription, can rescue low CD38 expressing LBC lines derived from ASD subjects and restore normal levels of transcription of this ectoenzyme providing 'proof of principle' in a peripheral model that retinoids are potential therapeutic agents in ASD.
Collapse
|
30
|
Riebold M, Mankuta D, Lerer E, Israel S, Zhong S, Nemanov L, Monakhov MV, Levi S, Yirmiya N, Yaari M, Malavasi F, Ebstein RP. All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from Autism spectrum disorder. Mol Med 2011; 17:799-806. [PMID: 21528155 DOI: 10.2119/molmed.2011.00080] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023] Open
Abstract
Deficits in social behavior in mice lacking the CD38 gene have been attributed to impaired secretion of oxytocin. In humans, similar deficits in social behavior are associated with autistic spectrum disorder (ASD), for which genetic variants of CD38 have been pinpointed as provisional risk factors. We sought to explore, in an in vitro model, the feasibility of the theory that restoring the level of CD38 in ASD patients could be of potential clinical benefit. CD38 transcription is highly sensitive to several cytokines and vitamins. One of these, all-trans retinoic acid (ATRA), a known inducer of CD38, was added during cell culture and tested on a large sample of N = 120 lymphoblastoid cell (LBC) lines from ASD patients and their parents. Analysis of CD38 mRNA levels shows that ATRA has an upmodulatory potential on LBC derived from ASD patients as well as from their parents. The next crucial issue addressed in our study was the relationship between levels of CD38 expression and psychological parameters. The results obtained indicate a positive correlation between CD38 expression levels and patient scores on the Vineland Adaptive Behavior Scale. In addition, analysis of the role of genetic polymorphisms in the dynamics of the molecule revealed that the genotype of a single-nucleotide polymorphism (rs6449182; C>G variation) in the CpG island of intron 1, harboring the retinoic-acid response element, exerts differential roles in CD38 expression in ASD and in parental LBC. In conclusion, our results provide an empirical basis for the development of a pharmacological ASD treatment strategy based on retinoids.
Collapse
Affiliation(s)
- Mathias Riebold
- Department of Human Genetics, Hebrew University, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:301-32. [PMID: 21586363 PMCID: PMC5879773 DOI: 10.1016/b978-0-12-385526-8.00010-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.
Collapse
Affiliation(s)
- Silvia Deaglio
- Department of Genetics, Biology, and Biochemistry, University of Turin & Human Genetics Foundation, Italy
| | | |
Collapse
|