1
|
Hosseini A, Dhall A, Ikonen N, Sikora N, Nguyen S, Shen Y, Amaral MLJ, Jiao A, Wallner F, Sergeev P, Lim Y, Yang Y, Vick B, Kawabata KC, Melnick A, Vyas P, Ren B, Jeremias I, Psaila B, Heckman CA, Blanco MA, Shi Y. Perturbing LSD1 and WNT rewires transcription to synergistically induce AML differentiation. Nature 2025:10.1038/s41586-025-08915-1. [PMID: 40240608 DOI: 10.1038/s41586-025-08915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Impaired differentiation is a hallmark of myeloid malignancies1,2. Therapies that enable cells to circumvent the differentiation block, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), are by and large curative in acute promyelocytic leukaemia3, but whether 'differentiation therapy' is a generalizable therapeutic approach for acute myeloid leukaemia (AML) and beyond remains incompletely understood. Here we demonstrate that simultaneous inhibition of the histone demethylase LSD1 (LSD1i) and the WNT pathway antagonist GSK3 kinase4 (GSK3i) robustly promotes therapeutic differentiation of established AML cell lines and primary human AML cells, as well as reducing tumour burden and significantly extending survival in a patient-derived xenograft mouse model. Mechanistically, this combination promotes differentiation by activating genes in the type I interferon pathway via inducing expression of transcription factors such as IRF7 (LSD1i) and the co-activator β-catenin (GSK3i), and their selective co-occupancy at targets such as STAT1, which is necessary for combination-induced differentiation. Combination treatment also suppresses the canonical, pro-oncogenic WNT pathway and cell cycle genes. Analysis of datasets from patients with AML suggests a correlation between the combination-induced transcription signature and better prognosis, highlighting clinical potential of this strategy. Collectively, this combination strategy rewires transcriptional programs to suppress stemness and to promote differentiation, which may have important therapeutic implications for AML and WNT-driven cancers beyond AML.
Collapse
Affiliation(s)
- Amir Hosseini
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Abhinav Dhall
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Natalia Sikora
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sylvain Nguyen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuqi Shen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Alan Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philipp Sergeev
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Yuhua Lim
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuanqin Yang
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
| | - Kimihito Cojin Kawabata
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Paresh Vyas
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bing Ren
- Cell and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Bethan Psaila
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - M Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Altinok Gunes B, Ozkan T, Karadag Gurel A, Dalkilic S, Belder N, Ozkeserli Z, Ozdag H, Beksac M, Sayinalp N, Yagci AM, Sunguroglu A. Transcriptome Analysis of Beta-Catenin-Related Genes in CD34+ Haematopoietic Stem and Progenitor Cells from Patients with AML. Mediterr J Hematol Infect Dis 2024; 16:e2024058. [PMID: 38984092 PMCID: PMC11232677 DOI: 10.4084/mjhid.2024.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Background Acute myeloid leukaemia (AML) is a disease of the haematopoietic stem cells(HSCs) that is characterised by the uncontrolled proliferation and impaired differentiation of normal haematopoietic stem/progenitor cells. Several pathways that control the proliferation and differentiation of HSCs are impaired in AML. Activation of the Wnt/beta-catenin signalling pathway has been shown in AML and beta-catenin, which is thought to be the key element of this pathway, has been frequently highlighted. The present study was designed to determine beta-catenin expression levels and beta-catenin-related genes in AML. Methods In this study, beta-catenin gene expression levels were determined in 19 AML patients and 3 controls by qRT-PCR. Transcriptome analysis was performed on AML grouped according to beta-catenin expression levels. Differentially expressed genes(DEGs) were investigated in detail using the Database for Annotation Visualisation and Integrated Discovery(DAVID), Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), STRING online tools. Results The transcriptome profiles of our AML samples showed different molecular signature profiles according to their beta-catenin levels(high-low). A total of 20 genes have been identified as hub genes. Among these, TTK, HJURP, KIF14, BTF3, RPL17 and RSL1D1 were found to be associated with beta-catenin and poor survival in AML. Furthermore, for the first time in our study, the ELOV6 gene, which is the most highly up-regulated gene in human AML samples, was correlated with a poor prognosis via high beta-catenin levels. Conclusion It is suggested that the identification of beta-catenin-related gene profiles in AML may help to select new therapeutic targets for the treatment of AML.
Collapse
Affiliation(s)
- B Altinok Gunes
- Vocational School of Health Services, Ankara University, Ankara, Turkey
| | - T Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - A Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - S Dalkilic
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - N Belder
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Z Ozkeserli
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - H Ozdag
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - M Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - N Sayinalp
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A M Yagci
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - A Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
4
|
Wray JP, Deltcheva EM, Boiers C, Richardson SЕ, Chhetri JB, Brown J, Gagrica S, Guo Y, Illendula A, Martens JHA, Stunnenberg HG, Bushweller JH, Nimmo R, Enver T. Regulome analysis in B-acute lymphoblastic leukemia exposes Core Binding Factor addiction as a therapeutic vulnerability. Nat Commun 2022; 13:7124. [PMID: 36411286 PMCID: PMC9678885 DOI: 10.1038/s41467-022-34653-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFβ results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFβ-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.
Collapse
Affiliation(s)
- Jason P Wray
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Charlotta Boiers
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Simon Е Richardson
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK
| | | | - John Brown
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yanping Guo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rachael Nimmo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Tariq Enver
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK.
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden.
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang,
| |
Collapse
|
6
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
7
|
Acute myeloid leukemia-induced remodeling of the human bone marrow niche predicts clinical outcome. Blood Adv 2021; 4:5257-5268. [PMID: 33108453 DOI: 10.1182/bloodadvances.2020001808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Murine models of myeloid neoplasia show how leukemia infiltration alters the hematopoietic stem cell (HSC) niche to reinforce malignancy at the expense of healthy hematopoiesis. However, little is known about the bone marrow architecture in humans and its impact on clinical outcome. Here, we dissect the bone marrow niche in patients with acute myeloid leukemia (AML) at first diagnosis. We combined immunohistochemical stainings with global gene expression analyses from these AML patients and correlated them with clinical features. Mesenchymal stem and progenitor cells (MSPCs) lost quiescence and significantly expanded in the bone marrow of AML patients. Strikingly, their HSC- and niche-regulating capacities were impaired with significant inhibition of osteogenesis and bone formation in a cell contact-dependent manner through inhibition of cytoplasmic β-catenin. Assessment of bone metabolism by quantifying peripheral blood osteocalcin levels revealed 30% lower expression in AML patients at first diagnosis than in non-leukemic donors. Furthermore, patients with osteocalcin levels ≤11 ng/mL showed inferior overall survival with a 1-year survival rate of 38.7% whereas patients with higher osteocalcin levels reached a survival rate of 66.8%. These novel insights into the human AML bone marrow microenvironment help translate findings from preclinical models and detect new targets which might pave the way for niche-targeted therapies in AML patients.
Collapse
|
8
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San Nicolas M. WNT Signaling in Tumors: The Way to Evade Drugs and Immunity. Front Immunol 2019; 10:2854. [PMID: 31921125 PMCID: PMC6934036 DOI: 10.3389/fimmu.2019.02854] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
WNT/β-catenin signaling is involved in many physiological processes. Its implication in embryonic development, cell migration, and polarization has been shown. Nevertheless, alterations in this signaling have also been related with pathological events such as sustaining and proliferating the cancer stem cell (CSC) subset present in the tumor bulk. Related with this, WNT signaling has been associated with the maintenance, expansion, and epithelial-mesenchymal transition of stem cells, and furthermore with two distinctive features of this tumor population: therapeutic resistance (MDR, multidrug resistance) and immune escape. These mechanisms are developed and maintained by WNT activation through the transcriptional control of the genes involved in such processes. This review focuses on the description of the best known WNT pathways and the molecules involved in them. Special attention is given to the WNT cascade proteins deregulated in tumors, which have a decisive role in tumor survival. Some of these proteins function as extrusion pumps that, in the course of chemotherapy, expel the drugs from the cells; others help the tumoral cells hide from the immune effector mechanisms. Among the WNT targets involved in drug resistance, the drug extrusion pump MDR-1 (P-GP, ABCB1) and the cell adhesion molecules from the CD44 family are highlighted. The chemokine CCL4 and the immune checkpoint proteins CD47 and PD-L1 are included in the list of WNT target molecules with a role in immunity escape. This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs. The appropriate design and combination of anti-tumoral strategies, based on the modulation of WNT mediators and/or protein targets, could negatively affect the growth of tumoral cells, improving the efficacy of these types of therapies.
Collapse
Affiliation(s)
- Elena Martin-Orozco
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), ARADyAL, Murcia, Spain
| | - Ana Sanchez-Fernandez
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Irene Ortiz-Parra
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Ayala-San Nicolas
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
11
|
Adjuvant Epigenetic Therapy of Decitabine and Suberoylanilide Hydroxamic Acid Exerts Anti-Neoplastic Effects in Acute Myeloid Leukemia Cells. Cells 2019; 8:cells8121480. [PMID: 31766421 PMCID: PMC6952979 DOI: 10.3390/cells8121480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Atypical epigenetic processes including histone acetylation and DNA methylation have been identified as a fundamental theme in hematologic malignancies. Such mechanisms modify gene expression and prompt, in part at least, the initiation and progression of several malignancies including acute myeloid leukemia. In the current study we determined the effects of treating KG-1 and U937 acute myeloid leukemia (AML) cells, in vitro, with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), or with a DNMT inhibitor, decitabine (DAC), or their combination, on cell proliferation, cell cycle progression, apoptosis, and expression of apoptosis-related proteins. Each of SAHA and DAC attenuated cell proliferation and induced cell cycle arrest and apoptotic cell death of KG-1 and U937 cell lines. Besides, their sequential combination improved the obtained anti-neoplastic effect: significant augmentation of growth inhibition and apoptosis induction as compared to cells treated with either drug alone. This effect was featured by the upregulated expression of Bax, cytochrome c1, p21, and cleaved caspases 8, 9, and 3, signifying the activation of both the intrinsic and extrinsic pathways of apoptosis. The sequential combination of SAHA and DAC causes a profound antitumorigenic effect in AML cell lines by inducing the expression of tumor suppressor genes.
Collapse
|
12
|
HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11:cancers11101436. [PMID: 31561534 PMCID: PMC6826998 DOI: 10.3390/cancers11101436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Collapse
|
13
|
Yokoyama N, Kim YJ, Hirabayashi Y, Tabe Y, Takamori K, Ogawa H, Iwabuchi K. Kras promotes myeloid differentiation through Wnt/β-catenin signaling. FASEB Bioadv 2019; 1:435-449. [PMID: 32123842 PMCID: PMC6996383 DOI: 10.1096/fba.2019-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3β, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3β was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3β enhanced CD11b expression and triggered the accumulation in the nucleus of β-catenin and Tcf in response to DMSO. Inhibitors of β-catenin-mediated pathways blocked CD11b expression, further indicating that β-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/β-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Yeon-Jeong Kim
- Laboratory for Neuronal Growth Mechanisms Riken Brain Science Institutes Saitama Japan
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Cellular Informatics Laboratory RIKEN Wako Saitama Japan
| | - Yoko Tabe
- Department of Laboratory Medicine Juntendo University School of Medicine Hospital Hongo Tokyo Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Infection Control Nursing Juntendo University Graduate School of Health Care and Nursing Urayasu Chiba Japan
- Laboratory of Biochemistry Juntendo University Faculty of Health Care and Nursing Urayasu Chiba Japan
| |
Collapse
|
14
|
Almars A, Chondrou PS, Onyido EK, Almozyan S, Seedhouse C, Babaei-Jadidi R, Nateri AS. Increased FLYWCH1 Expression is Negatively Correlated with Wnt/β-catenin Target Gene Expression in Acute Myeloid Leukemia Cells. Int J Mol Sci 2019; 20:ijms20112739. [PMID: 31167387 PMCID: PMC6600431 DOI: 10.3390/ijms20112739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous clonal malignancy of hematopoietic progenitor cells. The Wnt pathway and its downstream targets are tightly regulated by β-catenin. We recently discovered a new protein, FLYWCH1, which can directly bind nuclear β-catenin. Herein, we studied the FLYWCH1/β-catenin pathway in AML cells using qRT-PCR, Western blot, and immunofluorescence assays. In addition, the stemness activity and cell cycle were analysed by the colony-forming unit (CFU) using methylcellulose-based and Propidium iodide/flow cytometry assays. We found that FLYWCH1 mRNA and protein were differentially expressed in the AML cell lines. C-Myc, cyclin D1, and c-Jun expression decreased in the presence of higher FLYWCH1 expression, and vice versa. There appeared to be the loss of FLYWCH1 expression in dividing cells. The sub-G0 phase was prolonged and shortened in the low and high FLYWCH1 expression cell lines, respectively. The G0/G1 arrest correlated with FLYWCH1-expression, and these cell lines also formed colonies, whereas the low FLYWCH1 expression cell lines could not. Thus, FLYWCH1 functions as a negative regulator of the Wnt/β-catenin pathway in AML.
Collapse
Affiliation(s)
- Amany Almars
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Panagiota S Chondrou
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sheema Almozyan
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Claire Seedhouse
- Haematology, Nottingham City Hospital, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK.
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
15
|
Ignatz-Hoover JJ, Wang V, Mackowski NM, Roe AJ, Ghansah IK, Ueda M, Lazarus HM, de Lima M, Paietta E, Fernandez H, Cripe L, Tallman M, Wald DN. Aberrant GSK3β nuclear localization promotes AML growth and drug resistance. Blood Adv 2018; 2:2890-2903. [PMID: 30385433 PMCID: PMC6234355 DOI: 10.1182/bloodadvances.2018016006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease with poor patient survival. As targetable mutations in AML are rare, novel oncogenic mechanisms are needed to define new therapeutic targets. We identified AML cells that exhibit an aberrant pool of nuclear glycogen synthase kinase 3β (GSK3β). This nuclear fraction drives AML growth and drug resistance. Nuclear, but not cytoplasmic, GSK3β enhances AML colony formation and AML growth in mouse models. Nuclear GSK3β drives AML partially by promoting nuclear localization of the NF-κB subunit, p65. Finally, nuclear GSK3β localization has clinical significance as it strongly correlates to worse patient survival (n = 86; hazard ratio = 2.2; P < .01) and mediates drug resistance in cell and animal models. Nuclear localization of GSK3β may define a novel oncogenic mechanism in AML and represent a new therapeutic target.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Female
- Glycogen Synthase Kinase 3 beta/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid-Lymphoid Leukemia Protein/metabolism
- NF-kappa B/metabolism
- Oncogene Proteins, Fusion/metabolism
- Proportional Hazards Models
- Survival Rate
- Transplantation, Heterologous
- Up-Regulation
Collapse
Affiliation(s)
| | - Victoria Wang
- Eastern Cooperative Oncology Group-American College of Radiology Imaging Network (ECOG-ACRIN) Biostatistics Center, Dana-Farber Cancer Institute, Boston, MA
| | | | - Anne J Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Isaac K Ghansah
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Masumi Ueda
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hillard M Lazarus
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | - Marcos de Lima
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | | | - Hugo Fernandez
- Department of Blood and Marrow Transplant, Moffitt Cancer Center, Tampa, FL
| | - Larry Cripe
- Department of Medicine, Indiana University, Indianapolis, IN
| | - Martin Tallman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH
| |
Collapse
|
16
|
Chong PSY, Zhou J, Chooi JY, Chan ZL, Toh SHM, Tan TZ, Wee S, Gunaratne J, Zeng Q, Chng WJ. Non-canonical activation of β-catenin by PRL-3 phosphatase in acute myeloid leukemia. Oncogene 2018; 38:1508-1519. [PMID: 30305722 DOI: 10.1038/s41388-018-0526-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022]
|
17
|
Jiang X, Mak PY, Mu H, Tao W, Mak DH, Kornblau S, Zhang Q, Ruvolo P, Burks JK, Zhang W, McQueen T, Pan R, Zhou H, Konopleva M, Cortes J, Liu Q, Andreeff M, Carter BZ. Disruption of Wnt/β-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in FLT3-Mutant Acute Myeloid Leukemia. Clin Cancer Res 2018; 24:2417-2429. [PMID: 29463558 DOI: 10.1158/1078-0432.ccr-17-1556] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 02/14/2018] [Indexed: 12/26/2022]
Abstract
Purpose: Wnt/β-catenin signaling is required for leukemic stem cell function. FLT3 mutations are frequently observed in acute myeloid leukemia (AML). Anomalous FLT3 signaling increases β-catenin nuclear localization and transcriptional activity. FLT3 tyrosine kinase inhibitors (TKI) are used clinically to treat FLT3-mutated AML patients, but with limited efficacy. We investigated the antileukemia activity of combined Wnt/β-catenin and FLT3 inhibition in FLT3-mutant AML.Experimental Design: Wnt/β-catenin signaling was inhibited by the β-catenin/CBP antagonist C-82/PRI-724 or siRNAs, and FLT3 signaling by sorafenib or quizartinib. Treatments on apoptosis, cell growth, and cell signaling were assessed in cell lines, patient samples, and in vivo in immunodeficient mice by flow cytometry, Western blot, RT-PCR, and CyTOF.Results: We found significantly higher β-catenin expression in cytogenetically unfavorable and relapsed AML patient samples and in the bone marrow-resident leukemic cells compared with circulating blasts. Disrupting Wnt/β-catenin signaling suppressed AML cell growth, induced apoptosis, abrogated stromal protection, and synergized with TKIs in FLT3-mutated AML cells and stem/progenitor cells in vitro The aforementioned combinatorial treatment improved survival of AML-xenografted mice in two in vivo models and impaired leukemia cell engraftment. Mechanistically, the combined inhibition of Wnt/β-catenin and FLT3 cooperatively decreased nuclear β-catenin and the levels of c-Myc and other Wnt/β-catenin and FLT3 signaling proteins. Importantly, β-catenin inhibition abrogated the microenvironmental protection afforded the leukemic stem/progenitor cells.Conclusions: Disrupting Wnt/β-catenin signaling exerts potent activities against AML stem/progenitor cells and synergizes with FLT3 inhibition in FLT3-mutant AML. These findings provide a rationale for clinical development of this strategy for treating FLT3-mutated AML patients. Clin Cancer Res; 24(10); 2417-29. ©2018 AACR.
Collapse
Affiliation(s)
- Xuejie Jiang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rongqing Pan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongsheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
18
|
Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, Voisset E, Yu V. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:105-116. [PMID: 28939057 PMCID: PMC5701546 DOI: 10.1016/j.bbamcr.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.
Collapse
Affiliation(s)
- William Grey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, UK
| | | | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Edwige Voisset
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Veronica Yu
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
19
|
Borger JG, Morrison VL, Filby A, Garcia C, Uotila LM, Simbari F, Fagerholm SC, Zamoyska R. Caveolin-1 Influences LFA-1 Redistribution upon TCR Stimulation in CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637901 PMCID: PMC5523581 DOI: 10.4049/jimmunol.1700431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TCR stimulation by peptide-MHC complexes on APCs requires precise reorganization of molecules into the area of cellular contact to form an immunological synapse from where T cell signaling is initiated. Caveolin (Cav)1, a widely expressed transmembrane protein, is involved in the regulation of membrane composition, cellular polarity and trafficking, and the organization of signal transduction pathways. The presence of Cav1 protein in T cells was identified only recently, and its function in this context is not well understood. We show that Cav1-knockout CD8 T cells have a reduction in membrane cholesterol and sphingomyelin, and upon TCR triggering they exhibit altered morphology and polarity, with reduced effector function compared with Cav1 wild-type CD8 T cells. In particular, redistribution of the β2 integrin LFA-1 to the immunological synapse is compromised in Cav1-knockout T cells, as is the ability of LFA-1 to form high-avidity interactions with ICAM-1. Our results identify a role for Cav1 in membrane organization and β2 integrin function in primary CD8 T cells.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Andrew Filby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; and
| | - Celine Garcia
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Liisa M Uotila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Simbari
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Rose Zamoyska
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
20
|
Camacho V, McClearn V, Patel S, Welner RS. Regulation of normal and leukemic stem cells through cytokine signaling and the microenvironment. Int J Hematol 2017; 105:566-577. [DOI: 10.1007/s12185-017-2184-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
|
21
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
22
|
Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods 2017; 112:39-45. [DOI: 10.1016/j.ymeth.2016.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
|
23
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
24
|
Sheng Y, Ju W, Huang Y, Li J, Ozer H, Qiao X, Qian Z. Activation of wnt/β-catenin signaling blocks monocyte-macrophage differentiation through antagonizing PU.1-targeted gene transcription. Leukemia 2016; 30:2106-2109. [PMID: 27211263 PMCID: PMC5053841 DOI: 10.1038/leu.2016.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Y Sheng
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - W Ju
- College of Public Health, Jilin University, Jilin, China.,Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Huang
- Section of Gastroenterology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - J Li
- College of Public Health, Jilin University, Jilin, China
| | - H Ozer
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - X Qiao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Z Qian
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Hu Y, Li S. Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73:1039-50. [PMID: 26686687 PMCID: PMC11108378 DOI: 10.1007/s00018-015-2108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss.
Collapse
Affiliation(s)
- Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, The Third Part Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Geduk A, Atesoglu EB, Tarkun P, Mehtap O, Hacihanefioglu A, Demirsoy ET, Baydemir C. The Role of β-Catenin in Bcr/Abl Negative Myeloproliferative Neoplasms: An Immunohistochemical Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:785-9. [PMID: 26422250 DOI: 10.1016/j.clml.2015.08.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION β-Catenin is a multifunctional protein that acts as a central effector molecule in the Wnt signaling pathway. Aberrant activation of the Wnt/β-catenin signaling pathway causes various diseases including cancer. In this study we evaluated β-catenin expression in bcr/abl-negative myeloproliferative neoplasms (MPNs). MATERIALS AND METHODS The expression of β-catenin was evaluated in bone marrow using immunohistochemical methods in 66 patients with bcr/abl-negative myeloproliferative neoplasms (MPNs) and in 30 healthy control subjects. Immunreactive score (IRS; staining intensity × percentage of positive stained cells) was used for the evaluation of the cell staining reaction. RESULTS IRS of megakaryocytes (IRSmega) was higher in essential thrombocytemia (ET) compared with the control group (P = .022) and primary myelofibrosis (PMF; P = .001). IRS of vascular endothelial cells (IRSvas) was higher in the bcr/abl negative MPN compared with the control group (P = .024). Also, IRSvas was higher in the PMF compared with the control group (P = .001), policythemia vera (PV; P = .005), and ET (P = .006). A positive correlation was detected between IRSmega and platelet counts (P = .019). CONCLUSION Results of this study suggest that the Wnt/β-catenin signaling pathway has a role in the angiogenesis of PMF and in the thrombopoiesis of PV and ET. Hence, targeting the Wnt/β-catenin signaling pathway could open new avenues for novel therapeutic approaches in bcr/abl-negative MPNs.
Collapse
Affiliation(s)
- Ayfer Geduk
- Department of Hematology, Medical Faculty, Kocaeli University, Kocaeli, Turkey.
| | - Elif B Atesoglu
- Department of Hematology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Pinar Tarkun
- Department of Hematology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Ozgur Mehtap
- Department of Hematology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | | | - Esra T Demirsoy
- Department of Hematology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Canan Baydemir
- Department of Biostatistics and Medical Informatics, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
27
|
Tang CY, Lin J, Qian W, Yang J, Ma JC, Deng ZQ, Yang L, An C, Wen XM, Zhang YY, Qian J. Low SOX17 expression: prognostic significance in de novo acute myeloid leukemia with normal cytogenetics. Clin Chem Lab Med 2015; 52:1843-50. [PMID: 24955525 DOI: 10.1515/cclm-2014-0487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aberrant expression of SRY-box containing gene 17 (SOX17) has been observed in several solid tumors. However, little is known about SOX17 expression in acute myeloid leukemia (AML). The purpose of this study was to investigate the alteration of SOX17 expression and to explore its clinical significance in AML. METHODS Real-time quantitative PCR (RQ-PCR) was performed to analyze the status of SO1X17 expression in 103 patients with de novo AML and 26 normal controls. The clinical relevance of SOX17 expression was analyzed in AML. RESULTS SOX17 level in AML was significantly down-regulated compared to controls (p<0.001). Receiver operating characteristic curve (ROC) curve analysis revealed that an area under the ROC curve (AUC) of 0.834 (95% CI 0.765-0.903; p<0.0001) or 0.789 (95% CI 0.690-0.888, p<0.001) in discriminating all patients or cytogenetically normal patients from controls, respectively. The cohort of AML patients was divided into two groups according to the cut-off value of 0.017 (60% sensitivity and 100% specificity, respectively). Cytogenetically normal patients with low SOX17 expression had significantly shorter OS than those with high SOX17 expression (median 4 vs. 25 months, respectively, p=0.035). Multivariate analysis confirmed low SOX17 expression as an independent risk factor. CONCLUSIONS Our findings indicated that low SOX17 level may define an important risk factor in AML with normal cyotgenetics.
Collapse
|
28
|
Griffiths EA, Golding MC, Srivastava P, Povinelli BJ, James SR, Ford LA, Wetzler M, Wang ES, Nemeth MJ. Pharmacological targeting of β-catenin in normal karyotype acute myeloid leukemia blasts. Haematologica 2015; 100:e49-52. [PMID: 25381132 PMCID: PMC4803144 DOI: 10.3324/haematol.2014.113118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elizabeth A Griffiths
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA Department of Pharmacology and Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michelle C Golding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Pragya Srivastava
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Benjamin J Povinelli
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Smitha R James
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Laurie A Ford
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Meir Wetzler
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
29
|
Zang S, Liu N, Wang H, Wald DN, Shao N, Zhang J, Ma D, Ji C, Tse W. Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer 2014; 14:886. [PMID: 25428027 PMCID: PMC4289047 DOI: 10.1186/1471-2407-14-886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/17/2014] [Indexed: 01/02/2023] Open
Abstract
Background We previously demonstrated that 6-benzylthioinosine (6-BT) could induce the differentiation of a subset of acute myeloid leukemia (AML) cell lines and primary AML cells regardless of their cytogenetics. In this study we investigated whether Wnt signaling pathways played roles in 6-BT-induced differentiation of AML cells. Methods We induced differentiation of HL-60 leukemic cells and primary AML cells in vitro using 6-BT. Real-time PCR (qPCR), western blot, and luciferase assays were used to examine the molecules’ expression and biological activity in canonical and noncanonical Wnt signaling pathways. AML cell differentiation was measured by the Nitroblue tetrozolium (NBT) reduction assay. Results 6-BT regulated the expression of both canonical and non-canonical Wnt signaling molecules in HL-60 cells. Both 6-BT and all-trans-retinoic-acid (ATRA) reduced canonical Wnt signaling and activated noncanonical Wnt/Ca2+ signaling in HL-60 cells. Pre-treatment of HL-60 cells with an inhibitor of glycogen synthase kinase-3β (GSK-3β), which activated canonical Wnt signaling, partly abolished the differentiation of HL-60 cells induced by 6-BT. Pre-treatment of HL-60 cells with an inhibitor of protein kinase C (PKC), resulting in inactivation of non-canonical Wnt/Ca2+ signaling, abolished 6-BT-induced differentiation of HL-60 cells. Several molecules in the non-canonical Wnt/Ca2+ pathway were detected in bone marrow samples from AML patients, and the expression of FZD4, FZD5, Wnt5a and RHOU were significantly reduced in newly diagnosed AML samples compared with normal controls. Conclusions Both canonical and non-canonical Wnt signaling were involved in 6-BT-induced differentiation of HL-60 cells, and played opposite roles in this process. Wnt signaling could be involved in the pathogenesis of AML not only by regulating self-renewal of hematopoietic stem cells, but also by playing a role in the differentiation of AML cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-886) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong 250012, P,R, China.
| | | |
Collapse
|
30
|
Inhibiting CCN1 blocks AML cell growth by disrupting the MEK/ERK pathway. Cancer Cell Int 2014; 14:74. [PMID: 25187756 PMCID: PMC4153307 DOI: 10.1186/s12935-014-0074-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background CCN1 plays distinct roles in various tumor types, but little is known regarding the role of CCN1 in leukemia. Methods We analyzed CCN1 protein expression in leukemia cell lines and in AML bone marrow samples. We also evaluated the effects of antibody- or siRNA-mediated inhibition of CCN1 on the growth of two AML cell lines (U937 and Kasumi-1 cells) and on the MEK/ERK pathway, β-catenin and other related genes. Results U937 and Kasumi-1 cells had markedly higher CCN1 expression than the 5 other leukemia cell lines, and CCN1 protein expression was higher in the AML bone marrow samples than in the normal bone marrow samples. Blocking CCN1 with an antibody in U937 and Kasumi-1 cells suppressed proliferation, increased apoptosis, down-regulated Bcl-xL and c-Myc expression, up-regulated Bax expression, and had no effect on Survivin. siRNA-mediated down-regulation of CCN1 inhibited the proliferation and colony formation of U937 and Kasumi-1 cells and increased cytarabine-induced apoptosis. Furthermore, CCN1 siRNA reduced MEK and ERK phosphorylation without affecting β-catenin; the CCN1 antibody similarly affected MEK and ERK phosphorylation. These changes in phosphorylation could influence the expression of Bcl-xL, c-Myc and Bax in AML cells. Conclusions The data suggested that CCN1 is a tumor promoter in AML that acts through the MEK/ERK pathway to up-regulate c-Myc and Bcl-xL and to down-regulate Bax.
Collapse
|
31
|
Sadras T, Perugini M, Kok CH, Iarossi DG, Heatley SL, Brumatti G, Samuel MS, To LB, Lewis ID, Lopez AF, Ekert PG, Ramshaw HS, D'Andrea RJ. Interleukin-3-mediated regulation of β-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol 2014; 96:83-91. [PMID: 24598054 DOI: 10.1189/jlb.2ab1013-559r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of β-catenin is a common event in AML and is an independent predictor of poor prognosis. Although increased β-catenin signaling in AML has been associated with oncogenic translocation products and activating mutations in the FLT3R, the mechanisms that activate β-catenin in AML more broadly are still unclear. Here, we describe a novel link between IL-3 signaling and the regulation of β-catenin in myeloid transformation and AML. In a murine model of HoxB8 and IL-3 cooperation, we show that β-catenin protein levels are modulated by IL-3 and that Cre-induced deletion of β-catenin abolishes IL-3-dependent growth and colony formation. In IL-3-dependent leukemic TF-1.8 cells, we observed increased β-catenin protein levels and nuclear localization in response to IL-3, and this correlated with transcriptional induction of β-catenin target genes. Furthermore, IL-3 promoted β-catenin accumulation in a subset of AML patient samples, and gene-expression profiling of these cells revealed induction of WNT/β-catenin and TCF4 gene signatures in an IL-3-dependent manner. This study is the first to link β-catenin activation to IL-3 and suggests that targeting IL-3 signaling may be an effective approach for the inhibition of β-catenin activity in some patients with AML.
Collapse
Affiliation(s)
- Teresa Sadras
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Michelle Perugini
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chung H Kok
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Diana G Iarossi
- Centre for Cancer Biology and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Susan L Heatley
- Centre for Cancer Biology and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Gabriela Brumatti
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and
| | - Michael S Samuel
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Luen B To
- Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ian D Lewis
- Centre for Cancer Biology and Departments of Haematology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Paul G Ekert
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and
| | - Hayley S Ramshaw
- Centre for Cancer Biology and Immunology, SA Pathology, Adelaide, South Australia, Australia
| | - Richard J D'Andrea
- Centre for Cancer Biology and School of Molecular and Biomedical Science and Centre for Stem Cell Research and Departments of Haematology and Department of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia, Australia School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia;
| |
Collapse
|
32
|
Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 2014; 3:113. [PMID: 24409421 PMCID: PMC3885817 DOI: 10.3389/fcimb.2013.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/21/2013] [Indexed: 01/07/2023] Open
Abstract
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| |
Collapse
|
33
|
Ng CEL, Sinha A, Krivtsov A, Dias S, Chang J, Armstrong SA, Kalaitzidis D. KRas(G12D)-evoked leukemogenesis does not require β-catenin. Leukemia 2013; 28:698-702. [PMID: 24189294 DOI: 10.1038/leu.2013.328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C E L Ng
- Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School and the Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | | | - S Dias
- Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School and the Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | - S A Armstrong
- Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School and the Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - D Kalaitzidis
- Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School and the Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
34
|
Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 2013; 122:1730-40. [PMID: 23814020 DOI: 10.1182/blood-2012-11-467498] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intravital microscopy of the calvarium is the only noninvasive method for high-resolution imaging of the bone marrow (BM) and hematopoietic stem cell (HSC) niches. However, it is unclear if the calvarium is representative of all BM compartments. Using the combination of whole body optical imaging, intravital microscopy, and "in vivo fluorescence trapping," a thorough comparison of HSCs and putative HSC niches in the calvaria, epiphyses, and diaphyses, at steady state or after HSC transplantation, can be made. We report substantial heterogeneity between different BM compartments in terms of bone-remodeling activity (BRA), blood volume fraction (BVF), and hypoxia. Although BVF is high in all BM compartments, including areas adjacent to the endosteum, we found that compartments displaying the highest BVF and BRA were preferentially seeded and engrafted upon HSC transplantation. Unexpectedly, the macroanatomical distribution of HSCs at steady state is homogeneous across these 3 areas and independent of these 2 parameters and suggests the existence of "reconstituting niches," which are distinct from "homeostatic niches." Both types of niches were observed in the calvarium, indicating that endochondral ossification, the process needed for the formation of HSC niches during embryogenesis, is dispensable for the formation of HSC niches during adulthood.
Collapse
Affiliation(s)
- Francois Lassailly
- Haematopoietic Stem Cell Laboratory, Londong Research Institute, Cancer Research UK, London, United Kingdom.
| | | | | | | | | |
Collapse
|
35
|
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:15-33. [PMID: 23778311 PMCID: PMC3887408 DOI: 10.1038/leu.2013.184] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Collapse
|
36
|
Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. Blood 2013; 122:554-61. [PMID: 23733339 DOI: 10.1182/blood-2013-03-491936] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some neonates with Down syndrome (DS) are diagnosed with self-regressing transient myeloproliferative disorder (TMD), and 20% to 30% of those progress to acute megakaryoblastic leukemia (AMKL). We performed exome sequencing in 7 TMD/AMKL cases and copy-number analysis in these and 10 additional cases. All TMD/AMKL samples contained GATA1 mutations. No exome-sequenced TMD/AMKL sample had other recurrently mutated genes. However, 2 of 5 TMD cases, and all AMKL cases, showed mutations/deletions other than GATA1, in genes proven as transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAK1, PARK2-PACRG, EXT1, DLEC1, and SMC3). One patient at the TMD stage revealed 2 clonal expansions with different GATA1 mutations, of which 1 clone had an additional driver mutation. Interestingly, it was the other clone that gave rise to AMKL after accumulating mutations in 7 other genes. Data suggest that GATA1 mutations alone are sufficient for clonal expansions, and additional driver mutations at the TMD stage do not necessarily predict AMKL progression. Later in infancy, leukemic progression requires "third-hit driver" mutations/somatic copy-number alterations found in non-DS leukemias. Putative driver mutations affecting WNT (wingless-related integration site), JAK-STAT (Janus kinase/signal transducer and activator of transcription), or MAPK/PI3K (mitogen-activated kinase/phosphatidylinositol-3 kinase) pathways were found in all cases, aberrant activation of which converges on overexpression of MYC.
Collapse
|
37
|
Maharzi N, Parietti V, Nelson E, Denti S, Robledo-Sarmiento M, Setterblad N, Parcelier A, Pla M, Sigaux F, Gluckman JC, Canque B. Identification of TMEM131L as a novel regulator of thymocyte proliferation in humans. THE JOURNAL OF IMMUNOLOGY 2013; 190:6187-97. [PMID: 23690469 DOI: 10.4049/jimmunol.1300400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we identify transmembrane protein 131-like (TMEM131L) as a novel regulator of thymocyte proliferation and demonstrate that it corresponds to a not as yet reported inhibitor of Wnt signaling. Short hairpin RNA-mediated silencing of TMEM131L in human CD34(+) hematopoietic progenitors, which were then grafted in NOD-SCID/IL-2rγ(null) mice, resulted in both thymocyte hyperproliferation and multiple pre- and post-β-selection intrathymic developmental defects. Consistent with deregulated Wnt signaling, TMEM131L-deficient thymocytes expressed Wnt target genes at abnormally high levels, and they displayed both constitutive phosphorylation of Wnt coreceptor LRP6 and β-catenin intranuclear accumulation. Using T cell factor reporter assays, we found that membrane-associated TMEM131L inhibited canonical Wnt/β-catenin signaling at the LRP6 coreceptor level. Whereas membrane-associated TMEM131L did not affect LRP6 expression under basal conditions, it triggered lysosome-dependent degradation of its active phosphorylated form following Wnt activation. Genetic mapping showed that phosphorylated LRP6 degradation did not depend on TMEM131L cytoplasmic part but rather on a conserved extracellular domain proximal to the membrane. Collectively, these data indicate that, during thymopoiesis, stage-specific surface translocation of TMEM131L may regulate immature single-positive thymocyte proliferation arrest by acting through mixed Wnt-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Nesrine Maharzi
- Laboratoire Développement du Système Immunitaire de l'Ecole Pratique des Hautes Etudes, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75571 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Development of gene expression-based risk score in cytogenetically normal acute myeloid leukemia patients. Oncotarget 2013; 3:824-32. [PMID: 22910040 PMCID: PMC3478459 DOI: 10.18632/oncotarget.571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with normal karyotype represent the single largest cytogenetic group of acute myeloid leukemia (AML), with highly heterogeneous clinical and molecular characteristics. In this study, we sought to determine new prognostic biomarkers in cytogenetically normal (CN)-AML patients. A gene expression (GE)-based risk score was built, summing up the prognostic value of 22 genes whose expression is associated with a bad prognosis in a training cohort of 163 patients. GE-based risk score allowed identifying a high-risk group of patients (53.4%) in two independent cohorts of CN-AML patients. GE-based risk score and EVI1 gene expression remained independent prognostic factors using multivariate Cox analyses. Combining GE-based risk score with EVI1 gene expression allowed the identification of three clinically different groups of patients in two independent cohorts of CN-AML patients. Thus, GE-based risk score is powerful to predict clinical outcome for CN-AML patients and may provide potential therapeutic advances.
Collapse
|
39
|
Despeaux M, Chicanne G, Rouer E, De Toni-Costes F, Bertrand J, Mansat-De Mas V, Vergnolle N, Eaves C, Payrastre B, Girault JA, Racaud-Sultan C. Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered Wnt signaling. Stem Cells 2013; 30:1597-610. [PMID: 22714993 DOI: 10.1002/stem.1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) activity contributes to many advanced cancer phenotypes, but little is known about its role in human acute myeloid leukemia (AML). Here, we show that FAK splice variants are abnormally expressed in the primitive leukemic cells of poor prognosis AML patients. In the CD34(+) 38(-) 123(+) long-term culture-initiating cell-enriched leukemic cells of these patients, FAK upregulates expression of Frizzled-4 and phosphorylates Pyk2 to enable the required association of Pyk2 with the Wnt5a/Frizzled-4/LRP5 endocytosis complex and downstream activation of β-catenin, thereby replacing the Wnt3a-controlled canonical pathway used by normal hematopoietic stem cells. Transduction of primitive normal human hematopoietic cells with FAK splice variants induces a marked increase in their clonogenic activity and signaling via the Wnt5a-controlled canonical pathway. Targeting FAK or β-catenin efficiently eradicates primitive leukemic cells in vitro suggesting that FAK could be a useful therapeutic target for improved treatment of poor prognosis AML cases.
Collapse
Affiliation(s)
- Mathieu Despeaux
- Inserm U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 2013; 27:1469-78. [PMID: 23307033 DOI: 10.1038/leu.2013.8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 12/22/2012] [Accepted: 01/03/2013] [Indexed: 12/22/2022]
Abstract
HERV-K (human endogenous retrovirus type K) type 1-encoded Np9 is a tumor-specific biomarker, but its oncogenic role and targets in human leukemia remain elusive. We first identified Np9 as a potent viral oncogene in human leukemia. Silencing of Np9 inhibited the growth of myeloid and lymphoblastic leukemic cells, whereas expression of Np9 significantly promoted the growth of leukemia cells in vitro and in vivo. Np9 not only activated ERK, AKT and Notch1 pathways but also upregulated β-catenin essential for survival of leukemia stem cells. In human leukemia, Np9 protein level in leukemia patients was substantially higher than that in normal donors (56% vs 4.5%). Moreover, Np9 protein level was correlated with the number of leukemia stem/progenitor cells but not detected in normal CD34(+) hematopoietic stem cells. In addition, Np9-positive samples highly expressed leukemia-specific pol-env polyprotein, env and transmembrane proteins as well as viral particles. Thus, the viral oncogene Np9 is a critical molecular switch of multiple signaling pathways regulating the growth of leukemia stem/progenitor cells. These findings open a new perspective to understand the etiology of human common leukemia and provide a novel target for treating leukemia.
Collapse
|
41
|
γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia 2012; 27:336-43. [PMID: 22858986 PMCID: PMC3613703 DOI: 10.1038/leu.2012.221] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Canonical Wnt signaling regulates the transcription of T-cell factor (TCF)-responsive genes through the stabilization and nuclear translocation of the transcriptional co-activator, β-catenin. Overexpression of β-catenin features prominently in acute myeloid leukemia (AML) and has previously been associated with poor clinical outcome. Overexpression of γ-catenin mRNA (a close homologue of β-catenin) has also been reported in AML and has been linked to the pathogenesis of this disease, however, the relative roles of these catenins in leukemia remains unclear. Here we report that overexpression and aberrant nuclear localization of γ-catenin is frequent in AML. Significantly, γ-catenin expression was associated with β-catenin stabilization and nuclear localization. Consistent with this, we found that ectopic γ-catenin expression promoted the stabilization and nuclear translocation of β-catenin in leukemia cells. β-Catenin knockdown demonstrated that both γ- and β-catenin contribute to TCF-dependent transcription in leukemia cells. These data indicate that γ-catenin expression is a significant factor in the stabilization of β-catenin in AML. We also show that although normal cells exclude nuclear translocation of both γ- and β-catenin, this level of regulation is lost in the majority of AML patients and cell lines, which allow nuclear accumulation of these catenins and inappropriate TCF-dependent transcription.
Collapse
|
42
|
Filby A, Davies D. Reporting imaging flow cytometry data for publication: Why mask the detail? Cytometry A 2012; 81:637-42. [DOI: 10.1002/cyto.a.22091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/14/2012] [Accepted: 06/01/2012] [Indexed: 11/10/2022]
|
43
|
Fung TK, Gandillet A, So CWE. Selective treatment of mixed-lineage leukemia leukemic stem cells through targeting glycogen synthase kinase 3 and the canonical Wnt/β-catenin pathway. Curr Opin Hematol 2012; 19:280-6. [PMID: 22525581 DOI: 10.1097/moh.0b013e3283545615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Leukemia carrying mutation of the mixed-lineage leukemia (MLL) gene is particularly refractory to current treatment, and is associated with frequent relapse. We will review the biology of MLL leukemia, and explore the potential of targeting multiple signaling pathways deregulated in MLL leukemic stem cells (LSCs). RECENT FINDINGS Glycogen synthase kinase 3 (GSK3) plays a critical role in mediating Hox/MEIS1 transcriptional program and its inhibition shows promise in suppressing leukemia carrying MLL fusions or aberrant Hox expression. However, recent evidence indicates that GSK3 inhibition can be overcome by hyperactivation of the canonical Wnt signaling pathway in MLL LSCs, whereas suppression of β-catenin resensitizes MLL LSCs to the GSK3 inhibitor treatment. These results suggest a differential GSK3 dependence in different subsets of leukemic populations during disease development. SUMMARY On the basis of the results from preclinical model studies, a combination treatment targeting both GSK3 and the canonical Wnt signaling pathway emerges as a promising avenue to eradicate MLL LSCs. Future effort in identifying the key tractable components along these signaling pathways will be critical for the development of effective inhibitors to target this aggressive disease.
Collapse
Affiliation(s)
- Tsz K Fung
- Leukaemia and Stem Cell Biology Group, Department of Heamatological Medicine, The Rayne Institute, King's College London, London, UK
| | | | | |
Collapse
|
44
|
Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, Håkansson UK, Moita LF, Agace WW, Bonnet D, Reis e Sousa C. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 2012; 119:6052-62. [PMID: 22442345 DOI: 10.1182/blood-2012-01-406967] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mouse CD8α(+) dendritic cells (DCs) in lymphoid organs and CD103(+) CD11b(-) DCs in nonlymphoid tissues share phenotypic and functional similarities, as well as a unique shared developmental dependence on the transcription factor Batf3. Human DCs resembling mouse CD8α(+) DCs in phenotype and function have been identified in human blood, spleen, and tonsil. However, it is not clear whether such cells are also present in human nonlymphoid organs, and their equivalence to mouse CD8α(+) DC has recently been questioned. Furthermore, the identification of "CD8α(+) DC-like" cells across different tissues and species remains problematic because of the lack of a unique marker that can be used to unambiguously define lineage members. Here we show that mouse CD8α(+) DCs and CD103(+) CD11b(-) DCs can be defined by shared high expression of DNGR-1 (CLEC9A). We further show that DNGR-1 uniquely marks a CD11b(-) human DC population present in both lymphoid and nonlymphoid tissues of humans and humanized mice. Finally, we demonstrate that knockdown of Batf3 selectively prevents the development of DNGR-1(+) human DCs in vitro. Thus, high expression of DNGR-1 specifically and universally identifies a unique DC subset in mouse and humans. Evolutionarily conserved Batf3 dependence justifies classification of DNGR-1(hi) DCs as a distinct DC lineage.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Basic-Leucine Zipper Transcription Factors/physiology
- Biomarkers/analysis
- Biomarkers/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Dendritic Cells/metabolism
- Dendritic Cells/physiology
- Female
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Lymphoid Tissue/cytology
- Lymphoid Tissue/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Organ Specificity/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- Species Specificity
Collapse
Affiliation(s)
- Lionel F Poulin
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hoang VT, Zepeda-Moreno A, Ho AD. Identification of leukemia stem cells in acute myeloid leukemia and their clinical relevance. Biotechnol J 2012; 7:779-88. [PMID: 22588704 DOI: 10.1002/biot.201100350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is considered to be a disease of stem cells. A rare defective stem cell population is purported to drive tumor growth. Similarly to their normal counterparts, leukemic stem cells (LSC) divide extreme slowly. This may explain the ineffectiveness of conventional chemotherapy in combatting this disease. Novel treatment strategies aimed at disrupting the binding of LSC to stem cell niches within the bone marrow might render the LSC vulnerable to chemotherapy and thus improving treatment outcome. This review focuses on the detection of LSC, our current knowledge about their cellular and molecular biology, and LSC interaction with the niche. Finally, we discuss the clinical relevance of LSC and prospective targeted treatment strategies for patients with AML.
Collapse
Affiliation(s)
- Van Thanh Hoang
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
46
|
Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Ann Hematol 2012; 91:645-669. [PMID: 22418742 DOI: 10.1007/s00277-012-1435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/19/2012] [Indexed: 12/15/2022]
Abstract
Animal models are established tools to study basic questions of biology in a systematic way. They have greatly facilitated our understanding of the mechanisms by which nature forms and maintains organisms. Much of the knowledge on molecular changes underlying the development of organisms originates from research in the fruit fly model Drosophila melanogaster. Vertebrate models including the mouse and zebrafish model, but also other animal models coming from different corners of the animal kingdom have shown that much of the basic machinery of development is essentially identical, not just in all vertebrates but in all major phyla of invertebrates too. Moreover, key elements of this machinery have been demonstrated to be involved in recurrent molecular abnormalities detected in tumor-tissue from patients, indicating their implication in the genesis of human cancer. Thus, research in this field has become a common topic for both biologists and hemato-oncologists. In this review, we summarize current knowledge on some of these key elements and molecular pathways such as Notch, Hedgehog, Wingless, Runt, and Trithorax that have been originally described and studied in animal models and which seem to play a major role in the pathophysiology and targeted management of human cancer.
Collapse
|
47
|
Kim Y, Thanendrarajan S, Schmidt-Wolf IGH. Wnt/ß-catenin: a new therapeutic approach to acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2011; 2011:428960. [PMID: 23213543 PMCID: PMC3504236 DOI: 10.4061/2011/428960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022]
Abstract
Recent studies have shown genetic and epigenetic aberrations resulting in aberrant activation of the Wingless-Int (Wnt) pathway, thus influencing the initiation and progression of acute myeloid leukemia (AML). Of major importance, these findings may lead to novel treatment strategies exploiting targeted modulation of Wnt signaling. This paper comprises the latest status of knowledge concerning the role of Wnt pathway alteration in AML and outlines future lines of research and their clinical perspectives.
Collapse
Affiliation(s)
- Y Kim
- Department of Internal Medicine III, Center for Integrated Oncology (CIO), University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | | | | |
Collapse
|