1
|
Patil K, Sher G, Kuttikrishnan S, Moton S, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. The cross-talk between miRNAs and JAK/STAT pathway in cutaneous T cell lymphoma: Emphasis on therapeutic opportunities. Semin Cell Dev Biol 2024; 154:239-249. [PMID: 36216715 DOI: 10.1016/j.semcdb.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/25/2023]
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) belong to a wide spectrum of T cell lymphoproliferative disorders collectively termed cutaneous T cell lymphomas (CTCL). CTCLs represent an archetype of heterogeneous and dynamically variable lymphoproliferative neoplasms typified by distinct clinical, histological, immunophenotypic, and genetic features. Owing to its complex dynamics, the pathogenesis of CTCL remains elusive. However, in recent years, progress in CTCL classification combined with next-generation sequencing analyses has broadened the genetic and epigenetic spectrum of clearly defined CTCL entities such as MF and SS. Several large-scale genome studies have identified the polygenic nature of CTCL and unveiled an idiosyncratic mutational landscape involving genetic aberrations, epigenetic alterations, cell cycle dysregulation, apoptosis, and the constitutive activation of T cell/NF-κB/JAK-STAT signaling pathways. In this review, we summarize the evolving insights on how the intrinsic epigenetic events driven by dysregulated miRNAs, including the oncogenic and tumor-suppressive miRNAs, influence the pathogenesis of MF and SS. We also focus on the interplay between the JAK/STAT pathway and miRNAs in CTCL as well as the significance of the miRNA/STAT axis as a relevant pathogenetic mechanism underlying CTCL initiation and progression. Based on these biologic insights, the current status and recent progress on novel therapies with a strong biological rationale, including miRNA-targeted molecules and JAK/STAT-targeted therapy for CTCL management, are discussed.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33200, USA
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine-New York 10065, New York, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
2
|
Wu W, Lu P, Patel P, Ma J, Cai KQ, Mallikarjuna VS, Poureghbali S, Nakhoda SR, Nejati R, Lynn Wang Y. SHP1 loss augments DLBCL cellular response to ibrutinib: a candidate predictive biomarker. Oncogene 2023; 42:409-420. [PMID: 36482202 DOI: 10.1038/s41388-022-02565-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
SHP1, a tyrosine phosphatase, negatively regulates B-cell receptor (BCR) signaling. Ibrutinib selectively inhibits BTK and has been approved for the treatment of several types of B-cell lymphomas, but not yet in diffuse large B-cell lymphoma (DLBCL). A phase 3 clinical trial of ibrutinib-containing regimen has been completed to evaluate its activity in subtypes or subsets of DLBCL patients. Although the subtype of activated B-cell like (ABC) DLBCL is characterized by chronic active BCR signaling, only a fraction of ABC-DLBCL patients seem to benefit from ibrutinib-containing regimen. New alternative predictive biomarkers are needed to identify patients who better respond. We investigated if SHP1 plays a role in defining the level of the BCR activity and impacts the response to ibrutinib. A meta-analysis revealed that lack of SHP1 protein expression as well as SHP1 promoter hypermethylation is strongly associated with NHL including DLBCL. On a tissue microarray of 95 DLBCL samples, no substantial difference in SHP1 expression was found between the GCB and non-GCB subtypes of DLBCL. However, we identified a strong reverse correlation between SHP1 expression and promoter methylation suggesting that promoter hypermethylation is responsible for SHP1 loss. SHP1 knockout in BCR-dependent GCB and ABC cell lines increased BCR signaling activities and sensitize lymphoma cells to the action of ibrutinib. Rescue of SHP1 in the knockout clones, on the other hand, restored BCR signaling and ibrutinib resistance. Further, pharmacological inhibition of SHP1 in both cell lines and patient-derived primary cells demonstrate that SHP1 inhibition synergized with ibrutinib in suppressing tumor cell growth. Thus, SHP1 loss may serve as an alternative biomarker to cell-of-origin to identify patients who potentially benefit from ibrutinib treatment. Our results further suggest that reducing SHP1 pharmacologically may represent a new strategy to augment tumor response to BCR-directed therapies. Schematic diagram summarizing the major findings. Left panel. When SHP1 is present and functional, it negatively regulates the activity of the BCR pathway. Right pane. When SHP1 is diminished or lost, cells depend more on the increased BCR signaling and making them vulnerable to BTK inhibitor, ibrutinib. Diagram was generated using BioRender.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Priyal Patel
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Kathy Qi Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, USA
| | | | - Sahar Poureghbali
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shazia R Nakhoda
- Malignant Hematology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA. .,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kołkowski K, Trzeciak M, Sokołowska-Wojdyło M. Safety and Danger Considerations of Novel Treatments for Atopic Dermatitis in Context of Primary Cutaneous Lymphomas. Int J Mol Sci 2021; 22:13388. [PMID: 34948183 PMCID: PMC8703592 DOI: 10.3390/ijms222413388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The impact of new and emerging therapies on the microenvironment of primary cutaneous lymphomas (PCLs) has been recently raised in the literature. Concomitantly, novel treatments are already used or registered (dupilumab, upadacitinib) and others seem to be added to the armamentarium against atopic dermatitis. Our aim was to review the literature on interleukins 4, 13, 22, and 31, and JAK/STAT pathways in PCLs to elucidate the safety of using biologics (dupilumab, tralokinumab, fezakinumab, nemolizumab) and small molecule inhibitors (upadacitinib, baricitinib, abrocitinib, ruxolitinib, tofacitinib) in the treatment of atopic dermatitis. We summarized the current state of knowledge on this topic based on the search of the PubMed database and related references published before 21 October 2021. Our analysis suggests that some of the mentioned agents (dupilumab, ruxolitinib) and others may have a direct impact on the progression of cutaneous lymphomas. This issue requires further study and meticulous monitoring of patients receiving these drugs to ensure their safety, especially in light of the FDA warning on tofacitinib. In conclusion, in the case of the rapid progression of atopic dermatitis/eczema, especially in patients older than 40 years old, there is a necessity to perform a biopsy followed by a very careful pathological examination.
Collapse
Affiliation(s)
- Karol Kołkowski
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| |
Collapse
|
4
|
Lin M, Kowolik CM, Xie J, Yadav S, Overman LE, Horne DA. Potent Anticancer Effects of Epidithiodiketopiperazine NT1721 in Cutaneous T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13133367. [PMID: 34282785 PMCID: PMC8268131 DOI: 10.3390/cancers13133367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Cutaneous T cell lymphomas (CTCLs) are a group of blood cancers that cannot be cured with current chemotherapeutical or biological drugs. Patients with advanced disease are severely immunocompromised due to the unchecked expansion of malignant T cells and have low survival rates of less than four years. Hence, new treatment options for CTCLs are urgently needed. In this study the anti-CTCL activity of a new compound, NT1721, was determined in vitro and in two CTCL mouse models. We found that NT1721 increased apoptosis (programmed cell death) in the malignant T cells and reduced tumor growth better than two drugs that are currently clinically used for CTCL treatment (i.e., gemcitabine, romidepsin). These results suggest that NT1721 may represent a potent new agent for the treatment of advanced CTCL. Abstract Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of debilitating, incurable malignancies. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common subtypes, accounting for ~65% of CTCL cases. Patients with advanced disease have a poor prognosis and low median survival rates of four years. CTCLs develop from malignant skin-homing CD4+ T cells that spread to lymph nodes, blood, bone marrow and viscera in advanced stages. Current treatments options for refractory or advanced CTCL, including chemotherapeutic and biological approaches, rarely lead to durable responses. The exact molecular mechanisms of CTCL pathology remain unclear despite numerous genomic and gene expression profile studies. However, apoptosis resistance is thought to play a major role in the accumulation of malignant T cells. Here we show that NT1721, a synthetic epidithiodiketopiperazine based on a natural product, reduced cell viability at nanomolar concentrations in CTCL cell lines, while largely sparing normal CD4+ cells. Treatment of CTCL cells with NT1721 reduced proliferation and potently induced apoptosis. NT1721 mediated the downregulation of GLI1 transcription factor, which was associated with decreased STAT3 activation and the reduced expression of downstream antiapoptotic proteins (BCL2 and BCL-xL). Importantly, NT1721, which is orally available, reduced tumor growth in two CTCL mouse models significantly better than two clinically used drugs (romidepsin, gemcitabine). Moreover, a combination of NT1721 with gemcitabine reduced the tumor growth significantly better than the single drugs. Taken together, these results suggest that NT1721 may be a promising new agent for the treatment of CTCLs.
Collapse
Affiliation(s)
- Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Claudia M. Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Sushma Yadav
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Department of Translational Research and Cellular Therapeutics, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Larry E. Overman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA;
| | - David A. Horne
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| |
Collapse
|
5
|
Mycosis Fungoides and Sézary Syndrome: An Integrative Review of the Pathophysiology, Molecular Drivers, and Targeted Therapy. Cancers (Basel) 2021; 13:cancers13081931. [PMID: 33923722 PMCID: PMC8074086 DOI: 10.3390/cancers13081931] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In the last few years, the field of cutaneous T-cell lymphomas has experienced major advances. In the context of an active translational and clinical research field, next-generation sequencing data have boosted our understanding of the main molecular mechanisms that govern the biology of these entities, thus enabling the development of novel tools for diagnosis and specific therapy. Here, we focus on mycosis fungoides and Sézary syndrome; we review essential aspects of their pathophysiology, provide a rational mechanistic interpretation of the genomic data, and discuss the current and upcoming therapies, including the potential crosstalk between genomic alterations and the microenvironment, offering opportunities for targeted therapies. Abstract Primary cutaneous T-cell lymphomas (CTCLs) constitute a heterogeneous group of diseases that affect the skin. Mycosis fungoides (MF) and Sézary syndrome (SS) account for the majority of these lesions and have recently been the focus of extensive translational research. This review describes and discusses the main pathobiological manifestations of MF/SS, the molecular and clinical features currently used for diagnosis and staging, and the different therapies already approved or under development. Furthermore, we highlight and discuss the main findings illuminating key molecular mechanisms that can act as drivers for the development and progression of MF/SS. These seem to make up an orchestrated constellation of genomic and environmental alterations generated around deregulated T-cell receptor (TCR)/phospholipase C, gamma 1, (PLCG1) and Janus kinase/ signal transducer and activator of transcription (JAK/STAT) activities that do indeed provide us with novel opportunities for diagnosis and therapy.
Collapse
|
6
|
Gao Y, Liu F, Sun J, Wen Y, Tu P, Kadin ME, Wang Y. Differential SATB1 Expression Reveals Heterogeneity of Cutaneous T-Cell Lymphoma. J Invest Dermatol 2020; 141:607-618.e6. [PMID: 32771472 DOI: 10.1016/j.jid.2020.05.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
SATB1 is an important T-cell specific chromatin organizer in cutaneous T-cell lymphoma, whereas its expression and function in mycosis fungoides (MF) remain ambiguous. Our study aimed to investigate the clinicopathological significance of SATB1 in a cohort of 170 patients with MF. SATB1 expression was heterogeneous among the patients with MF in each clinical stage. High SATB1 expression was associated with epidermal hyperplasia, eosinophil infiltration, less large-cell transformation, and favorable prognosis in MF cases. SATB1 and CD30 coexpression distinguished cutaneous CD30+ lymphoproliferative disorders from MF large-cell transformation. SATB1 silencing in MF lines showed that SATB1 upregulated the genes involved in eosinophil recruitment, including signal transducer and activator of transcription 3 and IL13, and downregulated the genes in cell-cycle progression, which may explain the inferior prognosis for low SATB1-expressing cases. Moreover, SATB1 was inversely correlated with PD-1 expression, indicating an exhausted status of SATB1-negative malignant T cells. SATB1 was positively correlated with toll-like receptors expression, suggesting innate immune activation in high SATB1-expressing MF cases. Therefore, variable SATB1 expression promotes heterogeneity in pathology and clinical outcome of patients with MF.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yujie Wen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Marshall E Kadin
- Department of Dermatology, Roger Williams Medical Center, Boston University, Providence, Rhode Island, USA; Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, Rhode Island, USA
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
7
|
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083. [PMID: 31331920 DOI: 10.1182/blood.2018888107] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Collapse
|
8
|
Butler RM, McKenzie RC, Jones CL, Flanagan CE, Woollard WJ, Demontis M, Ferreira S, Tosi I, John S, Whittaker SJ, Mitchell TJ. Contribution of STAT3 and RAD23B in Primary Sézary Cells to Histone Deacetylase Inhibitor FK228 Resistance. J Invest Dermatol 2019; 139:1975-1984.e2. [PMID: 30910759 DOI: 10.1016/j.jid.2019.03.1130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Abstract
FK228 (romidepsin) and suberoylanilide hydroxamic acid (vorinostat) are histone deacetylase inhibitors (HDACi) approved by the US Food and Drug Administration for cutaneous T-cell lymphoma (CTCL), including the leukemic subtype Sézary syndrome. This study investigates RAD23B and STAT3 gene perturbations in a large cohort of primary Sézary cells and the effect of FK228 treatment on tyrosine phosphorylation of STAT3 (pYSTAT3) and RAD23B expression. We report RAD23B copy number variation in 10% (12/119, P ≤ 0.01) of SS patients, associated with reduced mRNA expression (P = 0.04). RAD23B knockdown in a CTCL cell line led to a reduction in FK228-induced apoptosis. Histone deacetylase inhibitor treatment significantly reduced pYSTAT3 in primary Sézary cells and was partially mediated by RAD23B. A distinct pattern of RAD23B-pYSTAT3 co-expression in primary Sézary cells was detected. Critically, Sézary cells harboring the common STAT3 Y640F variant were less sensitive to FK228-induced apoptosis and exogenous expression of STAT3 Y640F, and D661Y conferred partial resistance to STAT3 transcriptional inhibition by FK228 (P ≤ 0.0024). These findings suggest that RAD23B and STAT3 gene perturbations could reduce sensitivity to histone deacetylase inhibitors in SS patients.
Collapse
Affiliation(s)
- Rosie M Butler
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Robert C McKenzie
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Christine L Jones
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Charlotte E Flanagan
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Wesley J Woollard
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Maria Demontis
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Silvia Ferreira
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Isabella Tosi
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Susan John
- Department of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, London, UK
| | - Sean J Whittaker
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
9
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
10
|
Fanok MH, Sun A, Fogli LK, Narendran V, Eckstein M, Kannan K, Dolgalev I, Lazaris C, Heguy A, Laird ME, Sundrud MS, Liu C, Kutok J, Lacruz RS, Latkowski JA, Aifantis I, Ødum N, Hymes KB, Goel S, Koralov SB. Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis of Cutaneous T-Cell Lymphoma. J Invest Dermatol 2018; 138:1116-1125. [PMID: 29128259 PMCID: PMC5912980 DOI: 10.1016/j.jid.2017.10.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022]
Abstract
Cutaneous T-cell lymphoma is a heterogeneous group of lymphomas characterized by the accumulation of malignant T cells in the skin. The molecular and cellular etiology of this malignancy remains enigmatic, and what role antigenic stimulation plays in the initiation and/or progression of the disease remains to be elucidated. Deep sequencing of the tumor genome showed a highly heterogeneous landscape of genetic perturbations, and transcriptome analysis of transformed T cells further highlighted the heterogeneity of this disease. Nonetheless, using data harvested from high-throughput transcriptional profiling allowed us to develop a reliable signature of this malignancy. Focusing on a key cytokine signaling pathway previously implicated in cutaneous T-cell lymphoma pathogenesis, JAK/STAT signaling, we used conditional gene targeting to develop a fully penetrant small animal model of this disease that recapitulates many key features of mycosis fungoides, a common variant of cutaneous T-cell lymphoma. Using this mouse model, we show that T-cell receptor engagement is critical for malignant transformation of the T lymphocytes and that progression of the disease is dependent on microbiota.
Collapse
Affiliation(s)
- Melania H Fanok
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Laura K Fogli
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Vijay Narendran
- Department of Medicine, Division of Hematology-Oncology, New York University School of Medicine, New York, New York, USA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, New York, USA
| | - Kasthuri Kannan
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Office of Collaborative Science, New York University School of Medicine, New York, New York, USA
| | - Igor Dolgalev
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Office of Collaborative Science, New York University School of Medicine, New York, New York, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Office of Collaborative Science, New York University School of Medicine, New York, New York, USA
| | - Mary E Laird
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cynthia Liu
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeff Kutok
- Department of Pathology, Brigham and Women's Hospital; Boston, Massachusetts, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, New York, USA
| | - Jo-Ann Latkowski
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth B Hymes
- Department of Medicine, Division of Hematology-Oncology, New York University School of Medicine, New York, New York, USA; Department of Pathology, Brigham and Women's Hospital; Boston, Massachusetts, USA
| | - Swati Goel
- Department of Medicine, Division of Hematology-Oncology, New York University School of Medicine, New York, New York, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
11
|
Gallardo F, Bertran J, López-Arribillaga E, González J, Menéndez S, Sánchez I, Colomo L, Iglesias M, Garrido M, Santamaría-Babí LF, Torres F, Pujol RM, Bigas A, Espinosa L. Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma. Leukemia 2018; 32:2211-2223. [PMID: 29511289 PMCID: PMC6170395 DOI: 10.1038/s41375-018-0066-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/12/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent different subtypes of lymphoproliferative disorders with no curative therapies for the advanced forms of the disease (namely mycosis fungoides and the leukemic variant, Sézary syndrome). Molecular events leading to CTCL progression are heterogeneous, however recent DNA and RNA sequencing studies highlighted the importance of NF-κB and β-catenin pathways. We here show that the kinase TAK1, known as essential in B-cell lymphoma, is constitutively activated in CTCL cells, but tempered by the MYPT1/PP1 phosphatase complex. Blocking PP1 activity, both pharmacologically and genetically, resulted in TAK1 hyperphosphorylation at residues T344, S389, T444, and T511, which have functional impact on canonical NF-κB signaling. Inhibition of TAK1 precluded NF-κB and β-catenin signaling and induced apoptosis of CTCL cell lines and primary Sézary syndrome cells both in vitro and in vivo. Detection of phosphorylated TAK1 at T444 and T344 is associated with the presence of lymphoma in a set of 60 primary human samples correlating with NF-κB and β-catenin activation. These results identified TAK1 as a potential biomarker and therapeutic target for CTCL therapy.
Collapse
Affiliation(s)
- Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Faculty of Sciences and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, 08500, Vic, Spain
| | - Erika López-Arribillaga
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Jéssica González
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Silvia Menéndez
- Molecular Therapy of Cancer Group, Parc de Salut Mar-Hospital del Mar, 08003, Barcelona, Spain
| | - Ignacio Sánchez
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Luis Colomo
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Luis Francisco Santamaría-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Torres
- Biostatistics and Data Management Platform, IDIBAPS, Hospital Clínic, Biostatistics Unit. Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon M Pujol
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| | - Lluís Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| |
Collapse
|
12
|
Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: A systematic review. J Am Acad Dermatol 2017; 76:745-753.e19. [DOI: 10.1016/j.jaad.2016.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
|
13
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
15
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary syndrome: old enigmas, new targets. J Dtsch Dermatol Ges 2016; 14:256-64. [DOI: 10.1111/ddg.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
- Department of Immunogenetics; German Cancer Research Center; Heidelberg Germany
| | - Moritz Felcht
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
16
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary-Syndrom: von ungelösten Fragen zu neuen Therapieansätzen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12900_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan P. Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
- Abteilung für Immungenetik; Deutsches Krebsforschungszentrum; Heidelberg Deutschland
| | - Moritz Felcht
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Kai Schledzewski
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Sergij Goerdt
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Cyrill Géraud
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
17
|
Bates SE, Eisch R, Ling A, Rosing D, Turner M, Pittaluga S, Prince HM, Kirschbaum MH, Allen SL, Zain J, Geskin LJ, Joske D, Popplewell L, Cowen EW, Jaffe ES, Nichols J, Kennedy S, Steinberg SM, Liewehr DJ, Showe LC, Steakley C, Wright J, Fojo T, Litman T, Piekarz RL. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data. Br J Haematol 2015; 170:96-109. [PMID: 25891346 PMCID: PMC4675455 DOI: 10.1111/bjh.13400] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 01/02/2023]
Abstract
Romidepsin is an epigenetic agent approved for the treatment of patients with cutaneous or peripheral T-cell lymphoma (CTCL and PTCL). Here we report data in all patients treated on the National Cancer Institute 1312 trial, demonstrating long-term disease control and the ability to retreat patients relapsing off-therapy. In all, 84 patients with CTCL and 47 with PTCL were enrolled. Responses occurred early, were clinically meaningful and of very long duration in some cases. Notably, patients with PTCL receiving romidepsin as third-line therapy or later had a comparable response rate (32%) of similar duration as the total population (38%). Eight patients had treatment breaks of 3.5 months to 10 years; in four of six patients, re-initiation of treatment led to clear benefit. Safety data show slightly greater haematological and constitutional toxicity in PTCL. cDNA microarray studies show unique individual gene expression profiles, minimal overlap between patients, and both induction and repression of gene expression that reversed within 24 h. These data argue against cell death occurring as a result of an epigenetics-mediated gene induction programme. Together this work supports the safety and activity of romidepsin in T-cell lymphoma, but suggests a complex mechanism of action.
Collapse
Affiliation(s)
- Susan E. Bates
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Robin Eisch
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Alex Ling
- Department of Radiology, Warren G Magnuson Clinical Center, NIH, Bethesda, MD
| | | | | | | | - H. Miles Prince
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mark H. Kirschbaum
- Hematological Malignancies, Penn State Hershey Medical Center, Hershey, PA
| | - Steven L. Allen
- Hofstra North Shore-LIJ School of Medicine and Monter Cancer Center, Lake Success, NY
| | | | - Larisa J. Geskin
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David Joske
- Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | | | | | | | | | | | | | | | | | | | - John Wright
- Cancer Therapy Evaluation Program, DCTDC, NCI, Bethesda, MD
| | - Tito Fojo
- Center for Cancer Research, NCI, Bethesda, MD
| | | | | |
Collapse
|
18
|
Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. J Invest Dermatol 2015; 135:2084-2092. [PMID: 25806852 DOI: 10.1038/jid.2015.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 10/25/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022]
Abstract
The Sézary Syndrome (SS) is an aggressive CD4+ leukemic variant of cutaneous T-cell lymphoma. Epigenetic modification of cancer cell genome is often linked to the expression of important cancer-related genes. Here we addressed the hypothesis that, in SS, DNA hypomethylation is involved in upregulation of PLS3, GATA6, and TWIST1, genes that are undetected in normal lymphocytes. Pyrosequencing analysis of CpG rich regions, and CpG dinucleotides within the 5' regulatory regions, confirmed hypomethylation of all three genes in SS, compared with controls. We then studied how methylation regulates PLS3 transcription in vitro using PLS3-negative (Jurkat) and PLS3-positive (HT-1080) cell lines. Treatment with the hypomethylating agent 5-azacytidine induced PLS3 expression in Jurkat cells and in vitro methylation of the cloned PLS3 promoter suppressed luciferase expression in HT-1080 cells. In conclusion, we show that promoter hypomethylation is associated with PLS3, GATA6, and TWIST1 overexpression in SS CD4+ T cells and that methylation can regulate PLS3 expression in vitro. The mechanisms of DNA hypomethylation in vivo and the functional role of PLS3, TWIST1, and GATA6 in SS are being investigated.
Collapse
|
19
|
Şahin B, Fife J, Parmar MB, Valencia-Serna J, Gul-Uludağ H, Jiang X, Weinfeld M, Lavasanifar A, Uludağ H. siRNA therapy in cutaneous T-cell lymphoma cells using polymeric carriers. Biomaterials 2014; 35:9382-94. [DOI: 10.1016/j.biomaterials.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
|
20
|
Affiliation(s)
- Jason B Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
21
|
KIR3DL2/CpG ODN interaction mediates Sézary syndrome malignant T cell apoptosis. J Invest Dermatol 2014; 135:229-237. [PMID: 25007046 DOI: 10.1038/jid.2014.286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/25/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
We previously identified the NK cell receptor KIR3DL2 as a valuable diagnostic and prognostic marker for the detection of the tumoral T cell burden of Sézary syndrome (SS) patients. However, the function of this receptor on the malignant T lymphocyte population remained unexplored. We here demonstrate that engagement of KIR3DL2 by its recently identified ligand CpG oligodeoxynucleotide (ODN) induces the internalization of the receptor and leads to a caspase-dependent apoptosis of malignant T cells. This process of cellular death is correlated to a dephosphorylation of the transcription factor STAT3 (signal transducer and activator of transcription 3), which is found constitutively phosphorylated and activated in Sézary cells. Our results indicate that KIR3DL2 can directly promote SS malignant cell death through the use of CpG ODN.
Collapse
|
22
|
Guenova E, Hoetzenecker W, Rozati S, Levesque MP, Dummer R, Cozzio A. Novel therapies for cutaneous T-cell lymphoma: what does the future hold? Expert Opin Investig Drugs 2014; 23:457-67. [PMID: 24397291 DOI: 10.1517/13543784.2014.876407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cutaneous T-cell lymphomas (CTCLs) represent a group of extranodal non-Hodgkin lymphomas, of which mycosis fungoides (MF) is the most frequent. Standard therapeutic approaches are well established and often achieve stable disease. However, cure for MF is rare and thus novel therapies are needed. AREAS COVERED This review provides a discussion of the most promising new therapeutic approaches in the management of MF and other rare CTCLs. It includes targeted therapies with antibodies against surface molecules on malignant T cells (e.g., brentuximab), novel chemotherapeutic agents (e.g., pralatrexate), small-molecule compounds (e.g., panobinostat) and evidence of emerging targets in CTCLs (e.g., anti-IL-31). It also provides discussion of immune checkpoint inhibitors such as anti-PD1 that are worth considering in the treatment of leukaemic CTCL variants. Finally, it gives a brief overview of the possible use of stem-cell transplantation. EXPERT OPINION There is no doubt that progress has been made in the treatment of CTCLs with new, innovative and promising therapies approaching. However, there is still an urgent need to identify and test additional targets in well-designed clinical trials.
Collapse
Affiliation(s)
- Emmanuella Guenova
- University Hospital of Zürich, Department of Dermatology , Gloriastrasse 31, 8091 Zürich , Switzerland +41 44 255 5528 ;
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Primary cutaneous lymphomas (PCLs) are clonal T- or B-cell neoplasms, which originate in the skin. In recent years, mast cells were described as regulators of the tumor microenvironment in different human malignancies. Here, we investigated the role of mast cells in the tumor microenvironment of PCL. We found significantly increased numbers of mast cells in skin biopsies from patients with cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma (CBCL). Mast cell infiltration was particularly prominent in the periphery, at lymphoma rims. Interestingly, CTCL and CBCL patients with a progressive course showed higher mast cell counts than stable patients, and mast cell numbers in different stages of CTCL correlated positively with disease progression. In addition, mast cell numbers positively correlated with microvessel density. Incubating primary CTCL cells with mast cell supernatant, we observed enhanced proliferation and production of cytokines. In line with our in vitro experiments, in a mouse model of cutaneous lymphoma, tumor growth in mast cell-deficient transgenic mice was significantly decreased. Taken together, these experiments show that mast cells play a protumorigenic role in CTCL and CBCL. Our data provide a rationale for exploiting tumor-associated mast cells as a prognostic marker and therapeutic target in PCL.
Collapse
|