1
|
Fraga LR, Reeves J, Mahony C, Erskine L, Vargesson N. Cereblon E3 ligase complex genes are expressed in tissues sensitive to thalidomide in chicken and zebrafish embryos but are unchanged following thalidomide exposure. Dev Biol 2025; 522:156-170. [PMID: 40158790 DOI: 10.1016/j.ydbio.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Thalidomide is an infamous drug used initially as a sedative until it was tragically discovered it has highly teratogenic properties. Despite this it is now being used to successfully treat a range of clinical conditions including erythema nodosum leprosum (ENL) and multiple myeloma (MM). Cereblon (CRBN), a ubiquitin ligase, is a binding target of thalidomide for both its therapeutic and teratogenic activities and forms part of an CRL4-E3 ubiquitin ligase complex with the proteins Damaged DNA Binding protein 1 (DDB1) and Cullin-4A (CUL4A). This complex mediates degradation of the zinc-finger transcription factors Ikaros (IKZF1) and Aiolos (IKZF3), to mediate thalidomide's anti-myeloma response. To better understand the importance of CRBN and its binding partners for thalidomide teratogenesis here we analysed the expression patterns of CRBN and some of its known E3 complex binding partners in wildtype and thalidomide-treated chicken and zebrafish embryos. CRBN and DDB1 are expressed in many tissues throughout development including those that are thalidomide-sensitive while CUL4A and targets of the CRL4-CRBN E3 Ligase Complex IKZF1 and IKZF3 are expressed at different timepoints and in fewer tissues in the body than CRBN. Furthermore, IKZF3 is expressed in tissues of the eye that CRBN is not. However, although we observed rapid changes to the chicken yolk-sac membrane vasculature following thalidomide exposure, we did not detect CRL4-CRBN E3 Ligase Complex expression in the yolk-sac membrane vessels. Furthermore, we did not detect any changes in CRBN, DDB1, CUL4, IKZF1 and IKZF3 expression following thalidomide exposure in chicken and zebrafish embryos. These findings demonstrate that the anti-angiogenic activities of thalidomide may occur independent of CRBN and that thalidomide does not regulate CRL4-CRBN E3 Ligase Complex gene expression at the mRNA level.
Collapse
Affiliation(s)
- Lucas Rosa Fraga
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jessica Reeves
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Chris Mahony
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lynda Erskine
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
2
|
Richardson P, Beksaç M, Oriol A, Lindsay J, Schjesvold F, Galli M, Yağcı M, Larocca A, Weisel K, Yu X, Donahue C, Acosta J, Peluso T, Dimopoulos M. Pomalidomide, Bortezomib, and Dexamethasone Versus Bortezomib and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Final Survival and Subgroup Analyses From the OPTIMISMM Trial. Eur J Haematol 2025; 114:822-831. [PMID: 39777934 DOI: 10.1111/ejh.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION In the OPTIMISMM trial, pomalidomide/bortezomib/dexamethasone (PVd) significantly prolonged median progression-free survival (PFS) versus bortezomib/dexamethasone (Vd) in lenalidomide-exposed relapsed and refractory multiple myeloma (RRMM). We report final overall survival (OS) and updated efficacy analyses. METHODS Adults with RRMM who had 1-3 prior regimens, including lenalidomide (≥ 2 cycles), were assigned (1:1) to PVd or Vd. PRIMARY ENDPOINT PFS. Prespecified secondary endpoint: OS. Prespecified exploratory endpoints: PFS2 and subgroup efficacy analyses. RESULTS With an overall event rate of 70.0%, OS data were mature in the intent-to-treat population (N = 559). After median follow-up of 64.5 months (data cutoff: May 13, 2022), median OS was 35.6 months with PVd versus 31.6 months with Vd (HR 0.94, 95% CI 0.77-1.15, p = 0.571); adjusting for subsequent therapies, OS improved with PVd versus Vd (HR 0.76, 95% CI 0.619-0.931, p = 0.008). Median PFS2 was 22.1 versus 16.9 months, respectively (HR 0.77, 95% CI 0.64-0.94, nominal p = 0.008). Treatment-emergent adverse events led to study drug discontinuation in 92 (33.1%) and 53 (19.6%) patients in PVd and Vd arm, respectively. CONCLUSIONS Findings showed a nonsignificant trend towards improved OS with PVd versus Vd. PFS2 favored PVd, supporting its use in RRMM.
Collapse
Affiliation(s)
- Paul Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Meral Beksaç
- Istinye University Ankara Liv Hospital, Ankara, Turkey
| | - Albert Oriol
- Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Jindriska Lindsay
- East Kent Hospitals University NHS Foundation Trust, Kent and Canterbury Hospital, Canterbury, UK
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway
| | - Monica Galli
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Münci Yağcı
- Gazi University Medical Facility, Ankara, Turkey
| | | | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xin Yu
- Celgene, a Bristol-Myers Squibb Company, Summit, New Jersey, USA
| | | | - Jorge Acosta
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | - Teresa Peluso
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | - Meletios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Lu X, Sauter B, Keller A, Zhanybekova S, Gillingham D. Exploring the Potential of Homologous Recombination Protein PALB2 in Synthetic Lethal Combinations. ACS Chem Biol 2025. [PMID: 40300769 DOI: 10.1021/acschembio.5c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Cells with defective homologous recombination (HR) are highly sensitive to poly(ADP-ribose) polymerase (PARP) inhibition. Current therapeutic approaches leverage this vulnerability by using PARP inhibitors in cells with genetically compromised HR. However, if HR factors in cancer cells could be inhibited or degraded pharmacologically, it might reveal other opportunities for synergistic combinations. In this study, we developed a model system that recapitulates PARP/HR synthetic lethality by integrating a small-molecule responsive zinc-finger degron into the HR factor Partner and Localizer of BRCA2 (PALB2). We further tested a series of peptide ligands for PALB2 based on its natural binding partners, which led to the discovery of a high affinity peptide that will support future work on PALB2 and HR. Together, our findings validate PALB2 as a promising drug target and provide the tools and starting points for developing molecules with therapeutic applications.
Collapse
Affiliation(s)
- Xinyan Lu
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Aramis Keller
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Saule Zhanybekova
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Pan Y, Wang Y, Gou S. Proteolysis targeting chimera, molecular glue degrader and hydrophobic tag tethering degrader for targeted protein degradation: Mechanisms, strategies and application. Bioorg Chem 2025; 161:108491. [PMID: 40306190 DOI: 10.1016/j.bioorg.2025.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Targeted protein degradation (TPD) represents a revolutionary approach to drug discovery, offering a novel mechanism that outperforms traditional inhibitors. This approach employs small molecule drugs to induce the ubiquitination and subsequent degradation of target protein via the proteasome or lysosomal pathways. Key strategies within TPD include proteolysis targeting chimeras (PROTACs), hydrophobic tag tethering degraders (HyTTDs), and molecular glue degraders (MGDs). PROTACs have been undergone clinical evaluations, MGDs have been used in the clinic, and HyTTDs have shown significant progress in cancer treatment. Each of these strategies presents unique advantages and approaches to target protein degradation. This review summarizes five years of research on PROTACs, HyTTDs, and MGDs, highlighting their design principles, advantages, limitations, and future challenges to provide clear guidance and in-depth insights for advancing drug development.
Collapse
Affiliation(s)
- Yanchang Pan
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025:10.1007/s00204-024-03930-z. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
6
|
Li Y, Bai L, Liang H, Yan P, Chen H, Cao Z, Shen Y, Wang Z, Huang M, He B, Hao Q, Mei Y, Wei H, Ding C, Jin J, Wang Y. A BPTF-specific PROTAC degrader enhances NK cell-based cancer immunotherapy. Mol Ther 2025; 33:1566-1583. [PMID: 39935175 PMCID: PMC11997503 DOI: 10.1016/j.ymthe.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Natural killer (NK) cell-based immunotherapy shows promise in cancer treatment, but its efficacy remains limited, necessitating the development of novel strategies. In this study, we demonstrate that the epigenetic factor bromodomain PHD-finger containing transcription factor (BPTF) hinders hepatocellular carcinoma (HCC) recognition by NK cells through its PHD finger's interpretation of H3K4me3. We have generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degrades human and murine BPTF. The degradation of BPTF using PROTACs directly enhances the abundance of natural cytotoxicity receptor ligands on HCC cells, facilitating their recognition by NK cells and thereby augmenting NK cell cytotoxicity against HCC both in vitro and in vivo. Through multidisciplinary techniques, our findings establish targeting BPTF with PROTACs as a promising approach to overcome immune evasion of HCC from NK cells and provide a new strategy to enhance NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Hao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peidong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhuoxian Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yiqing Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongyv Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yide Mei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
7
|
Khwaja J, Ravichandran S, Cohen O, Foard D, Low M, Martinez‐Naharro A, Venneri L, Fontana M, Hawkins PN, Gillmore J, Lachmann HJ, Whelan C, Mahmood S, Wechalekar A. Outcomes of daratumumab-bortezomib-thalidomide-dexamethasone in treatment-naive systemic AL amyloidosis. Br J Haematol 2025; 206:1141-1148. [PMID: 39980430 PMCID: PMC11985371 DOI: 10.1111/bjh.20021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Systemic light chain (AL) amyloidosis is an incurable disorder caused by extra-cellular deposition of light-chain aggregates in critical organs. An immunomodulatory agent-based quadruplet including anti-CD38 therapy has not been investigated as a first-line treatment in AL amyloidosis. We report the UK experience of daratumumab-bortezomib-thalidomide-dexamethasone for the first-line treatment of AL amyloidosis. Consecutive patients with a new diagnosis of systemic AL between 2021 and 2023 were retrospectively reviewed from the UK National Amyloidosis Centre database. One hundred and two patients were included; median age was 61 years, involved free light-chain concentration 234 mg/L, 65% had cardiac and 63% renal involvement with modified Mayo stage I/II/IIIa/IIIb in 24%/36%/21% and 19% respectively. A median of 6 cycles was delivered. By intention-to-treat analysis, best haematological overall response rate was 97%: complete response at 65%, very good partial response at 22%, partial response at 11% and no response at 3%. At 6- and 12-month time points from treatment initiation, best cardiac response rates were 39% and 45%, respectively, for evaluable patients. At a median duration of 18 months follow-up, the estimated 1-year overall survival was 89% (95% confidence interval [CI] 81-94) and treatment-free survival/death was 82% (95% CI 73-89). We demonstrate efficacy in this real-world population with comparable results to the gold standard, daratumumab-bortezomib-cyclophosphamide-dexamethasone.
Collapse
Affiliation(s)
- Jahanzaib Khwaja
- University College London HospitalLondonUK
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - Sriram Ravichandran
- University College London HospitalLondonUK
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - Oliver Cohen
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - Darren Foard
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - May Low
- University College London HospitalLondonUK
| | | | - Lucia Venneri
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | | | | | - Julian Gillmore
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | | | - Carol Whelan
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - Shameem Mahmood
- University College London HospitalLondonUK
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| | - Ashutosh Wechalekar
- University College London HospitalLondonUK
- National Amyloidosis CentreRoyal Free London HospitalLondonUK
| |
Collapse
|
8
|
Xu W, Woo CM. Probing the E3 Ligase Adapter Cereblon with Chemical Biology. Acc Chem Res 2025. [PMID: 40167161 DOI: 10.1021/acs.accounts.5c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ConspectusThe E3 ligase substrate adapter cereblon (CRBN) has garnered widespread interest from the research laboratory to the clinic. CRBN was first discovered for its association with neurological development and subsequently identified as the target of thalidomide and lenalidomide, therapeutic agents used in the treatment of hematopoietic malignancies. Both thalidomide and lenalidomide have been repurposed as ligands for targeted protein degradation therapeutic modalities. These agents were proposed to mimic a naturally occurring ligand, although the native substrate recognition mechanism of CRBN remained elusive. Chemical biology, which involves the use of chemical tools to modulate and probe biological systems, can provide unique insights into the molecular mechanisms and interactions of proteins with their cognate ligands. Here we describe our use of chemical biology approaches, including photoaffinity labeling, chemical proteomics, and targeted protein degradation, to interrogate the biological activities of CRBN in the presence or absence of its ligands. Our development of a photoaffinity labeling probe derived from lenalidomide, termed photolenalidomide, enabled mapping of the binding site on CRBN and identification of a new target recruited to CRBN by lenalidomide through chemical proteomics. Further derivatization of the lenalidomide scaffold afforded DEG-77, a potent degrader with therapeutic efficacy against acute myeloid leukemia. Our parallel development of chemically defined probes that are inspired by heterobifunctional targeted protein degradation agents and functionally engage CRBN in cells revealed that thalidomide is a peptidomimetic of an underappreciated protein modification termed the C-terminal cyclic imide, which arises from intramolecular cyclization of asparagine or glutamine residues and represents a degron endogenously recognized by CRBN. Protein engineering and proteomic efforts validated the CRBN-dependent regulation of proteins bearing the C-terminal cyclic imide modification in vitro and in cells and the prevalence of the C-terminal cyclic imide in the biological system. Application of C-terminal cyclic imides as a class of cyclimid ligands for targeted protein degradation led to the development of a variety of heterobifunctional degraders with distinct efficacy and target selectivity, whereas examination of the occurrence of C-terminal cyclic imides as a form of protein damage uncovered the intrinsic and extrinsic factors that predispose peptides and proteins to C-terminal cyclic imide formation and the role of CRBN in mitigating the accumulation of damaged proteins with a propensity for aggregation. Future investigation of C-terminal cyclic imides, synthetic ligands, and their relationship to CRBN biology will illuminate regulatory mechanisms that are controlled by CRBN and drive the pursuit of additional functional chemistries on proteins and the biological pathways that intercept them.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Li CY, Zhong L, Chen DG, Yao FS, Yan H. VRd vs. VPd as induction therapy in high risk newly diagnosed multiple myeloma. Sci Rep 2025; 15:9946. [PMID: 40121191 PMCID: PMC11929905 DOI: 10.1038/s41598-025-85398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 03/25/2025] Open
Abstract
In high-risk newly diagnosed multiple myeloma (HRNDMM), two different induction regimens were evaluated for safety and efficacy: Bortezomib-Pomalidomide-Dexamethasone (VPd) and Bortezomib-Lenalidomide-Dexamethasone (VRd). Newly diagnosed high-risk MM patients(age > 18) were included in this retrospective study, who received VRd and VPd induction therapy between January 2021 and November 2023. All methods of this experiment were performed in accordance with relevant guidelines and regulations. Informed consent has been obtained from all subjects and/or their legal guardians. The Ethics Association of Anqing City Hospital has approved the study on pomadomide in this experiment (Medical Review (2021) No. 27). The evaluation of OS (overall survival), PFS (progression free survival), AE (adverse event) was the secondary endpoints, while the primary endpoint of the study was the overall response rate (ORR) after four cycles of VRd and VPd. Ultimately, 25 patients with VRd and 21 patients with VPd were enrolled. After four cycles of induction, stringent complete, complete, very good partial, partial and overall response rates were 16%/24%/12%/40%/92% with VRd, and 23.81%/33.33%/33.33%/9.52%/100% with VPd. VGPR or better was achieved in 52% of patients receiving VRd compared to 90.47% in those receiving VPd, with a p-value of 0.003. VPd was linked to more cases of skin rash (p = 0.02). For VRd and VPd, the average overall survival time was 27-months and 21-months, respectively (p = 0.801). The PFS was 27-months for VRd and 20-months for VPd (p = 0.116). Median OS and PFS were not defined in both groups. According to our research, the induction of VPd has been found to elicit more profound and superior responses in HRNDMM compared to VRd, thereby establishing its safety. Our results underscore the potential clinical advantage of pomalidomide as first-line therapy and offer more proof of the beneficial efficacy of VPd in the treating of HRNDMM patients.
Collapse
Affiliation(s)
- Chun Yan Li
- Department of Graduate School of Bengbu Medical University, Bengbu Medical University, Bengbu, 233030, China
- Department of Hematology, Anqing Municipal Hospital, Anqing, People's Republic of China
| | - Long Zhong
- Department of Hematology, Anqing Municipal Hospital, Anqing, People's Republic of China
| | - Dan Gui Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing, People's Republic of China
| | - Fu Sheng Yao
- Department of Hematology, Anqing Municipal Hospital, Anqing, People's Republic of China
| | - Hong Yan
- Department of Graduate School of Bengbu Medical University, Bengbu Medical University, Bengbu, 233030, China.
- Department of Hematology, Anqing Municipal Hospital, Anqing, People's Republic of China.
| |
Collapse
|
10
|
Abdallah DI, Israelian J, Hasan LS, Patel NH, Keillor JW, Wright TB, Saqib B, de Araujo ED, Gunning PT. Microwave-assisted synthesis of pomalidomide building blocks for rapid PROTAC and molecular glue development. Chem Commun (Camb) 2025; 61:4670-4673. [PMID: 40063364 DOI: 10.1039/d4cc03435j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Targeted protein degradation (TPD) is revolutionizing drug discovery, but PROTAC synthesis remains challenging due to multi-step synthesis and slow linker installation via SNAr on 4-fluorothalidomide. Here, we optimize a microwave-assisted synthesis (MAS) of pomalidomide building blocks, achieving high yields within 15 min - boosting yield by at least 14% at gram scale without the need for purification. Unlike conventional oil bath heating and overnight reactions, MAS streamlines degrader development. The method's utility was demonstrated by synthesizing ARV-110, highlighting MAS as a powerful tool for accelerating pomalidomide PROTAC and molecular glue discovery programs.
Collapse
Affiliation(s)
- Diaaeldin I Abdallah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Johan Israelian
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Lina S Hasan
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Naman H Patel
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Timothy B Wright
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Bilal Saqib
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Elvin D de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick T Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
11
|
Pascoe RD, Kim Y, Rhodes A, Ong J, Tumpach C, Gubser C, Chang JJ, McMahon JH, Lewin SR, Rasmussen TA. Targeting Ikaros and Aiolos with pomalidomide fails to reactivate or induce apoptosis of the latent HIV reservoir. J Virol 2025; 99:e0167624. [PMID: 39902962 PMCID: PMC11915836 DOI: 10.1128/jvi.01676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
HIV persists in people living with HIV (PLHIV) on antiretroviral therapy (ART) in long-lived and proliferating latently infected CD4+ T cells that selectively express pro-survival proteins, including the zinc finger proteins, Ikaros and Aiolos. In this study, we investigated whether pomalidomide, an immunomodulatory agent that induces degradation of Ikaros and Aiolos, could increase the death of HIV-infected cells and/or reverse HIV latency. Using an in vitro model of CD4+ T cells infected with a green fluorescent protein (GFP) reporter virus, pomalidomide increased the expression of the pro-survival protein B cell lymphoma (Bcl)-2 and did not increase apoptosis of GFP+ HIV productively infected CD4+ T cells. Pomalidomide also increased the expression of CD155 and UL16-binding protein (ULBP) stress proteins on GFP+ HIV productively infected CD4+ T cells, but this did not translate to enhanced clearance following co-culture with a natural killer (NK) cell line. Using CD4+ T cells from PLHIV on ART, pomalidomide ex vivo activated memory CD4+ T cells resulting in elevated HLA-DR expression and induced CD4+ T cell proliferation but only in the presence of T cell receptor stimulation with anti-CD3 and anti-CD28. There was no effect on cell-associated HIV RNA or the frequency of intact HIV DNA. In conclusion, despite an increase in stress protein expression, promoting Ikaros and Aiolos degradation in CD4+ T cells using pomalidomide did not directly induce apoptosis of HIV-infected cells or induce HIV latency reversal.IMPORTANCEPeople living with HIV (PLHIV) require lifelong antiretroviral therapy (ART) due to the persistence of latently infected cells. The zinc finger proteins, Ikaros and Aiolos, have recently been implicated in promoting the persistence of latently infected cells. In this study, we investigated the effects of pomalidomide, an immunomodulatory imide drug that induces the degradation of Ikaros and Aiolos, on HIV latency reversal and death of infected cells. Using CD4+ T cells from people living with HIV on suppressive antiretroviral therapy, as well as an in vitro model of productive HIV infection, we found that pomalidomide induced T cell activation and expression of stress proteins but no evidence of latency reversal or selective death of infected cells.
Collapse
Affiliation(s)
- Rachel D Pascoe
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesslyn Ong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - J Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Koh MY, Chung TH, Tang NXN, Toh SHM, Zhou J, Tan TK, Chen L, Chng WJ, Teoh PJ. The ADAR1-regulated cytoplasmic dsRNA-sensing pathway is a novel mechanism of lenalidomide resistance in multiple myeloma. Blood 2025; 145:1164-1181. [PMID: 39652772 PMCID: PMC11923435 DOI: 10.1182/blood.2024024429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/31/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Immunomodulatory drugs (IMiDs) are a major class of drugs for treating multiple myeloma (MM); however, acquired resistance to IMiDs remains a significant clinical challenge. Although alterations in cereblon and its pathway are known to contribute to IMiD resistance, they account for only 20% to 30% of cases, and the underlying mechanisms in the majority of the resistance cases remain unclear. Here, we identified adenosine deaminase acting on RNA1 (ADAR1) as a novel driver of lenalidomide resistance in MM. We showed that lenalidomide activates the MDA5-mediated double-stranded RNA (dsRNA)-sensing pathway in MM cells, leading to interferon (IFN)-mediated apoptosis, with ADAR1 as the key regulator. Mechanistically, ADAR1 loss increased lenalidomide sensitivity through endogenous dsRNA accumulation, which in turn triggered dsRNA-sensing pathways and enhanced IFN responses. Conversely, ADAR1 overexpression reduced lenalidomide sensitivity, attributed to increased RNA editing frequency, reduced dsRNA accumulation, and suppression of the dsRNA-sensing pathways. In summary, we report the involvement of ADAR1-regulated dsRNA sensing in modulating lenalidomide sensitivity in MM. These findings highlight a novel RNA-related mechanism underlying lenalidomide resistance and underscore the potential of targeting ADAR1 as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Mun Yee Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nicole Xin Ning Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Phaik Ju Teoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Wang MX, Liao CS, Wei XQ, Xie YQ, Han PF, Yu YH. Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes. PLoS One 2025; 20:e0315408. [PMID: 40073065 PMCID: PMC11902259 DOI: 10.1371/journal.pone.0315408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS. METHODS Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms-Lasso regression, random forest, and support vector machine (SVM)-as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study. RESULTS Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS. CONCLUSION This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes.
Collapse
Affiliation(s)
- Min-xiao Wang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi, China
| | - Chang-sheng Liao
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xue-qin Wei
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
| | - Yu-qin Xie
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, China
| | - Peng-fei Han
- Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan-hui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
14
|
Dutta H, Jain N. Degrading mutant IDH1 employing a PROTAC-based approach impairs STAT3 activation. Arch Biochem Biophys 2025; 765:110281. [PMID: 39828078 DOI: 10.1016/j.abb.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells. Thus, inhibiting mutant IDH1 using mutant IDH1-specific inhibitors can result in drug resistance. Therefore, to block mutant IDH1, it is imperative to identify alternative modes of therapy. In these lines, recent findings show that PROteolysis TArgeting Chimera (PROTAC) molecules can be designed to degrade target proteins in cancer cells. However, it is unknown whether degrading mutant IDH1 leads to STAT3 activation. Therefore, in this study, we asked if degrading mutant IDH1 by employing a PROTAC-based approach leads to STAT3 activation. To answer the question, we adopted the dTAG system, where we fused FKBP12F36V to mutant IDH1 proteins and used the FKBP12F36V-specific PROTAC, dTAG-13, to degrade mutant IDH1-FKBP12F36V. We assessed STAT3 activation in dTAG-13-treated cells expressing mutant IDH1-FKBP12F36V. We found that fusing FKBP12F36V-HA to mutant IDH1 phenocopies mutant IDH1 with similar expression levels, enzyme activity, and cellular localization. We observed that dTAG-13 degrades mutant IDH1-FKBP12F36V-HA in a dose- and time-responsive manner. Unlike inhibiting, degrading mutant IDH1-FKBP12F36V-HA did not lead to pSTAT3-Y705 activation. We conclude that degrading mutant IDH1 by employing a PROTAC-based approach impairs STAT3 activation. Based on these observations, we suggest that mutant IDH1-specific PROTACs can be developed to degrade mutant IDH1 in gliomas.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Shin S, Cho SK. CRBN deletion enhances mitochondrial metabolism by stimulating mitochondrial calcium accumulation in non-small cell lung cancer. Life Sci 2025; 364:123444. [PMID: 39914588 DOI: 10.1016/j.lfs.2025.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
CRBN (Cereblon), a substrate receptor of the CRL4 (Cullin4-RING E3 ubiquitin ligase) complex, has emerged as a key player in cancer metabolism. While its role in influencing metabolic phenotypes has been suggested, the precise functions of CRBN in cellular metabolism and cancer progression remain underexplored. This study investigates the impact of CRBN downregulation in lung cancer, focusing on mitochondrial metabolism and cellular functions. Data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) revealed significant reductions in CRBN expression at both mRNA and protein levels in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This downregulation was further confirmed in most lung cancer cell lines examined. Functional analyses of CRBN knockout (KO) cells revealed substantial alterations in mitochondrial metabolism, including enhanced oxidative phosphorylation, increased mitochondrial membrane potential (ΔΨm), and elevated production of mitochondrial reactive oxygen species (mROS). CRBN deficiency also accelerated tricarboxylic acid (TCA) cycle flux and increased mitochondrial calcium accumulation, contributing to elevated ΔΨm and potentially compromised mitochondrial integrity. Additionally, CRBN KO cells demonstrated increased cell migration, which could be mitigated by inhibiting mitochondrial calcium import. These findings suggest that CRBN plays a pivotal role in regulating mitochondrial function and metabolic activity in non-small cell lung cancer. The loss of CRBN enhances mitochondrial metabolism and contributes to increased cancer cell migration, providing new insights into the metabolic adaptations associated with CRBN deficiency in cancer progression.
Collapse
Affiliation(s)
- Seungheon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Steve K Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
16
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
17
|
Matsumura I, Oda T, Kasamatsu T, Murakami Y, Ishihara R, Ohmori A, Matsumoto A, Gotoh N, Kobayashi N, Miyazawa Y, Ogawa Y, Yokohama A, Sasaki N, Saitoh T, Handa H. Role of Rac1 in p53-Related Proliferation and Drug Sensitivity in Multiple Myeloma. Cancers (Basel) 2025; 17:461. [PMID: 39941828 PMCID: PMC11815915 DOI: 10.3390/cancers17030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
In this work, the study presented in [...].
Collapse
Affiliation(s)
- Ikuko Matsumura
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Tsukasa Oda
- Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Tetsuhiro Kasamatsu
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Gunma, Japan
| | - Yuki Murakami
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Gunma, Japan
| | - Rei Ishihara
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Gunma, Japan
| | - Ayane Ohmori
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Akira Matsumoto
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Nobuhiko Kobayashi
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Yuri Miyazawa
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Yoshiyuki Ogawa
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion, Gunma University Hospital, Maebashi 371-8511, Gunma, Japan
| | - Nobuo Sasaki
- Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Hiroshi Handa
- Hematology, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
18
|
Zou L, Cao D, Sun Q, Yu W, Li B, Xu G, Zhou L. The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon. Cell Mol Biol Lett 2025; 30:14. [PMID: 39881283 PMCID: PMC11780777 DOI: 10.1186/s11658-025-00697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len. In this study, we explored the interactome for CRBN using proximity labeling technique TurboID and quantitative proteomics, and then investigated the antileukemia effect of Len. METHODS The primary acute myeloid leukemia (AML) cells and AML cell lines were used to explore the functions of histone demethylase KDM5C on the antileukemia effect of Len. The cell viability and CRBN protein levels were evaluated in these cell lines. In addition, the KDM5C inhibitors were used to determine the effects of KDM5C enzymatic activity on the viability of AML cell lines. RESULTS We identified that histone demethylase KDM5C was a CRBN-interacting protein. Biochemical experiments found that the CRBN-interacting protein KDM5C could stabilize CRBN and enhance the antileukemia effect of Len in an enzyme activity-independent manner. Furthermore, our studies revealed that the small-molecule compound MLN4924 could increase CRBN by elevating KDM5C.The combination of MLN4924 and Len can further increase the sensitivity of primary AML cells and AML cell lines to Len. CONCLUSIONS This study provides a possible strategy for a combination treatment with MLN4924 and Len for leukemia.
Collapse
Affiliation(s)
- Lu Zou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Dan Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qing Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Wenjun Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
19
|
Bond AG, Muñoz i Ordoño M, Bisbach CM, Craigon C, Makukhin N, Caine EA, Nagala M, Urh M, Winter GE, Riching KM, Ciulli A. Leveraging Dual-Ligase Recruitment to Enhance Protein Degradation via a Heterotrivalent Proteolysis Targeting Chimera. J Am Chem Soc 2024; 146:33675-33711. [PMID: 39606859 PMCID: PMC11638965 DOI: 10.1021/jacs.4c11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Proteolysis targeting chimera (PROTAC) degraders are typically bifunctional with one E3 ligase ligand connected to one target protein ligand via a linker. While augmented valency has been shown with trivalent PROTACs targeting two binding sites within a given target protein, or used to recruit two different targets, the possibility of recruiting two different E3 ligases within the same compound has not been demonstrated. Here we present dual-ligase recruitment as a strategy to enhance targeted protein degradation. We designed heterotrivalent PROTACs composed of CRBN, VHL and BET targeting ligands, separately tethered via a branched trifunctional linker. Structure-activity relationships of 12 analogues qualifies AB3067 as the most potent and fastest degrader of BET proteins, with minimal E3 ligase cross-degradation. Comparative kinetic analyses in wild-type and ligase single and double knockout cell lines revealed that protein ubiquitination and degradation induced by AB3067 was contributed to by both CRBN and VHL in an additive fashion. We further expand the scope of the dual-ligase approach by developing a heterotrivalent CRBN/VHL-based BromoTag degrader and a tetravalent PROTAC comprising of two BET ligand moieties. In summary, we provide proof-of-concept for dual-E3 ligase recruitment as a strategy to boost degradation fitness by recruiting two E3 ligases with a single degrader molecule. This approach could potentially delay the outset of resistance mechanisms involving loss of E3 ligase functionality.
Collapse
Affiliation(s)
- Adam G. Bond
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Miquel Muñoz i Ordoño
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences Vienna 1090, Austria
| | - Celia M. Bisbach
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Conner Craigon
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Nikolai Makukhin
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Elizabeth A. Caine
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Manjula Nagala
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| | - Marjeta Urh
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences Vienna 1090, Austria
| | - Kristin M. Riching
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Alessio Ciulli
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K.
| |
Collapse
|
20
|
Bahlis NJ, Samaras C, Reece D, Sebag M, Matous J, Berdeja JG, Shustik J, Schiller GJ, Ganguly S, Song K, Seet CS, Acosta-Rivera M, Bar M, Quick D, Fonseca G, Liu H, Gentili C, Singh P, Siegel D. Pomalidomide/Daratumumab/Dexamethasone in Relapsed or Refractory Multiple Myeloma: Final Overall Survival From MM-014. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:852-862. [PMID: 39237427 DOI: 10.1016/j.clml.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Patients with relapsed or refractory multiple myeloma (RRMM) who have exhausted lenalidomide benefits require improved therapies. The 3-cohort phase 2 MM-014 trial (NCT01946477) explored pomalidomide in early lines of treatment for lenalidomide-exposed RRMM. In cohort B, pomalidomide plus daratumumab and dexamethasone (DPd) showed promising efficacy (median follow-up 28.4 months), as previously reported. Here, we report final overall survival (OS) in cohort B. METHODS Patients aged ≥ 18 years were treated in 28-day cycles: pomalidomide 4 mg orally daily from days 1 to 21; daratumumab 16 mg/kg intravenously on days 1, 8, 15, and 22 (cycles 1-2), days 1 and 15 (cycles 3-6), and day 1 (cycle ≥ 7); and dexamethasone 40 mg (age ≤ 75 years) or 20 mg (age > 75 years) orally on days 1, 8, 15, and 22. The primary endpoint was ORR. OS and safety were secondary endpoints. RESULTS Among 112 patients enrolled, 85 (75.9%) had lenalidomide-refractory disease and 27 (24.1%) had lenalidomide-relapsed disease. At a median follow-up of 41.9 months (range, 0.4-73.1), median OS was 56.7 months (95% confidence interval, 46.5-not reached). Treatment-emergent adverse events related to, and leading to discontinuation of, pomalidomide, dexamethasone, or daratumumab occurred in 7 (6.3%), 9 (8.0%), and 6 (5.4%) patients, respectively. CONCLUSION With long-term follow-up, our results show favorable OS with DPd. The safety profile was consistent with previous reports, with no new safety signals identified. IMiD agent-based therapy can still be considered in patients with RRMM who experience progressive disease on or after lenalidomide.
Collapse
Affiliation(s)
| | | | - Donna Reece
- Princess Margaret Hospital, Toronto, ON, Canada
| | - Michael Sebag
- McGill University Health Centre, Montreal, QC, Canada
| | - Jeffrey Matous
- Colorado Blood Cancer Institute, Sarah Cannon Research Institute, Denver, CO
| | | | | | | | | | - Kevin Song
- Vancouver General Hospital, Vancouver, BC, Canada
| | | | | | | | - Donald Quick
- Joe Arrington Cancer Research and Treatment Center, Lubbock, TX
| | | | | | | | | | | |
Collapse
|
21
|
Hesham HM, Dokla EME, Elrazaz EZ, Lasheen DS, Abou El Ella DA. FLT3-PROTACs for combating AML resistance: Analytical overview on chimeric agents developed, challenges, and future perspectives. Eur J Med Chem 2024; 277:116717. [PMID: 39094274 DOI: 10.1016/j.ejmech.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.
Collapse
Affiliation(s)
- Heba M Hesham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
22
|
Meraz-Munoz A, Mian H, Kirkwood D, Jeyakumar N, McCurdy A, Tangri N, Saskin R, Leung N, Wald R, Kitchlu A. Pomalidomide Use and Kidney Outcomes in Patients With Relapsed/Refractory Multiple Myeloma and Chronic Kidney Disease: A Real-World, Population-Based Cohort Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e861-e869. [PMID: 39117532 DOI: 10.1016/j.clml.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pomalidomide-based regimens are the cornerstone of treatment for relapsed/refractory MM (RRMM). Despite the high incidence of chronic kidney disease (CKD) in RRMM, individuals with advanced CKD have been excluded from phase II/III RCTs, creating a gap in our understanding of the effects of pomalidomide use in patients with RRMM complicated with advanced CKD. We undertook a cohort to study to understand the efficacy safety of pomalidomide-based regimens among patients with CKD using real-world data. METHODS Population-based, cohort study of patients ≥ 18 years with RRMM treated with pomalidomide in Ontario, Canada. Primary outcome was all-cause mortality. Secondary outcomes were time-to-major adverse kidney events (MAKE), time-to-next treatment, kidney response and safety. RESULTS Total 748 patients with RRMM utilizing pomalidomide were included; 440 had preserved kidney function, 210 had moderate CKD (eGFR 30-59 mL/min/1.73m2), and 98 had advanced CKD (eGFR < 30 mL/min/1.73m2). Mean age was 70.2 years, 43.3% were women. Patients with advanced CKD had a higher risk of all-cause mortality compared to the preserved kidney function group (aHR 1.37, 95% CI 1.06, 1.78). MAKE was higher in advanced CKD (aHR 1.70, 95% CI 1.03, 2.35). Kidney response was similar between moderate and severe CKD groups (aOR 1.04, 95%, CI 0.56-1.90). Safety outcomes were similar between groups. CONCLUSIONS Patients with advanced CKD and RRMM on pomalidomide-based regimens exhibited reduced survival and a higher risk for MAKE. However, the probability of experiencing some degree of kidney recovery is 50% in both moderate and severe CKD, with comparable safety outcomes.
Collapse
Affiliation(s)
- Alejandro Meraz-Munoz
- Department of Medicine, University of Manitoba, St. Boniface General Hospital, Winnipeg, MB, Canada.
| | - Hira Mian
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | | | | | | | - Navdeep Tangri
- Department of Medicine, University of Manitoba, Seven Oaks General Hospital, Winnipeg, Canada
| | | | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ron Wald
- Division of Nephrology, University of Toronto, St. Michael's Hospital, Toronto, ON, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, University of Toronto, University Health Network Toronto, ON, Canada
| |
Collapse
|
23
|
Takahashi Y, Nagamine A, Kaneta A, Yashima H, Obayashi K, Araki T, Yamamoto K. Risk of exposure of patients' family members to lenalidomide at home. Eur J Hosp Pharm 2024; 31:555-559. [PMID: 37339864 PMCID: PMC11672486 DOI: 10.1136/ejhpharm-2022-003632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES Lenalidomide, a hazardous drug, has strict distribution controls. However, the risk of contamination with lenalidomide when patients take the drug has not been studied and the risk of drug exposure to people in the patient's living environment is unknown. Thus, we investigated the amount of lenalidomide that could be dispersed during the period between removal of the capsule and returning the used blister packages, and we considered the conditions under which lenalidomide could be dispersed and countermeasures. METHODS The amount of lenalidomide contamination was measured on the outside of the unused blister packages returned by the patients, on the surface of the capsule, and on the inside of the package immediately after removal of the capsule. In addition, the amount of contamination was measured on the blister packages used by the patients and on the gloves worn by the pharmacists on receipt of the packages. Lenalidomide was analysed by liquid chromatography-tandem mass spectrometry. RESULTS Lenalidomide amounts on the outside of the unused blister packages returned by the three patients were <10, <10, and 26.8 ng/pack, those on the capsule surface immediately after removal from the packages were 297, 388, and 297 ng/capsule, and those on the inside of packages immediately after removal of all capsules were 143, 184, and 554 ng/pack, respectively. A median of 15.6 ng/pack lenalidomide was detected on the surface of packages used by the patients (n=18). The lenalidomide remaining in the packages immediately after capsule removal (~200 ng/pack), except for the 15.6 ng/pack detected in the packages used by the patients, may have been dispersed in the patient's living environment (~90% or more). The maximum amount of lenalidomide on the surface of the packages used by the patients was over 2500 ng/pack. CONCLUSIONS The amount of lenalidomide contamination per package was found to be at least 100 ng less after collection by the pharmacist than immediately after removal of the capsules. Therefore, it is recommended to clean the surrounding area and wash one's hands after taking the capsules.
Collapse
Affiliation(s)
- Yuta Takahashi
- Education Center for Clinical Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ayumu Nagamine
- Education Center for Clinical Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Akiko Kaneta
- Department of Pharmacy, Gunma University Hospital, Meabashi, Gunma, Japan
| | - Hideaki Yashima
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pharmacy, Gunma University Hospital, Meabashi, Gunma, Japan
| | - Kyoko Obayashi
- Education Center for Clinical Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Laboratory of Clinical Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pharmacy, Gunma University Hospital, Meabashi, Gunma, Japan
| | - Koujirou Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pharmacy, Gunma University Hospital, Meabashi, Gunma, Japan
| |
Collapse
|
24
|
Wang B, Li M, Cao D, Sun Q, Yu W, Ma J, Ren H, Xu G, Zhou L. Lys-63-specific deubiquitinase BRCC36 enhances the sensitivity of multiple myeloma cells to lenalidomide by inhibiting lysosomal degradation of cereblon. Cell Mol Life Sci 2024; 81:349. [PMID: 39136771 PMCID: PMC11335271 DOI: 10.1007/s00018-024-05390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Multiple myeloma (MM) is the second most common hematological tumor in adults. Immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide (Len), are effective drugs for the treatment of multiple myeloma. Len can recruit IKZF1 and IKZF3 to cereblon (CRBN), a substrate receptor of the cullin 4-RING E3 ligase (CRL4), promote their ubiquitination and degradation, and finally inhibit the proliferation of myeloma cells. However, MM patients develop resistance to IMiDs over time, leading to disease recurrence and deterioration. To explore the possible approaches that may enhance the sensitivity of IMiDs to MM, in this study, we used the proximity labeling technique TurboID and quantitative proteomics to identify Lys-63-specific deubiquitinase BRCC36 as a CRBN-interacting protein. Biochemical experiments demonstrated that BRCC36 in the BRISC complex protects CRBN from lysosomal degradation by specifically cleaving the K63-linked polyubiquitin chain on CRBN. Further studies found that a small-molecule compound SHIN1, which binds to BRISC complex subunit SHMT2, can upregulate CRBN by elevating BRCC36. The combination of SHIN1 and Len can further increase the sensitivity of MM cells to IMiDs. Therefore, this study provides the basis for the exploration of a possible strategy for the SHIN1 and Len combination treatment for MM.
Collapse
Affiliation(s)
- Busong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Dan Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qing Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Wenjun Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Colley A, Brauns T, Sluder AE, Poznansky MC, Gemechu Y. Immunomodulatory drugs: a promising clinical ally for cancer immunotherapy. Trends Mol Med 2024; 30:765-780. [PMID: 38821771 DOI: 10.1016/j.molmed.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
While immunomodulatory imide drugs (IMiDs) have been authorised for treatment of haematological cancers for over two decades, the appreciation of their ability to stimulate antitumour T cell and natural killer (NK) cell responses is relatively recent. Clinical trial data increasingly show that targeted immunotherapies, such as antibodies, T cells, and vaccines, improve outcomes when delivered in combination with the IMiD derivatives lenalidomide or pomalidomide. Here, we review these clinical data to highlight the relevance of IMiDs in combinatorial immunotherapy for both haematological and solid tumours. Further research into the molecular mechanisms of IMiDs and an increased understanding of their immunomodulatory effects may refine the specific applications of IMiDs and improve the design of future clinical trials, moving IMiDs to the forefront of combinatorial cancer immunotherapy.
Collapse
Affiliation(s)
- Abigail Colley
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Oncology, University of Cambridge, Cambridge, UK
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohannes Gemechu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Brodermann MH, Henderson EK, Sellar RS. The emerging role of targeted protein degradation to treat and study cancer. J Pathol 2024; 263:403-417. [PMID: 38886898 DOI: 10.1002/path.6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
The evolution of cancer treatment has provided increasingly targeted strategies both in the upfront and relapsed disease settings. Small-molecule inhibitors and immunotherapy have risen to prominence with chimeric antigen receptor T-cells, checkpoint inhibitors, kinase inhibitors, and monoclonal antibody therapies being deployed across a range of solid organ and haematological malignancies. However, novel approaches are required to target transcription factors and oncogenic fusion proteins that are central to cancer biology and have generally eluded successful drug development. Thalidomide analogues causing protein degradation have been a cornerstone of treatment in multiple myeloma, but a lack of in-depth mechanistic understanding initially limited progress in the field. When the protein cereblon (CRBN) was found to mediate thalidomide analogues' action and CRBN's neo-targets were identified, existing and novel drug development accelerated, with applications outside multiple myeloma, including non-Hodgkin's lymphoma, myelodysplastic syndrome, and acute leukaemias. Critically, transcription factors were the first canonical targets described. In addition to broadening the application of protein-degrading drugs, resistance mechanisms are being overcome and targeted protein degradation is widening the scope of druggable proteins against which existing approaches have been ineffective. Examples of targeted protein degraders include molecular glues and proteolysis targeting chimeras (PROTACs): heterobifunctional molecules that bind to proteins of interest and cause proximity-induced ubiquitination and proteasomal degradation via a linked E3 ligase. Twenty years since their inception, PROTACs have begun progressing through clinical trials, with early success in targeting the oestrogen receptor and androgen receptor in breast and prostate cancer respectively. This review explores important developments in targeted protein degradation to both treat and study cancer. It also considers the potential advantages and challenges in the translational aspects of developing new treatments. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Elizabeth K Henderson
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Rob S Sellar
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
27
|
Schade M, Scott JS, Hayhow TG, Pike A, Terstiege I, Ahlqvist M, Johansson JR, Diene CR, Fallan C, Balazs AYS, Chiarparin E, Wilson D. Structural and Physicochemical Features of Oral PROTACs. J Med Chem 2024. [PMID: 39078401 DOI: 10.1021/acs.jmedchem.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Achieving oral bioavailability with Proteolysis Targeting Chimeras (PROTACs) is a key challenge. Here, we report the in vivo pharmacokinetic properties in mouse, rat, and dog of four clinical oral PROTACs and compare with an internally derived data set. We use NMR to determine 3D molecular conformations and structural preorganization free in solution, and we introduce the new experimental descriptors, solvent-exposed H-bond donors (eHBD), and acceptors (eHBA). We derive an upper limit of eHBD ≤ 2 for oral PROTACs in apolar environments and show a greater tolerance for other properties (eHBA, polarity, lipophilicity, and molecular weight) than for Rule-of-5 compliant oral drugs. Within a set of structurally related PROTACs, we show that examples with eHBD > 2 have much lower oral bioavailability than those that have eHBD ≤ 2. We summarize our findings as an experimental "Rule-of-oral-PROTACs" in order to assist medicinal chemists to achieve oral bioavailability in this challenging space.
Collapse
Affiliation(s)
- Markus Schade
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - James S Scott
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Thomas G Hayhow
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andy Pike
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Ina Terstiege
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Marie Ahlqvist
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Johan R Johansson
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Coura R Diene
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Charlene Fallan
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Amber Y S Balazs
- Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Elisabetta Chiarparin
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - David Wilson
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| |
Collapse
|
28
|
Davis LN, Walker ZJ, Reiman LT, Parzych SE, Stevens BM, Jordan CT, Forsberg PA, Sherbenou DW. MYC Inhibition Potentiates CD8+ T Cells Against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin Cancer Res 2024; 30:3023-3035. [PMID: 38723281 PMCID: PMC11250500 DOI: 10.1158/1078-0432.ccr-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.
Collapse
Affiliation(s)
- Lorraine N. Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Martino EA, Palmieri S, Galli M, Derudas D, Mina R, Della Pepa R, Zambello R, Vigna E, Bruzzese A, Mangiacavalli S, Zamagni E, Califano C, Musso M, Conticello C, Cerchione C, Mele G, Di Renzo N, Offidani M, Tarantini G, Casaluci GM, Rago A, Ria R, Uccello G, Barilà G, Palumbo G, Pettine L, Vincelli ID, Brunori M, Accardi F, Amico V, Amendola A, Fontana R, Bongarzoni V, Rossini B, Cotzia E, Gozzetti A, Rizzi R, Sgherza N, Reddiconto G, Maroccia A, Franceschini L, Bertuglia G, Nappi D, Barbieri E, Gamberi B, Petrucci MT, Di Raimondo F, Neri A, Morabito F, Musto P, Gentile M. Elotuzumab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended follow-up of a multicenter, retrospective real-world experience with 321 cases outside of controlled clinical trials. Hematol Oncol 2024; 42:e3290. [PMID: 38818978 DOI: 10.1002/hon.3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
The ELOQUENT-3 trial demonstrated the superiority of the combination of elotuzumab, pomalidomide, and dexamethasone (EloPd) in terms of efficacy and safety, compared to Pd in relapsed/refractory multiple myeloma (RRMM), who had received at least two prior therapies, including lenalidomide and a proteasome inhibitor. The present study is an 18-month follow-up update of a previously published Italian real-life RRMM cohort of patients treated with EloPd. This revised analysis entered 319 RRMM patients accrued in 41 Italian centers. After a median follow-up of 17.7 months, 213 patients (66.4%) experienced disease progression or died. Median progression-free survival (PFS) and overall survival (OS) were 7.5 and 19.2 months, respectively. The updated multivariate analysis showed a significant reduction of PFS benefit magnitude both in advanced International Staging System (ISS) (II and III) stages and previous exposure to daratumumab cases. Instead, advanced ISS (II and III) stages and more than 2 previous lines of therapy maintained an independent prognostic impact on OS. Major adverse events included grade three-fourths neutropenia (24.9%), anemia (13.4%), lymphocytopenia (15.5%), and thrombocytopenia (10.7%), while infection rates and pneumonia were 19.3% and 8.7%, respectively. A slight increase in the incidence of neutropenia and lymphocytopenia was registered with longer follow-up. In conclusion, our real-world study still confirms that EloPd is a safe and possible therapeutic choice for RRMM. Nevertheless, novel strategies are desirable for those patients exposed to daratumumab.
Collapse
MESH Headings
- Humans
- Multiple Myeloma/drug therapy
- Multiple Myeloma/mortality
- Multiple Myeloma/pathology
- Male
- Female
- Dexamethasone/administration & dosage
- Dexamethasone/adverse effects
- Dexamethasone/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Middle Aged
- Thalidomide/analogs & derivatives
- Thalidomide/administration & dosage
- Thalidomide/adverse effects
- Thalidomide/therapeutic use
- Retrospective Studies
- Follow-Up Studies
- Aged, 80 and over
- Adult
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Drug Resistance, Neoplasm
- Survival Rate
Collapse
Affiliation(s)
- Enrica Antonia Martino
- Department of Onco-hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Monica Galli
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni, Bergamo, Italy
| | | | - Roberto Mina
- Division of Hematology, AOU Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Roberta Della Pepa
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples "Federico II", Naples, Italy
| | - Renato Zambello
- Department of Medicine, University of Padova, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ernesto Vigna
- Department of Onco-hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Antonella Bruzzese
- Department of Onco-hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Maurizio Musso
- Department of Oncology, Onco-Hematology Unit and TMO U.O.C., Palermo, Italy
| | - Concetta Conticello
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Mele
- Department of Hematology, Hospital Perrino, Brindisi, Italy
| | | | | | | | - Gloria Margiotta Casaluci
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Roberto Ria
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Internal Medicine "G. Baccelli"; CITEL, Bari, Italy
- Interdepartmental Centre for Research in Telemedicine, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Gaetano Palumbo
- Department of Hematology, Hospital University Riuniti, Foggia, Italy
| | - Loredana Pettine
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Iolanda Donatella Vincelli
- Department of Hemato-Oncology and Radiotherapy, Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | | | - Fabrizio Accardi
- Department of Hematology I, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | | | - Angela Amendola
- Hematology Unit, Azienda Ospedaliera Regionale "San Carlo", Potenza, Italy
| | - Raffaele Fontana
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Velia Bongarzoni
- Department of Hematology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Bernardo Rossini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Emilia Cotzia
- Section of Hematology- Ospedale E. Muscatello-Augusta, Siracusa, Italy
| | - Alessandro Gozzetti
- Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | - Rita Rizzi
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico Bari, Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Nicola Sgherza
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico Bari, Bari, Italy
| | | | - Antonio Maroccia
- Hematology Unit - Ospedale dell'Angelo Azienda ULSS n.3 Serenissima, Venezia Mestre, Italy
| | - Luca Franceschini
- Lymphoproliferative Diseases Unit, Tor Vergata University Hospital, Rome, Italy
| | - Giuseppe Bertuglia
- Dipartimento di Oncologia ed Ematologia SC Ematologia 1 A.O. Citta' della Salute e della Scienza di Torino P.O. Molinette, Torino, Italy
| | - Davide Nappi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emiliano Barbieri
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Gamberi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Teresa Petrucci
- Department of Translational and Precision Medicine, Hematology Azienda Policlinico Umberto I Sapienza University of Rome, Rome, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico Bari, Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Massimo Gentile
- Department of Onco-hematology, Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
31
|
Koldenhof P, Bemelmans MP, Ghosh B, Damm-Ganamet KL, van Vlijmen HWT, Pande V. Application of AlphaFold models in evaluating ligandable cysteines across E3 ligases. Proteins 2024; 92:819-829. [PMID: 38337153 DOI: 10.1002/prot.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Collapse
Affiliation(s)
- Patrick Koldenhof
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Brahma Ghosh
- Discovery Chemistry, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | | | | | - Vineet Pande
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| |
Collapse
|
32
|
Barton BE, Collins MK, Chau CH, Choo-Wosoba H, Venzon DJ, Steinebach C, Garchitorena KM, Shah B, Sarin EL, Gütschow M, Figg WD. Preclinical Evaluation of a Novel Series of Polyfluorinated Thalidomide Analogs in Drug-Resistant Multiple Myeloma. Biomolecules 2024; 14:725. [PMID: 38927128 PMCID: PMC11201495 DOI: 10.3390/biom14060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Immunomodulatory imide drugs (IMiDs) play a crucial role in the treatment landscape across various stages of multiple myeloma. Despite their evident efficacy, some patients may exhibit primary resistance to IMiD therapy, and acquired resistance commonly arises over time leading to inevitable relapse. It is critical to develop novel therapeutic options to add to the treatment arsenal to overcome IMiD resistance. We designed, synthesized, and screened a new class of polyfluorinated thalidomide analogs and investigated their anti-cancer, anti-angiogenic, and anti-inflammatory activity using in vitro and ex vivo biological assays. We identified four lead compounds that exhibit potent anti-myeloma, anti-angiogenic, anti-inflammatory properties using three-dimensional tumor spheroid models, in vitro tube formation, and ex vivo human saphenous vein angiogenesis assays, as well as the THP-1 inflammatory assay. Western blot analyses investigating the expression of proteins downstream of cereblon (CRBN) reveal that Gu1215, our primary lead candidate, exerts its activity through a CRBN-independent mechanism. Our findings demonstrate that the lead compound Gu1215 is a promising candidate for further preclinical development to overcome intrinsic and acquired IMiD resistance in multiple myeloma.
Collapse
Affiliation(s)
- Blaire E. Barton
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J. Venzon
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Kathleen M. Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhruga Shah
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Eric L. Sarin
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Amatangelo M, Flynt E, Stong N, Ray P, Van Oekelen O, Wang M, Ortiz M, Maciag P, Peluso T, Parekh S, van de Donk NWCJ, Lonial S, Thakurta A. Pharmacodynamic changes in tumor and immune cells drive iberdomide's clinical mechanisms of activity in relapsed and refractory multiple myeloma. Cell Rep Med 2024; 5:101571. [PMID: 38776914 PMCID: PMC11228401 DOI: 10.1016/j.xcrm.2024.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Iberdomide is a next-generation cereblon (CRBN)-modulating agent in the clinical development in multiple myeloma (MM). The analysis of biomarker samples from relapsed/refractory patients enrolled in CC-220-MM-001 (ClinicalTrials.gov: NCT02773030), a phase 1/2 study, shows that iberdomide treatment induces significant target substrate degradation in tumors, including in immunomodulatory agent (IMiD)-refractory patients or those with low CRBN levels. Additionally, some patients with CRBN genetic dysregulation who responded to iberdomide have a similar median progression-free survival (PFS) (10.9 months) and duration of response (DOR) (9.5 months) to those without CRBN dysregulation (11.2 month PFS, 9.4 month DOR). Iberdomide treatment promotes a cyclical pattern of immune stimulation without causing exhaustion, inducing a functional shift in T cells toward an activated/effector memory phenotype, including in triple-class refractory patients and those receiving IMiDs as a last line of therapy. This analysis demonstrates that iberdomide's clinical mechanisms of action are driven by both its cell-autonomous effects overcoming CRBN dysregulation in MM cells, and potent immune stimulation that augments anti-tumor immunity.
Collapse
Affiliation(s)
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA
| | - Nicholas Stong
- Predictive Sciences, Bristol Myers Squibb, Summit, NJ, USA
| | - Pradipta Ray
- Data Sciences, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Oliver Van Oekelen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Wang
- Translational Research, Bristol Myers Squibb, San Diego, CA, USA
| | - Maria Ortiz
- Predictive Sciences, BMS Center for Innovation and Translational Research Europe (CITRE), A Bristol Myers Squibb Company, Sevilla, Spain
| | - Paulo Maciag
- Clinical Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Teresa Peluso
- Clinical Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels W C J van de Donk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, the Netherlands
| | - Sagar Lonial
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA; Oxford Translational Myeloma Centre (OTMC), Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Van Oekelen O, Amatangelo M, Guo M, Upadhyaya B, Cribbs AP, Kelly G, Patel M, Kim-Schulze S, Flynt E, Lagana A, Gooding S, Merad M, Jagganath S, Pierceall WE, Oppermann U, Thakurta A, Parekh S. Iberdomide increases innate and adaptive immune cell subsets in the bone marrow of patients with relapsed/refractory multiple myeloma. Cell Rep Med 2024; 5:101584. [PMID: 38776911 PMCID: PMC11228551 DOI: 10.1016/j.xcrm.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.
Collapse
Affiliation(s)
- Oliver Van Oekelen
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manman Guo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | - Bhaskar Upadhyaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam P Cribbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA
| | - Alessandro Lagana
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sundar Jagganath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK; Oxford Translational Myeloma Centre (OTMC), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA; Oxford Translational Myeloma Centre (OTMC), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Hultcrantz M, Hassoun H, Korde N, Maclachlan K, Mailankody S, Patel D, Shah U, Tan CR, Chung DJ, Lahoud O, Landau H, Scordo M, Shah GL, Giralt S, Pianko MJ, Burge M, Barnett K, Salcedo M, Caple J, Tran L, Blaslov J, Shekarkhand T, Hamid S, Nemikovski D, Derkach A, Arisa O, Peer CJ, Figg WD, Usmani SZ, Landgren O, Lesokhin AM. Colesevelam for Lenalidomide Associated Diarrhea in Patients with Multiple Myeloma. RESEARCH SQUARE 2024:rs.3.rs-4406606. [PMID: 38883739 PMCID: PMC11177961 DOI: 10.21203/rs.3.rs-4406606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Lenalidomide maintenance is associated with a significantly improved progression-free in patients with newly diagnosed multiple myeloma. Maintenance with lenalidomide is generally well tolerated; however, lenalidomide associated diarrhea is a common side effect and bile acid malabsorption has been suggested as an underlying mechanism. We conducted a single arm phase 2 trial of colesevelam, a bile acid binder, for lenalidomide-associated diarrhea in multiple myeloma. Patients were treated with colesevelam daily starting at 1250 mg (2 tablets 625 mg) for 12 weeks. The trial included 25 patients, 1 patient with grade 3 diarrhea, 14 with grade 2, and 10 with grade 1 diarrhea. All patients were on treatment with single agent lenalidomide maintenance and no patient progressed during the trial. Colesevelam treatment was highly effective for treatment of lenalidomide-associated diarrhea; 22 (88%) of the 25 patients responded where 17 patients (68%) had complete resolution of diarrhea, and 5 patients (20%) had improvement by 1 grade of diarrhea. The responses to colesevelam were seen within the first two weeks of treatment. These findings support the conclusion that lenalidomide-associated diarrhea is driven by bile acid malabsorption. Five patients reported mild gastrointestinal side effects including constipation. Importantly, the pharmacokinetics of lenalidomide were not affected by concomitant colesevelam treatment. The stool microbiome composition was not significantly different before and after colesevelam treatment. Patients reported improved diarrhea, fewer gastrointestinal symptoms, and less interference with their daily life after starting colesevelam. In summary, colesevelam was safe and highly effective for treatment of lenalidomide-associated diarrhea in multiple myeloma and does not reduce the clinical effect of lenalidomide.
Collapse
Affiliation(s)
- Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kylee Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dhwani Patel
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Urvi Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlyn Rose Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oscar Lahoud
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heather Landau
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Scordo
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan L Shah
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew J Pianko
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miranda Burge
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kelly Barnett
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meghan Salcedo
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julia Caple
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Linh Tran
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Blaslov
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tala Shekarkhand
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Selena Hamid
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David Nemikovski
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oluwatobi Arisa
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Saad Z Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Nutt MJ, Stewart SG. Strengthening Molecular Glues: Design Strategies for Improving Thalidomide Analogs as Cereblon Effectors and Anticancer Agents. Drug Discov Today 2024; 29:104010. [PMID: 38704021 DOI: 10.1016/j.drudis.2024.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
In the two decades since a novel thalidomide analog was last approved, many promising drug candidates have emerged with remarkable potency as targeted protein degraders. Likewise, the advent of PROTACs for suppressing 'undruggable' protein targets reinforces the need for new analogs with improved cereblon affinity, target selectivity and drug-like properties. However, thalidomide and its approved derivatives remain plagued by several shortcomings, such as structural instability and poor solubility. Herein, we present a review of strategies for mitigating these shortcomings and highlight contemporary drug discovery approaches that have generated novel thalidomide analogs with enhanced efficacy as cereblon effectors and/or anticancer agents.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| | - Scott G Stewart
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| |
Collapse
|
37
|
Ye T, Mishra AK, Banday S, Li R, Hu K, Coleman MM, Shan Y, Chowdhury SR, Zhou L, Pak ML, Simone TM, Malonia SK, Zhu LJ, Kelliher MA, Green MR. Identification of WNK1 as a therapeutic target to suppress IgH/MYC expression in multiple myeloma. Cell Rep 2024; 43:114211. [PMID: 38722741 DOI: 10.1016/j.celrep.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Tianyi Ye
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Alok K Mishra
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kai Hu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Madison M Coleman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yi Shan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shreya Roy Chowdhury
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Magnolia L Pak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tessa M Simone
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K Malonia
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michelle A Kelliher
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
38
|
Yong D, Ahmad S, Mabanglo MF, Halabelian L, Schapira M, Ackloo S, Perveen S, Ghiabi P, Vedadi M. Development of Peptide Displacement Assays to Screen for Antagonists of DDB1 Interactions. Biochemistry 2024; 63:1297-1306. [PMID: 38729622 PMCID: PMC11112733 DOI: 10.1021/acs.biochem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-μM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.
Collapse
Affiliation(s)
- Darren Yong
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shabbir Ahmad
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Mark F. Mabanglo
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Levon Halabelian
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
39
|
Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol 2024; 223:e202311171. [PMID: 38517379 PMCID: PMC10959754 DOI: 10.1083/jcb.202311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.
Collapse
Affiliation(s)
- Yoshino Akizuki
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Stephanie Kaypee
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Fumiyo Ikeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Chen Y, Xue H, Jin J. Applications of protein ubiquitylation and deubiquitylation in drug discovery. J Biol Chem 2024; 300:107264. [PMID: 38582446 PMCID: PMC11087986 DOI: 10.1016/j.jbc.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
The ubiquitin (Ub)-proteasome system (UPS) is the major machinery mediating specific protein turnover in eukaryotic cells. By ubiquitylating unwanted, damaged, or harmful proteins and driving their degradation, UPS is involved in many important cellular processes. Several new UPS-based technologies, including molecular glue degraders and PROTACs (proteolysis-targeting chimeras) to promote protein degradation, and DUBTACs (deubiquitinase-targeting chimeras) to increase protein stability, have been developed. By specifically inducing the interactions between different Ub ligases and targeted proteins that are not otherwise related, molecular glue degraders and PROTACs degrade targeted proteins via the UPS; in contrast, by inducing the proximity of targeted proteins to deubiquitinases, DUBTACs are created to clear degradable poly-Ub chains to stabilize targeted proteins. In this review, we summarize the recent research progress in molecular glue degraders, PROTACs, and DUBTACs and their applications. We discuss immunomodulatory drugs, sulfonamides, cyclin-dependent kinase-targeting molecular glue degraders, and new development of PROTACs. We also introduce the principle of DUBTAC and its applications. Finally, we propose a few future directions of these three technologies related to targeted protein homeostasis.
Collapse
Affiliation(s)
- Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haoan Xue
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Ito T. Protein degraders - from thalidomide to new PROTACs. J Biochem 2024; 175:507-519. [PMID: 38140952 DOI: 10.1093/jb/mvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.
Collapse
Affiliation(s)
- Takumi Ito
- Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
42
|
Alugubelli Y, Xiao J, Khatua K, Kumar S, Sun L, Ma Y, Ma XR, Vulupala VR, Atla S, Blankenship LR, Coleman D, Xie X, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J Med Chem 2024; 67:6495-6507. [PMID: 38608245 PMCID: PMC11056980 DOI: 10.1021/acs.jmedchem.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.
Collapse
Affiliation(s)
- Yugendar
R. Alugubelli
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Xiao
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sathish Kumar
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Long Sun
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren R. Blankenship
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuping Xie
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Benjamin W. Neuman
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College
Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
43
|
An J, Zhang X. Crbn-based molecular Glues: Breakthroughs and perspectives. Bioorg Med Chem 2024; 104:117683. [PMID: 38552596 DOI: 10.1016/j.bmc.2024.117683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
CRBN is a substrate receptor for the Cullin Ring E3 ubiquitin ligase 4 (CRL4) complex. It has been observed that CRBN can be exploited by small molecules to facilitate the recruitment and ubiquitination of non-natural CRL4 substrates, resulting in the degradation of neosubstrate through the ubiquitin-proteasome system. This phenomenon, known as molecular glue-induced protein degradation, has emerged as an innovative therapeutic approach in contrast to traditional small-molecule drugs. One key advantage of molecular glues, in comparison to conventional small-molecule drugs adhering to Lipinski's Rule of Five, is their ability to operate without the necessity for specific binding pockets on target proteins. This unique characteristic empowers molecular glues to interact with conventionally intractable protein targets, such as transcription factors and scaffold proteins. The ability to induce the degradation of these previously elusive targets by hijacking the ubiquitin-proteasome system presents a promising avenue for the treatment of recalcitrant diseases. Nevertheless, the rational design of molecular glues remains a formidable challenge due to the limited understanding of their mechanisms and actions. This review offers an overview of recent advances and breakthroughs in the field of CRBN-based molecular glues, while also exploring the prospects for a systematic approach to designing these compounds.
Collapse
Affiliation(s)
- Juzeng An
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | | |
Collapse
|
44
|
Carter TR, Milosevich N, Dada L, Shaum JB, Barry Sharpless K, Kitamura S, Erb MA. SuFEx-based chemical diversification for the systematic discovery of CRBN molecular glues. Bioorg Med Chem 2024; 104:117699. [PMID: 38608634 PMCID: PMC11195152 DOI: 10.1016/j.bmc.2024.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Molecular glues are small molecules that stabilize protein-protein interactions, enabling new molecular pharmacologies, such as targeted protein degradation. They offer advantages over proteolysis targeting chimeras (PROTACs), which present challenges associated with the size and properties of heterobifunctional constructions, but glues lack the rational design principles analogous to PROTACs. One notable exception is the ability to alter the structure of Cereblon (CRBN)-based molecular glues and redirect their activity toward new neo-substrate proteins. We took a focused approach toward modifying the CRBN ligand, 5'-amino lenalidomide, to alter its neo-substrate specificity using high-throughput chemical diversification by parallelized sulfur(VI)-fluoride exchange (SuFEx) transformations. We synthesized over 3,000 analogs of 5'-amino lenalidomide using this approach and screened the crude products using a phenotypic screen for cell viability, identifying dozens of analogs with differentiated activity. We characterized four compounds that degrade G-to-S phase transition 1 (GSPT1) protein, providing a proof-of-concept model for SuFEx-based discovery of CRBN molecular glues.
Collapse
Affiliation(s)
- Trever R Carter
- Department of Chemistry, The Scripps Research Institute, United States
| | | | - Lucas Dada
- Department of Biochemistry, Albert Einstein College of Medicine, United States
| | - James B Shaum
- Department of Chemistry, The Scripps Research Institute, United States
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, United States
| | - Seiya Kitamura
- Department of Chemistry, The Scripps Research Institute, United States; Department of Biochemistry, Albert Einstein College of Medicine, United States
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, United States
| |
Collapse
|
45
|
Abdallah N, Kumar SK. New Therapies on the Horizon for Relapsed Refractory Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:511-532. [PMID: 38216384 DOI: 10.1016/j.hoc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Despite improved treatments, most patients with multiple myeloma (MM) will experience relapse. Several novel agents have demonstrated activity and tolerability in early phase clinical trials. Venetoclax is a B-cell lymphoma 2 (Bcl-2) inhibitor with activity in patients with t(11;14) and/or Bcl-2 expression. Iberdomide and mezigdomide are cereblon E3 ligase modulators with higher potency, immunomodulatory, and antiproliferative activity compared with lenalidomide and pomalidomide. They have shown promising activity in heavily pretreated patients. Modakafusp alfa is an immunocytokine that targets interferons to CD38+ cells. It has demonstrated single agent activity in relapsed/refractory MM in the phase 1 setting.
Collapse
Affiliation(s)
- Nadine Abdallah
- Division of Hematology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
46
|
Gahvari Z, Brunner M, Schmidt T, Callander NS. Update on the current and future use of CAR-T to treat multiple myeloma. Eur J Haematol 2024; 112:493-503. [PMID: 38099401 DOI: 10.1111/ejh.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 03/19/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has become an important intervention in the management of relapsed and relapsed/refractory multiple myeloma (MM). Currently, B-cell maturation antigen (BCMA) is the most targeted surface protein due to its ubiquitous expression on plasma cells, with increasing expression of this essential transmembrane protein on malignant plasma cells as patients develop more advanced disease. This review will explore the earliest CAR-T trials in myeloma, discuss important issues involved in CAR-T manufacturing and processing, as well as review current clinical trials that led to the approval of the two commercially available CAR-T products, Idecabtagene vicleucel and ciltacabtagene autoleucel. The most recent data from trials investigating the use of CAR-T as an earlier line of therapy will be presented. Finally, the problem of relapses after CAR-T will be presented, including several theories as to why CAR-T therapies fail and possible clinical caveats. The next generation of MM-specific CAR-T will likely include new targets such as G-protein-coupled receptor class C, Group 5, member D (GPRC5D) and signaling lymphocyte activation molecular Family 7 (SLAMF7). The role of CAR-T in the treatment of MM will undoubtedly increase exponentially in the next decade.
Collapse
Affiliation(s)
- Zhubin Gahvari
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Brunner
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy Schmidt
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalie S Callander
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Lee H, Neri P, Bahlis NJ. Cereblon-Targeting Ligase Degraders in Myeloma: Mechanisms of Action and Resistance. Hematol Oncol Clin North Am 2024; 38:305-319. [PMID: 38302306 DOI: 10.1016/j.hoc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cereblon-targeting degraders, including immunomodulatory imide drugs lenalidomide and pomalidomide alongside cereblon E3 ligase modulators like iberdomide and mezigdomide, have demonstrated significant anti-myeloma effects. These drugs play a crucial role in diverse therapeutic approaches for multiple myeloma (MM), emphasizing their therapeutic importance across various disease stages. Despite their evident efficacy, approximately 5% to 10% of MM patients exhibit primary resistance to lenalidomide, and resistance commonly develops over time. Understanding the intricate mechanisms of action and resistance to this drug class becomes imperative for refining and advancing novel therapeutic combinations.
Collapse
Affiliation(s)
- Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
48
|
Chowdhury B, Garg S, Ni W, Sattler M, Sanchez D, Meng C, Akatsu T, Stone R, Forrester W, Harrington E, Buhrlage SJ, Griffin JD, Weisberg E. Synergy between BRD9- and IKZF3-Targeting as a Therapeutic Strategy for Multiple Myeloma. Cancers (Basel) 2024; 16:1319. [PMID: 38610997 PMCID: PMC11010819 DOI: 10.3390/cancers16071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical SWI/SNF chromatin remodeling complex, plays a role in MM cell survival, and targeting BRD9 selectively blocks MM cell proliferation and synergizes with IMiDs. We found that synergy in vitro is associated with the downregulation of MYC and Ikaros proteins, including IKZF3, and overexpression of IKZF3 or MYC could partially reverse synergy. RNA-seq analysis revealed synergy to be associated with the suppression of pathways associated with MYC and E2F target genes and pathways, including cell cycle, cell division, and DNA replication. Stimulated pathways included cell adhesion and immune and inflammatory response. Importantly, combining IMiD treatment and BRD9 targeting, which leads to the downregulation of MYC protein and upregulation of CRBN protein, was able to override IMiD resistance of cells exposed to iberdomide in long-term culture. Taken together, our results support the notion that combination therapy based on agents targeting BRD9 and IKZF3, two established dependencies in MM, represents a promising novel therapeutic strategy for MM and IMiD-resistant disease.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Swati Garg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Sanchez
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Taisei Akatsu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Bouvier C, Lawrence R, Cavallo F, Xolalpa W, Jordan A, Hjerpe R, Rodriguez MS. Breaking Bad Proteins-Discovery Approaches and the Road to Clinic for Degraders. Cells 2024; 13:578. [PMID: 38607017 PMCID: PMC11011670 DOI: 10.3390/cells13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.
Collapse
Affiliation(s)
- Corentin Bouvier
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
| | - Rachel Lawrence
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Francesca Cavallo
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico;
| | - Allan Jordan
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Roland Hjerpe
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Manuel S. Rodriguez
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UT3, 31400 Toulouse, France
- B Molecular, Centre Pierre Potier, Canceropôle, 31106 Toulouse, France
| |
Collapse
|
50
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|