1
|
Maher N, Mouhssine S, Matti BF, Alwan AF, Gaidano G. Molecular Mechanisms in the Transformation from Indolent to Aggressive B Cell Malignancies. Cancers (Basel) 2025; 17:907. [PMID: 40075754 PMCID: PMC11899122 DOI: 10.3390/cancers17050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Histological transformation (HT) into aggressive lymphoma is a turning point in a significant fraction of patients affected by indolent lymphoproliferative neoplasms, namely, chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), marginal zone lymphomas (MZLs), and lymphoplasmacytic lymphoma (LPL) [...].
Collapse
Affiliation(s)
- Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Bassam Francis Matti
- Department of Hematology and Bone Marrow Transplant, Hematology and Bone Marrow Transplant Center, Medical City, Baghdad 00964, Iraq;
| | - Alaa Fadhil Alwan
- Department of Clinical Hematology, The National Center of Hematology, Mustansiriyah University, Baghdad 10001, Iraq;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| |
Collapse
|
2
|
Pseftogas A, Bordini J, Heltai S, Bonfiglio F, Gavriilidis G, Vasileiou V, Keisaris S, Belloni D, Taccetti C, Ranghetti P, Perotta E, Frenquelli M, Sarkar UA, Albi E, Martini F, Sant'Antonio E, Mavilia F, Psomopoulos F, Daibata M, Martínez Climent JÁ, Mosialos G, Rossi D, Campanella A, Scarfò L, Stamatopoulos K, Xanthopoulos K, Ghia P. Loss of CYLD promotes splenic marginal zone lymphoma. Hemasphere 2025; 9:e70098. [PMID: 40098895 PMCID: PMC11911931 DOI: 10.1002/hem3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a distinct clinical and pathological entity among marginal zone lymphomas. Genetic and microenvironmental factors leading to aberrant activation of the NF-κB pathway have been implicated in SMZL pathogenesis. CYLD is a negative regulator of NF-κB and other signaling pathways acting as a deubiquitinase of regulatory molecules and has been reported as a tumor suppressor in different types of cancer, including B-cell malignancies. To assess whether CYLD is implicated in the natural history of SMZL, we profiled primary cells from patients with SMZL and SMZL cell lines for CYLD expression and functionality. We report that CYLD is downregulated in patients with SMZL and that CYLD ablation in vitro leads to NF-κB pathway hyperactivation, promoting the proliferation of SMZL cells. In addition, we found that CYLD deficiency was associated with increased migration of SMZL cells in vitro, through CCR7 receptor signaling, and with increased dissemination in vivo. CYLD loss was sufficient to induce BcR signaling, conferring increased resistance to ibrutinib treatment in vitro. In summary, our work uncovers a novel role of CYLD as a key regulator in SMZL pathogenesis, dissemination, and resistance to targeted agents. On these grounds, CYLD could be proposed as a novel target for patient stratification and personalized interventions.
Collapse
Affiliation(s)
- Athanasios Pseftogas
- Università Vita-Salute San Raffaele Milano Italy
- IRCCS Ospedale San Raffaele Milano Italy
| | | | | | - Ferdinando Bonfiglio
- University of Naples Federico II Napoli Italy
- CEINGE Biotecnologie avanzate s.c.a r.l. Napoli Italy
| | | | - Vasileios Vasileiou
- CERTH Thessaloniki Greece
- Democritus University of Thrace Alexandropoulis Greece
| | | | - Daniela Belloni
- Università Vita-Salute San Raffaele Milano Italy
- IRCCS Ospedale San Raffaele Milano Italy
| | | | | | | | | | | | - Elisa Albi
- IRCCS Ospedale San Raffaele Milano Italy
| | | | | | | | | | | | | | | | - Davide Rossi
- The Oncology Institute of Southern Switzerland Bellinzona Switzerland
| | | | - Lydia Scarfò
- Università Vita-Salute San Raffaele Milano Italy
- IRCCS Ospedale San Raffaele Milano Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele Milano Italy
- IRCCS Ospedale San Raffaele Milano Italy
| |
Collapse
|
3
|
Roider T, Baertsch MA, Fitzgerald D, Vöhringer H, Brinkmann BJ, Czernilofsky F, Knoll M, Llaó-Cid L, Mathioudaki A, Faßbender B, Herbon M, Lautwein T, Bruch PM, Liebers N, Schürch CM, Passerini V, Seifert M, Brobeil A, Mechtersheimer G, Müller-Tidow C, Weigert O, Seiffert M, Nolan GP, Huber W, Dietrich S. Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities. Nat Cell Biol 2024; 26:478-489. [PMID: 38379051 PMCID: PMC10940160 DOI: 10.1038/s41556-024-01358-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.
Collapse
Affiliation(s)
- Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc A Baertsch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donnacha Fitzgerald
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Harald Vöhringer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Berit J Brinkmann
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mareike Knoll
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Laura Llaó-Cid
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Molecular Pathology of Lymphoid Neoplasms, Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Bianca Faßbender
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maxime Herbon
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Genomics and Transcriptomics Laboratory, University of Düsseldorf, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nora Liebers
- European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Christian M Schürch
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Marc Seifert
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Brobeil
- Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Oliver Weigert
- German Cancer Research Center, Heidelberg, Germany
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
- German Cancer Consortium, Munich, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Huber
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Aachen Bonn Cologne Düsseldorf, Germany.
| |
Collapse
|
4
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
5
|
Low Mutational Burden of Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue in Patients with Primary Sjogren’s Syndrome. Cancers (Basel) 2022; 14:cancers14041010. [PMID: 35205758 PMCID: PMC8870522 DOI: 10.3390/cancers14041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extranodal marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the parotid glands. The genetic mechanism underlying development of MALT lymphoma in the context of pSS is unknown. The aim of our study was to define the genomic landscape of pSS-associated MALT lymphoma. For 17 localized pSS-associated MALT lymphomas, we analyzed the presence of nonsynonymous mutations, copy number alterations (CNAs) and MALT1 translocations. pSS-associated MALT lymphomas were characterized by a low mutational load (median number of nonsynonymous somatic variants per case was 7, range 2–78) and a limited number of CNAs. Unlike the recurrent genomic aberrations observed in MALT lymphoma, which were not associated with pSS, pSS-associated MALT lacked a clear lymphoma-related profile. The data suggest that localized pSS-associated MALT lymphomas are a distinct type of ENMZL, which are genomically stable and most likely depend on a stimulatory micro-environment. Abstract Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extranodal marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the parotid glands. Unlike recurrent genomic aberrations observed in MALT lymphoma, which were not associated with pSS (non-pSS), it is unknown which somatic aberrations underlie the development of pSS-associated MALT lymphomas. Whole-exome sequencing was performed on 17 pSS-associated MALT lymphomas. In total, 222 nonsynonymous somatic variants affecting 182 genes were identified across the 17 cases. The median number of variants was seven (range 2–78), including three cases with a relatively high mutational load (≥24/case). Out of 16 recurrently mutated genes, ID3, TBL1XR1, PAX5, IGLL5 and APC are known to be associated with lymphomagenesis. A total of 18 copy number alterations were detected in eight cases. MALT1 translocations were not detected. With respect to outcome, only two cases relapsed outside of the salivary glands. Both had a high mutational load, suggesting a more advanced stage of lymphoma. The low mutational load and lack of a clear lymphoma-related mutation profile suggests that localized pSS-associated MALT lymphomas are genomically more stable than non-pSS MALT lymphomas and most likely depend on a stimulatory micro-environment.
Collapse
|
6
|
Vela V, Juskevicius D, Dirnhofer S, Menter T, Tzankov A. Mutational landscape of marginal zone B-cell lymphomas of various origin: organotypic alterations and diagnostic potential for assignment of organ origin. Virchows Arch 2022; 480:403-413. [PMID: 34494161 PMCID: PMC8986713 DOI: 10.1007/s00428-021-03186-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
This meta-analysis aims to concisely summarize the genetic landscape of splenic, nodal and extranodal marginal zone lymphomas (MZL) in the dura mater, salivary glands, thyroid, ocular adnexa, lung, stomach and skin with respect to somatic variants. A systematic PubMed search for sequencing studies of MZL was executed. All somatic mutations of the organs mentioned above were combined, uniformly annotated, and a dataset containing 25 publications comprising 6016 variants from 1663 patients was created. In splenic MZL, KLF2 (18%, 103/567) and NOTCH2 (16%, 118/725) were the most frequently mutated genes. Pulmonary and nodal MZL displayed recurrent mutations in chromatin-modifier-encoding genes, especially KMT2D (25%, 13/51, and 20%, 20/98, respectively). In contrast, ocular adnexal, gastric, and dura mater MZL had mutations in genes encoding for NF-κB pathway compounds, in particular TNFAIP3, with 39% (113/293), 15% (8/55), and 45% (5/11), respectively. Cutaneous MZL frequently had FAS mutations (63%, 24/38), while MZL of the thyroid had a higher prevalence for TET2 variants (61%, 11/18). Finally, TBL1XR1 (24%, 14/58) was the most commonly mutated gene in MZL of the salivary glands. Mutations of distinct genes show origin-preferential distribution among nodal and splenic MZL as well as extranodal MZL at/from different anatomic locations. Recognition of such mutational distribution patterns may help assigning MZL origin in difficult cases and possibly pave the way for novel more tailored treatment concepts.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland.
| |
Collapse
|
7
|
Alderuccio JP, Lossos IS. NOTCH signaling in the pathogenesis of splenic marginal zone lymphoma-opportunities for therapy. Leuk Lymphoma 2021; 63:279-290. [PMID: 34586000 DOI: 10.1080/10428194.2021.1984452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
NOTCH signaling is a highly conserved pathway mediated by four receptors (NOTCH 1-4) playing critical functions in proliferation, differentiation, and cell death. Under physiologic circumstances, NOTCH2 is a key regulator in marginal zone differentiation and development. Over the last decade, growing data demonstrated frequent NOTCH2 mutations in splenic marginal zone lymphoma (SMZL) underscoring its critical role in the pathogenesis of this disease. Moreover, NOTCH2 specificity across studies supports the rationale to assess its value as a diagnosis biomarker in a disease without pathognomonic features. These data make NOTCH signaling an appealing target for drug discovery in SMZL; however, prior efforts attempting to manipulate this pathway failed to demonstrate meaningful clinical benefit, or their safety profile prevented further development. In this review, we discuss the current knowledge of NOTCH implications in the pathogenesis and as a potential druggable target in SMZL.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, Verney A, Traverse-Glehen A. New Insights into the Biology and Diagnosis of Splenic Marginal Zone Lymphomas. ACTA ACUST UNITED AC 2021; 28:3430-3447. [PMID: 34590593 PMCID: PMC8482189 DOI: 10.3390/curroncol28050297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents an indolent evolution, but a third of patients progress rapidly and require aggressive treatments, such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years, advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival of new devices in the panel of available molecular biology techniques, allowing the discovery of new molecular findings. In the era of targeted therapies, an update of current knowledge is needed to guide future researches, such as those on epigenetic modifications or the microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Marie Donzel
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Lucile Baseggio
- Laboratoire d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France;
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Juliette Fontaine
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Florian Pesce
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Hervé Ghesquières
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Bachy
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Aurélie Verney
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Alexandra Traverse-Glehen
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Correspondence: ; Tel.: +33-4-7876-1186
| |
Collapse
|
9
|
Napoli S, Cascione L, Rinaldi A, Spriano F, Guidetti F, Zhang F, Cacciapuoti MT, Mensah AA, Sartori G, Munz N, Forcato M, Bicciato S, Chiappella A, Ghione P, Elemento O, Cerchietti L, Inghirami G, Bertoni F. Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B-cell lymphoma. Haematologica 2021; 107:1131-1143. [PMID: 34162177 PMCID: PMC9052922 DOI: 10.3324/haematol.2020.267096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNA (eRNA) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNA stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterized an enhancer eRNA, GECPAR (germinal center proliferative adapter RNA), which is specifically transcribed in normal and neoplastic germinal center B cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B-cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway.
Collapse
Affiliation(s)
- Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SARA NAPOLI
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesca Guidetti
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Fangwen Zhang
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Annalisa Chiappella
- Ematologia, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Ghione
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, NY, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,FRANCESCO BERTONI
| |
Collapse
|
10
|
Moreno T, Monterde B, González-Silva L, Betancor-Fernández I, Revilla C, Agraz-Doblas A, Freire J, Isidro P, Quevedo L, Blanco R, Montes-Moreno S, Cereceda L, Astudillo A, Casar B, Crespo P, Morales Torres C, Scaffidi P, Gómez-Román J, Salido E, Varela I. ARID2 deficiency promotes tumor progression and is associated with higher sensitivity to chemotherapy in lung cancer. Oncogene 2021; 40:2923-2935. [PMID: 33742126 PMCID: PMC7610680 DOI: 10.1038/s41388-021-01748-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022]
Abstract
The survival rate in lung cancer remains stubbornly low and there is an urgent need for the identification of new therapeutic targets. In the last decade, several members of the SWI/SNF chromatin remodeling complexes have been described altered in different tumor types. Nevertheless, the precise mechanisms of their impact on cancer progression, as well as the application of this knowledge to cancer patient management are largely unknown. In this study, we performed targeted sequencing of a cohort of lung cancer patients on genes involved in chromatin structure. In addition, we studied at the protein level the expression of these genes in cancer samples and performed functional experiments to identify the molecular mechanisms linking alterations of chromatin remodeling genes and tumor development. Remarkably, we found that 20% of lung cancer patients show ARID2 protein loss, partially explained by the presence of ARID2 mutations. In addition, we showed that ARID2 deficiency provokes profound chromatin structural changes altering cell transcriptional programs, which bolsters the proliferative and metastatic potential of the cells both in vitro and in vivo. Moreover, we demonstrated that ARID2 deficiency impairs DNA repair, enhancing the sensitivity of the cells to DNA-damaging agents. Our findings support that ARID2 is a bona fide tumor suppressor gene in lung cancer that may be exploited therapeutically.
Collapse
Affiliation(s)
- Thaidy Moreno
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Beatriz Monterde
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Laura González-Silva
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Isabel Betancor-Fernández
- Departamento de Patología, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Carlos Revilla
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Antonio Agraz-Doblas
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica y Biobanco Valdecilla, HUMV/IDIVAL, Santander, Spain
| | - Pablo Isidro
- Biobanco del Principado de Asturias (BBPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | | | - Laura Cereceda
- Servicio de Anatomía Patológica y Biobanco Valdecilla, HUMV/IDIVAL, Santander, Spain
| | - Aurora Astudillo
- Biobanco del Principado de Asturias (BBPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Paola Scaffidi
- Cancer Epigenetics Laboratory, The Francis Crick Institute, London, UK
| | - Javier Gómez-Román
- Servicio de Anatomía Patológica y Biobanco Valdecilla, HUMV/IDIVAL, Santander, Spain
| | - Eduardo Salido
- Departamento de Patología, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain.
| |
Collapse
|
11
|
Arasu A, Balakrishnan P, Velusamy T. RNA sequencing analyses reveal differentially expressed genes and pathways as Notch2 targets in B-cell lymphoma. Oncotarget 2020; 11:4527-4540. [PMID: 33400727 PMCID: PMC7721612 DOI: 10.18632/oncotarget.27805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a low grade, indolent B-cell neoplasm that comprises approximately 10% of all lymphoma. Notch2, a pivotal gene for marginal zone differentiation is found to be mutated in SMZL. Deregulated Notch2 signaling has been involved in tumorigenesis and also in B-cell malignancies. However the role of Notch2 and the downstream pathways that it influences for development of B-cell lymphoma remains unclear. In recent years, RNA sequencing (RNA-Seq) has become a functional and convincing technology for profiling gene expression and to discover new genes and transcripts that are involved in disease development in a single experiment. In the present study, using transcriptome sequencing approach, we have identified key genes and pathways that are probably the underlying cause in the development of B-cell lymphoma. We have identified a total of 15,083 differentially expressed genes (DEGs) and 1067 differentially expressed transcripts (DETs) between control and Notch2 knockdown B cells. Gene Ontology (GO) term enrichment and pathway analysis were applied for the identification of key genes and pathways involved in development of B-cell lymphoma. In addition, intermediate genes of top canonical pathways such as PI3K/AKT and NF-kB were found to be downregulated with Notch2 knockdown, indicating that these pathways could be the putative downstream effectors through which Notch2 mediates its oncogenic effects. Taken collectively, the identified crop of genes and pathways may be considered as targets for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Ashok Arasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Pavithra Balakrishnan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
13
|
Defrancesco I, Zibellini S, Boveri E, Frigeni M, Ferretti VV, Rizzo E, Bonometti A, Capuano F, Candido C, Rattotti S, Tenore A, Picone C, Flospergher E, Zerbi C, Bergamini F, Fabbri N, Cristinelli C, Varettoni M, Paulli M, Arcaini L. Targeted next-generation sequencing reveals molecular heterogeneity in non-chronic lymphocytic leukemia clonal B-cell lymphocytosis. Hematol Oncol 2020; 38:689-697. [PMID: 32738175 DOI: 10.1002/hon.2784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
Non-chronic lymphocytic leukemia (non-CLL) clonal B-cell lymphocytosis (CBL) encompasses a heterogeneous group of hematologic disorders that are still poorly understood. To shed light on their biological aspects, we retrospectively analyzed a highly selected series of 28 patients, who had a clonal B-cell population in the peripheral blood and in the bone marrow, without evidence of lymphoma. Extended targeted next-generation sequencing revealed wide molecular heterogeneity with MYD88 (14%), PDE4DIP (14%), BIRC3 (11%), CCND3 (11%), NOTCH1 (11%), and TNFAIP3 (11%) as the most mutated genes. Mutations of MYD88 were "nonclassic" in most cases. Although some genetic lesions were overlapping with indolent lymphomas, mainly splenic B-cell lymphomas of marginal zone origin and splenic diffuse red pulp small B-cell lymphoma, the genetic profile of our non-CLL CBL series seemed to suggest that various pathways could be involved in the pathogenesis of these disorders, not mirroring any specific lymphoma entity. These data better enlighten the molecular characteristics of non-CLL CBL; however, more efforts are needed in order to improve the diagnostic process, prognostication, and clinical management.
Collapse
Affiliation(s)
| | - Silvia Zibellini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Emanuela Boveri
- Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Frigeni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Division of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Arturo Bonometti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Capuano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Candido
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Rattotti
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annamaria Tenore
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Picone
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Caterina Zerbi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fabio Bergamini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nicole Fabbri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
14
|
|
15
|
Koh J, Jang I, Choi S, Kim S, Jang I, Ahn HK, Lee C, Paik JH, Kim CW, Lim MS, Kim K, Jeon YK. Discovery of Novel Recurrent Mutations and Clinically Meaningful Subgroups in Nodal Marginal Zone Lymphoma. Cancers (Basel) 2020; 12:cancers12061669. [PMID: 32585984 PMCID: PMC7352856 DOI: 10.3390/cancers12061669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Nodal marginal zone lymphoma (NMZL) is a rare B-cell neoplasm, the genetic and transcriptomic landscape of which are unclear. Using high-throughput sequencing for whole-exome and transcriptome, we investigated the genetic characteristics of NMZL in a discovery cohort (n = 8) and validated their features in an extended cohort (n = 30). Novel mutations in NFKBIE and ITPR2 were found in 7.9% (3/38) and 13.9% (5/36), respectively, suggesting roles for the NF-κB pathway and B-cell-receptor-mediated calcium signaling pathway in the pathogenesis of NMZL. RNA-seq showed that NMZLs were characterized by an aberrant marginal zone differentiation, associated with an altered IRF4-NOTCH2 axis and the enrichment of various oncogenic pathways. Based on gene expression profile, two subgroups were identified. Compared with subgroup 1, subgroup 2 showed the following: the significant enrichment of cell cycle-associated and MYC-signaling pathways, a more diverse repertoire of upstream regulators, and higher Ki-67 proliferation indices. We designated two subgroups according to Ki-67 labeling, and subgroup 2 was significantly associated with a shorter progression-free survival (p = 0.014), a greater proportion of large cells (p = 0.009), and higher MYC expression (p = 0.026). We suggest that NMZL has unique features and, in this study, we provide information as to the heterogeneity of this enigmatic entity.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Insoon Jang
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
| | - Seongmin Choi
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Ingeon Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Hyun Kyung Ahn
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si 46371, Korea;
| | - Chul Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Correspondence: (K.K.); (Y.K.J.)
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Correspondence: (K.K.); (Y.K.J.)
| |
Collapse
|
16
|
CREBBP and STAT6 co-mutation and 16p13 and 1p36 loss define the t(14;18)-negative diffuse variant of follicular lymphoma. Blood Cancer J 2020; 10:69. [PMID: 32555149 PMCID: PMC7299932 DOI: 10.1038/s41408-020-0335-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The diffuse variant of follicular lymphoma (dFL) is a rare variant of FL lacking t(14;18) that was first described in 2009. In this study, we use a comprehensive approach to define unifying pathologic and genetic features through gold-standard pathologic review, FISH, SNP-microarray, and next-generation sequencing of 16 cases of dFL. We found unique morphologic features, including interstitial sclerosis, microfollicle formation, and rounded nuclear cytology, confirmed absence of t(14;18) and recurrent deletion of 1p36, and showed a novel association with deletion/CN-LOH of 16p13 (inclusive of CREBBP, CIITA, and SOCS1). Mutational profiling demonstrated near-uniform mutations in CREBBP and STAT6, with clonal dominance of CREBBP, among other mutations typical of germinal-center B-cell lymphomas. Frequent CREBBP and CIITA codeletion/mutation suggested a mechanism for immune evasion, while subclonal STAT6 activating mutations with concurrent SOCS1 loss suggested a mechanism of BCL-xL/BCL2L1 upregulation in the absence of BCL2 rearrangements. A review of the literature showed significant enrichment for 16p13 and 1p36 loss/CN-LOH, STAT6 mutation, and CREBBP and STAT6 comutation in dFL, as compared with conventional FL. With this comprehensive approach, our study demonstrates confirmatory and novel genetic associations that can aid in the diagnosis and subclassification of this rare type of lymphoma.
Collapse
|
17
|
Robinson JE, Greiner TC, Bouska AC, Iqbal J, Cutucache CE. Identification of a Splenic Marginal Zone Lymphoma Signature: Preliminary Findings With Diagnostic Potential. Front Oncol 2020; 10:640. [PMID: 32457837 PMCID: PMC7225304 DOI: 10.3389/fonc.2020.00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, indolent non-Hodgkin's lymphoma that affects 0. 13 per 100,000 persons annually. Overall survival of SMZL is estimated to reach 8-11 years in most cases, but up to 30% of SMZL cases develop aggressive presentations resulting in greatly diminished time of survival. SMZL presents with a very heterogeneous molecular profile, making diagnosis problematic, and accurate prognosis even less likely. The study herein has identified a potential diagnostic gene expression signature with highly specific predictive utility, coined the SMZL-specific Gene Expression Signature (SSGES). Additionally, five of the most impactful markers identified within the SSGES were selected for a five-protein panel, for further evaluation among control and SMZL patient samples. These markers included EME2, ERCC5, SETBP1, USP24, and ZBTB32. When compared with control spleen and other B-cell lymphoma subtypes, significantly higher expression was noticed in SMZL samples when stained for EME2 and USP24. Additionally, ERCC5, SETBP1, USP24, and ZBTB32 staining displayed indications of prognostic value for SMZL patients. Delineation of the SSGES offers a unique SMZL signature that could provide diagnostic utility for a malignancy that has historically been difficult to identify, and the five-marker protein panel provides additional support for such findings. These results should be further investigated and validated in subsequent molecular investigations of SMZL so it may be potentially incorporated into standard oncology practice for improving the understanding and outlook for SMZL patients.
Collapse
Affiliation(s)
- Jacob E Robinson
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Alyssa C Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | | |
Collapse
|
18
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 712] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Hansen MH, Cédile O, Blum MK, Hansen SV, Ebbesen LH, Bentzen HHN, Thomassen M, Kruse TA, Kavan S, Kjeldsen E, Kristensen TK, Haaber J, Abildgaard N, Nyvold CG. Molecular characterization of sorted malignant B cells from patients clinically identified with mantle cell lymphoma. Exp Hematol 2020; 84:7-18.e12. [PMID: 32173361 DOI: 10.1016/j.exphem.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) is a tumor with a poor prognosis. A few studies have examined the molecular landscape by next-generation sequencing and provided valuable insights into recurrent lesions driving this heterogeneous cancer. However, none has attempted to cross-link the individual genomic and transcriptomic profiles in sorted MCL cells to perform individual molecular characterizations of the lymphomas. Such approaches are relevant as MCL is heterogenous by nature, and thorough molecular diagnostics may potentially benefit the patient with more focused treatment options. In the work described here, we used sorted lymphoma cells from four patients at diagnosis and relapse by intersecting the coding DNA and mRNA. Even though only a few patients were included, this method enabled us to pinpoint a specific set of expressed somatic mutations, to present an overall expression profile different from the normal B cell counterparts, and to track molecular aberrations from diagnosis to relapse. Changes in single-nucleotide coding variants, subtle clonal changes in large-copy-number alterations, subclonal involvement, and changes in expression levels in the clinical course provided detailed information on each of the individual malignancies. In addition to mutations in known genes (e.g., TP53, CCND1, NOTCH1, ATM), we identified others, not linked to MCL, such as a nonsense mutation in SPEN and an MYD88 missense mutation in one patient, which along with copy number alterations exhibited a molecular resemblance to splenic marginal zone lymphoma. The detailed exonic and transcriptomic portraits of the individual MCL patients obtained by the methodology presented here could help in diagnostics, surveillance, and potentially more precise usage of therapeutic drugs by efficient screening of biomarkers.
Collapse
Affiliation(s)
- Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Mia Koldby Blum
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Simone Valentin Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | | | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Stephanie Kavan
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Thomas Kielsgaard Kristensen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jacob Haaber
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| |
Collapse
|
20
|
Leslie LA, Feldman TA, McNeill A, Timberg M, Iida H, Goy AH. Contemporary management of nodal and primary splenic marginal zone lymphoma. Expert Rev Hematol 2019; 12:1011-1022. [PMID: 31619091 DOI: 10.1080/17474086.2020.1681962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Marginal zone lymphoma (MZL) accounts for approximately 10% of all cases of non-Hodgkin lymphoma and includes 3 clinically distinct subtypes: extranodal (MALT), splenic (SMZL), and nodal (NMZL). Though commonly grouped in trials of iNHL the clinical behavior, molecular features, and response to therapy of MZL is distinct from other iNHL subtypes and varies among MZL subtypes.Areas covered: This review focuses on the contemporary management of NMZL and SMZL. Treatment with monoclonal antibodies, chemoimmunotherapy, BTK inhibitors, PI3K/mTOR inhibitors, Bcl2 inhibitors, lenalidomide, and CAR-T cell therapy will be covered.Expert opinion: In the era of targeted medicine, the need to develop MZL specific clinicogenetic models with prognostic and predictive value in both the frontline and relapsed/refractory setting is becoming increasingly apparent. Due to the relative rarity of each MZL subtype, the use of novel trial design with correlative studies is imperative to advance the field.
Collapse
Affiliation(s)
- Lori A Leslie
- Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ, USA
| | | | - Ann McNeill
- Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ, USA
| | - Mary Timberg
- Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ, USA
| | - Hoshiyuki Iida
- Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ, USA
| | - Andre H Goy
- Lymphoma Division, John Theurer Cancer Center, Hackensack, NJ, USA
| |
Collapse
|
21
|
Juárez-Salcedo LM, Castillo JJ. Lymphoplasmacytic Lymphoma and Marginal Zone Lymphoma. Hematol Oncol Clin North Am 2019; 33:639-656. [DOI: 10.1016/j.hoc.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Jaramillo Oquendo C, Parker H, Oscier D, Ennis S, Gibson J, Strefford JC. Systematic Review of Somatic Mutations in Splenic Marginal Zone Lymphoma. Sci Rep 2019; 9:10444. [PMID: 31320741 PMCID: PMC6639539 DOI: 10.1038/s41598-019-46906-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
The aims of this systematic review are to refine the catalogue of somatic variants in splenic marginal zone lymphoma (SMZL) and to provide a well-annotated, manually curated database of high-confidence somatic mutations to facilitate variant interpretation for further biological studies and future clinical implementation. Two independent reviewers systematically searched PubMed and Ovid in January 2019 and included studies that sequenced SMZL cases with confirmed diagnosis. The database included fourteen studies, comprising 2817 variants in over 1000 genes from 475 cases. We confirmed the high prevalence of NOTCH2, KLF2 and TP53 mutations and analysis of targeted genes further implicated TNFAIP3, KMT2D, and TRAF3 as recurrent targets of somatic mutation based on their high incidence across studies. The major limitations we encountered were the low number of patients with whole-genome, unbiased analysis and the relative sensitivities of differing sequencing approaches. Overall, we showed that there is little concordance between whole exome sequencing studies of SMZL. We strongly support the continuing unbiased analysis of the SMZL genome for mutations in all protein-coding genes and provide a valuable database resource to facilitate this endeavour that will ultimately improve our understanding of SMZL pathobiology.
Collapse
Affiliation(s)
- Carolina Jaramillo Oquendo
- Genomic Informatics, Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Sarah Ennis
- Genomic Informatics, Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
23
|
|
24
|
Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression. J Immunol Res 2019; 2019:5601396. [PMID: 31346528 PMCID: PMC6620846 DOI: 10.1155/2019/5601396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system. While in adults, there is a higher chance of relapse. ALL may affect B-cell or T-cell lineages. Different genetic alterations characterize the two ALL forms. Deregulated Notch, either Notch1 or Notch3, and CXCR4 receptor signaling are involved in ALL disease development and progression. By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized. Notably, the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL. These two receptor pathways intersect other critical signals in the proliferative, differentiation, and metabolic programs of lymphocyte transformation. Also, the identification of the crosstalks in leukemia-stroma interaction within the tumor microenvironment may unveil new targetable mechanisms in disease relapse. Further studies are required to identify new challenges and opportunities to develop more selective and safer therapeutic strategies in ALL progression, possibly contributing to improve conventional hematological cancer therapy.
Collapse
|
25
|
Young RM, Phelan JD, Shaffer AL, Wright GW, Huang DW, Schmitz R, Johnson C, Oellerich T, Wilson W, Staudt LM. Taming the Heterogeneity of Aggressive Lymphomas for Precision Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic analyses of diffuse large B cell lymphoma (DLBCL) are revealing the genetic and phenotypic heterogeneity of these aggressive lymphomas. In part, this heterogeneity reflects the existence of distinct genetic subtypes that acquire characteristic constellations of somatic genetic alterations to converge on the DLBCL phenotype. In parallel, functional genomic screens and proteomic analyses have identified multiprotein assemblies that coordinate oncogenic survival signaling in DLBCL. In this review, we merge these recent insights into a unified conceptual framework with implications for the design of precision medicine trials in DLBCL.
Collapse
Affiliation(s)
- Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James D. Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Arthur L. Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - George W. Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Calvin Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Oellerich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wyndham Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
González-Rincón J, Méndez M, Gómez S, García JF, Martín P, Bellas C, Pedrosa L, Rodríguez-Pinilla SM, Camacho FI, Quero C, Pérez-Callejo D, Rueda A, Llanos M, Gómez-Codina J, Piris MA, Montes-Moreno S, Bárcena C, Rodríguez-Abreu D, Menárguez J, de la Cruz-Merino L, Monsalvo S, Parejo C, Royuela A, Kwee I, Cascione L, Arribas A, Bertoni F, Mollejo M, Provencio M, Sánchez-Beato M. Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS One 2019; 14:e0212813. [PMID: 30802265 PMCID: PMC6388933 DOI: 10.1371/journal.pone.0212813] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent but largely incurable disease. Some patients suffer histological transformation to a more aggressive subtype with poorer prognosis. This study aimed to improve our understanding of the genetics underlying FL histological transformation, and to identify genetic drivers or promoters of the transformation by elucidating the differences between FL samples from patients who did and did not transform. We conducted targeted massive parallel sequencing of 22 pre-transformed FL/transformed diffuse large B-cell lymphoma pairs and 20 diagnostic samples from non-transformed FL patients. Additionally, 22 matched samples from 11 transformed FL patients (pre-transformed FL and diffuse large B-cell lymphoma) and 9 non-transformed FLs were studied for copy number variation using SNP arrays. We identified recurrently mutated genes that were enriched at transformation, most notably LRP1B, GNA13 and POU2AF1, which have roles in B-cell differentiation, GC architecture and migration. Mutations in POU2AF1 might be associated with lower levels of expression, were more frequent in transformed FLs, and seemed to be specific to transformed- compared with de novo-diffuse large B-cell lymphomas. Pre-transformed FLs carried more mutations per sample and had greater subclonal heterogeneity than non-transformed FLs. Finally, we identified four mutated genes in FL samples that differed between patients who did and did not transform: NOTCH2, DTX1, UBE2A and HIST1H1E. The presence of mutations in these genes was associated with shorter time to transformation when mutated in the FL biopsies. This information might be useful for identifying patients at higher risk of transformation.
Collapse
MESH Headings
- Adult
- Aged
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biopsy
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Follow-Up Studies
- Humans
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Julia González-Rincón
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
| | - Miriam Méndez
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Sagrario Gómez
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Juan F. García
- Pathology Department, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Paloma Martín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Carmen Bellas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Lucía Pedrosa
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Socorro M. Rodríguez-Pinilla
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
| | | | - Cristina Quero
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - David Pérez-Callejo
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Antonio Rueda
- Medical Oncology Department, Hospital Costa del Sol, Malaga, Spain
| | - Marta Llanos
- Medical Oncology Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - José Gómez-Codina
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel A. Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Santiago Montes-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department/Translational Hematology Group, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | - Carmen Bárcena
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Delvys Rodríguez-Abreu
- Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canarias, Spain
| | - Javier Menárguez
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Silvia Monsalvo
- Hematology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Consuelo Parejo
- TIC Unit- Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro- Segovia de Arana, Madrid, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ivo Kwee
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Belinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Alberto Arribas
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Manuela Mollejo
- Pathology Department, Hospital Virgen de la Salud, Toledo, Spain
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Margarita Sánchez-Beato
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
28
|
Van Roosbroeck K, Bayraktar R, Calin S, Bloehdorn J, Dragomir MP, Okubo K, Bertilaccio MTS, Zupo S, You MJ, Gaidano G, Rossi D, Chen SS, Chiorazzi N, Thompson PA, Ferrajoli A, Bertoni F, Stilgenbauer S, Keating MJ, Calin GA. The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica 2018; 104:1004-1015. [PMID: 30409799 PMCID: PMC6518906 DOI: 10.3324/haematol.2018.203828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Richter syndrome is the name given to the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia, into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNA that have already proven to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNA involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of cases of Richter syndrome. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B cells in multiple assays, while miR-150 and miR-26a were downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNA involved in both malignancy and immunity.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address - Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mihnea Paul Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keishi Okubo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simonetta Zupo
- Molecular Diagnostic Laboratory, Pathology Department, IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Shih-Shih Chen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Llerena S, García-Díaz N, Curiel-Olmo S, Agraz-Doblas A, García-Blanco A, Pisonero H, Varela M, Santibáñez M, Almaraz C, Cereceda L, Martínez N, Arias-Loste MT, Puente Á, Martín-Ramos L, de Lope CR, Castillo-Suescun F, Cagigas-Fernandez C, Isidro P, Lopez-López C, Lopez-Hoyos M, Llorca J, Agüero J, Crespo-Facorro B, Varela I, Piris MÁ, Crespo J, Vaqué JP. Applied diagnostics in liver cancer. Efficient combinations of sorafenib with targeted inhibitors blocking AKT/mTOR. Oncotarget 2018; 9:30869-30882. [PMID: 30112114 PMCID: PMC6089396 DOI: 10.18632/oncotarget.25766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. There is increasing interest in developing specific markers to serve as predictors of response to sorafenib and to guide targeted therapy. Using a sequencing platform designed to study somatic mutations in a selection of 112 genes (HepatoExome), we aimed to characterize lesions from HCC patients and cell lines, and to use the data to study the biological and mechanistic effects of case-specific targeted therapies used alone or in combination with sorafenib. We characterized 331 HCC cases in silico and 32 paired samples obtained prospectively from primary tumors of HCC patients. Each case was analyzed in a time compatible with the requirements of the clinic (within 15 days). In 53% of the discovery cohort cases, we detected unique mutational signatures, with up to 34% of them carrying mutated genes with the potential to guide therapy. In a panel of HCC cell lines, each characterized by a specific mutational signature, sorafenib elicited heterogeneous mechanistic and biological responses, whereas targeted therapy provoked the robust inhibition of cell proliferation and DNA synthesis along with the blockage of AKT/mTOR signaling. The combination of sorafenib with targeted therapies exhibited synergistic anti-HCC biological activity concomitantly with highly effective inhibition of MAPK and AKT/mTOR signaling. Thus, somatic mutations may lead to identify case-specific mechanisms of disease in HCC lesions arising from multiple etiologies. Moreover, targeted therapies guided by molecular characterization, used alone or in combination with sorafenib, can effectively block important HCC disease mechanisms.
Collapse
Affiliation(s)
- Susana Llerena
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Nuria García-Díaz
- Translational Hematopathology Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain.,Departamento de Biología Molecular, Universidad de Cantabria (UC-IBBTEC), Santander, Spain
| | - Soraya Curiel-Olmo
- Translational Hematopathology Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Antonio Agraz-Doblas
- Departamento de Biología Molecular, Universidad de Cantabria (UC-IBBTEC), Santander, Spain.,Josep Carreras Leukemia Research Institute and School of Medicine, University of Barcelona, Barcelona, Spain
| | - Agustín García-Blanco
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Helena Pisonero
- Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain.,Departamento de Biología Molecular, Universidad de Cantabria (UC-IBBTEC), Santander, Spain
| | - María Varela
- Digestive Service, Hepatology Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Carmen Almaraz
- Translational Hematopathology Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Laura Cereceda
- Translational Hematopathology Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Nerea Martínez
- Translational Hematopathology Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Ángela Puente
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Luis Martín-Ramos
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Carlos Rodríguez de Lope
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - Federico Castillo-Suescun
- General and Digestive Tract Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carmen Cagigas-Fernandez
- General and Digestive Tract Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Pablo Isidro
- Biobanco-Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-López
- Oncology Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Marcos Lopez-Hoyos
- Immunology Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Javier Llorca
- Department of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, Santander, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jesús Agüero
- Microbiology Service, University Hospital Marques de Valdecilla-IDIVAL, Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain.,CIBERSAM, Centro de Investigación Biomédica en Red Salud Mental, Madrid, Spain
| | - Ignacio Varela
- Departamento de Biología Molecular, Universidad de Cantabria (UC-IBBTEC), Santander, Spain
| | | | - Javier Crespo
- Gastroenterology and Hepatology Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain.,Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain
| | - José Pedro Vaqué
- Infection, Immunity and Digestive Pathology Group, IDIVAL, Santander, Spain.,Departamento de Biología Molecular, Universidad de Cantabria (UC-IBBTEC), Santander, Spain
| |
Collapse
|
30
|
Robinson JE, Cutucache CE. Deciphering splenic marginal zone lymphoma pathogenesis: the proposed role of microRNA. Oncotarget 2018; 9:30005-30022. [PMID: 30042829 PMCID: PMC6057449 DOI: 10.18632/oncotarget.25487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a malignancy of mature B-cells that primarily involves the spleen, but can affect peripheral organs as well. Even though SMZL is overall considered an indolent malignancy, the majority of cases will eventually progress to be more aggressive. In recent years, the gene expression profile of SMZL has been characterized in an effort to identify: 1) the etiology of SMZL, 2) biological consequences of SMZL, and 3) putative therapeutic targets. However, due to the vast heterogeneity of the malignancy, no conclusive target(s) have been deciphered. However, the role of miRNA in SMZL, much as it has in chronic lymphocytic leukemia, may serve as a guiding light. As a result, we review the comprehensive expression profiling in SMZL to-date, as well as describe the miRNA (and potential mechanistic roles) that may play a role in SMZL transformation, particularly within the 7q region.
Collapse
Affiliation(s)
- Jacob E Robinson
- Deptartment of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
32
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The purpose of the study is to summarize the current conundrums in the management of marginal zone lymphomas (MZL). RECENT FINDINGS In 2017, the US Food and Drug Administration (FDA) approved ibrutinib, a first in class Bruton Tyrosine Kinase inhibitor, for the treatment of relapsed/refractory MZL based on pivotal open-label phase II trial demonstrating an overall response rates of 48%. Clinical trials design utilizing chemotherapy-free regimens for relapsed/refractory disease are gaining popularity. Recent studies have identified multiple genetic biomarkers that helped characterize and prognosticate different subtypes of MZL. MZLs are heterogeneous, mostly indolent, malignancies derived from B lymphocytes. Three disease subtypes are recognized, extranodal, nodal, and splenic. The disease characteristics, clinical picture, and treatment algorithms vary considerably based on subtype and site of involvement. Recent discoveries have enhanced our knowledge of the pathogenesis of MZLs leading to development of more accurate prognostic models as well as novel targeted systemic therapies.
Collapse
|
34
|
Pillonel V, Juskevicius D, Ng CKY, Bodmer A, Zettl A, Jucker D, Dirnhofer S, Tzankov A. High-throughput sequencing of nodal marginal zone lymphomas identifies recurrent BRAF mutations. Leukemia 2018; 32:2412-2426. [PMID: 29556019 PMCID: PMC6224405 DOI: 10.1038/s41375-018-0082-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/15/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Nodal marginal zone lymphoma (NMZL) is a rare small B-cell lymphoma lacking disease-defining phenotype and precise diagnostic markers. To better understand the mutational landscape of NMZL, particularly in comparison to other nodal small B-cell lymphomas, we performed whole-exome sequencing, targeted high-throughput sequencing, and array-comparative genomic hybridization on a retrospective series. Our study identified for the first time recurrent, diagnostically useful, and potentially therapeutically relevant BRAF mutations in NMZL. Sets of somatic mutations that could help to discriminate NMZL from other closely related small B-cell lymphomas were uncovered and tested on unclassifiable small B-cell lymphoma cases, in which clinical, morphological, and phenotypical features were equivocal. Application of targeted gene panel sequencing gave at many occasions valuable clues for more specific classification.
Collapse
Affiliation(s)
- V Pillonel
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - D Juskevicius
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - C K Y Ng
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - A Bodmer
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - A Zettl
- Pathology, Viollier AG, Allschwil, Switzerland
| | - D Jucker
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - S Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - A Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233:5642-5654. [DOI: 10.1002/jcp.26290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM)University of ParmaParmaItaly
- CoreLabHospital‐University of ParmaParmaItaly
| | - George A. Calin
- Departments of Experimental Therapeutics and LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNA Interference and Non‐Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
36
|
Thieblemont C. Improved biological insight and influence on management in indolent lymphoma. Talk 3: update on nodal and splenic marginal zone lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:371-378. [PMID: 29222281 PMCID: PMC6142593 DOI: 10.1182/asheducation-2017.1.371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Splenic marginal zone lymphoma (SMZL) and nodal marginal zone lymphoma (NMZL) are rare indolent chronic B-cell lymphomas. Prognosis is typically good with median survival around 10-15 years. Management is generally based on the presence of symptoms or high tumor burden. There are no standard treatments for these 2 entities, and therapeutic strategies are rapidly evolving. Clinical developments for these 2 entities are oriented by genomic studies, with largely overlapping mutational profiles involving the NOTCH, B-cell receptor (BcR) and nuclear factor κB (NF-κB) signaling, chromatin remodeling, and the cytoskeleton. Although new therapeutic options based on targeting signaling pathways and overcoming resistance are increasingly available, few specific prospective studies are performed for these rare subtypes, limiting the conclusions that can be drawn. Novel drugs targeting B-cell signaling have shown promise, including ibrutinib and copanlisib. The second-generation oral immunomodalator (IMiD) lenalidomide showed impressive results when combined with rituximab. Other potential solutions include targeting the NF-κB, JAK/STAT, BCL2, NOTCH, and Toll-like receptor signaling pathways; however, studies in these 2 MZL entities are yet to prove a definitive benefit. Molecular profiling is now a cornerstone of diagnostic, prognostic, and therapeutic strategies to offer patient- and disease-specific solutions. The development of a wider range of effective targeted therapies and prognostic biomarkers is keenly awaited and is expected to strongly affect the natural history of SMZL and NMZL.
Collapse
Affiliation(s)
- Catherine Thieblemont
- Hemato-Oncology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; Diderot University, Sorbonne Paris-Cité, Paris, France; and EA7324, Descartes University, Paris, France
| |
Collapse
|
37
|
Mata E, Díaz-López A, Martín-Moreno AM, Sánchez-Beato M, Varela I, Mestre MJ, Santonja C, Burgos F, Menárguez J, Estévez M, Provencio M, Sánchez-Espiridión B, Díaz E, Montalbán C, Piris MA, García JF. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets. Oncotarget 2017; 8:111386-111395. [PMID: 29340061 PMCID: PMC5762329 DOI: 10.18632/oncotarget.22799] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Defining the mutational landscape of classic Hodgkin lymphoma is still a major research goal. New targeted next-generation sequencing (NGS) techniques may identify pathogenic mechanisms and new therapeutic opportunities related to this disease. We describe the mutational profile of a series of 57 cHL cases, enriched in Hodgkin and Reed-Sternberg (HRS) cells. Overall, the results confirm the presence of strong genomic heterogeneity. However, several variants were consistently detected in genes related to relevant signaling pathways, such as GM-CSF/IL-3, CBP/EP300, JAK/STAT, NF-kappaB, and numerous variants of genes affecting the B-cell receptor (BCR) pathway, such as BTK, CARD11, BCL10, among others. This unexpectedly high prevalence of mutations affecting the BCR pathway suggests some requirement for active BCR signaling for cHL cell viability. Additionally, incubation of a panel of cHL cellular models with selective BTK inhibitors in vitro constrains cell proliferation and causes cell death. Our results indicate new pathogenic mechanisms and therapeutic opportunities in this disease.
Collapse
Affiliation(s)
- Elena Mata
- Department of Pathology and Translational Research, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Antonio Díaz-López
- Department of Pathology and Translational Research, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Ana M Martín-Moreno
- Department of Pathology and Translational Research, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Margarita Sánchez-Beato
- Lymphoma Research Group, Medical Oncology Department, Instituto Investigación Sanitaria Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain
| | - María J Mestre
- Department of Pathology, Hospital Universitario de Móstoles, Madrid, Spain
| | - Carlos Santonja
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - Fernando Burgos
- Department of Pathology, Hospital Severo Ochoa, Madrid, Spain
| | - Javier Menárguez
- Department of Pathology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mónica Estévez
- Department of Hematology, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Mariano Provencio
- Lymphoma Research Group, Medical Oncology Department, Instituto Investigación Sanitaria Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Beatriz Sánchez-Espiridión
- Department of Molecular Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eva Díaz
- Department of Pathology and Translational Research, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Carlos Montalbán
- Department of Hematology, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Miguel A Piris
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - Juan F García
- Department of Pathology and Translational Research, MD Anderson Cancer Center Madrid, Madrid, Spain
| |
Collapse
|
38
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
39
|
Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol 2017; 30:1338-1366. [PMID: 28664939 DOI: 10.1038/modpathol.2017.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll-like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
Collapse
|
40
|
Higuchi T, Hashida Y, Taniguchi A, Kamioka M, Daibata M. Differential gene expression profiling linked to tumor progression of splenic marginal zone lymphoma. Sci Rep 2017; 7:11026. [PMID: 28887496 PMCID: PMC5591298 DOI: 10.1038/s41598-017-11389-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022] Open
Abstract
The genetic events that lead to aggressive transformation of cases of splenic marginal zone lymphoma (SMZL) after the chronic clinical stage have not been well understood. We aimed to find candidate genes associated with aggressive features of SMZL. We have successfully established two SMZL cell lines, designated SL-15 and SL-22, derived from the same patient's tumor clone in chronic and aggressive phases, respectively. Microarray analysis identified cell cycle-associated genes-specifically PLK1-as the most significantly upregulated in primary aggressive SMZL cells compared with cells from chronic phase. EPHA4 and MS4A1 (CD20) were found to be downregulated dramatically. These gene expression patterns were reproduced in both cell lines. Genetic knockdown of PLK1 resulted in inhibition of cell proliferation and induction of apoptosis in SL-22 cells, which expressed higher levels of PLK1 than SL-15 cells. SL-22 cells needed higher concentrations of chemical PLK1 inhibitors to achieve greater effects. In addition, we found homozygous deletion of the MS4A1 gene as a newly identified molecular mechanism of CD20-negative conversion. Our findings are expected to stimulate further studies on whether PLK1 could be a potential therapeutic target for this tumor. Furthermore, cases with CD20-negatively converted lymphomas should be screened for the genomic loss of MS4A1.
Collapse
Affiliation(s)
- Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Ayuko Taniguchi
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Mikio Kamioka
- Department of Laboratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
41
|
van den Brand M, Scheijen B, Hess CJ, van Krieken JHJ, Groenen PJTA. Pathways towards indolent B-cell lymphoma - Etiology and therapeutic strategies. Blood Rev 2017; 31:426-435. [PMID: 28802906 DOI: 10.1016/j.blre.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/07/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Although patients with indolent B-cell lymphomas have a relatively good survival rate, conventional chemotherapy is not curative. Disease courses are typically characterized by multiple relapses and progressively shorter response duration with subsequent lines of therapy. There has been an explosion of innovative targeted agents in the past years. This review discusses current knowledge on the etiology of indolent B-cell lymphomas with respect to the role of micro-organisms, auto-immune diseases, and deregulated pathways caused by mutations. In particular, knowledge on the mutational landscape of indolent B-cell lymphomas has strongly increased in recent years and harbors great promise for more accurate decision making in the current wide range of therapeutic options. Despite this promise, only in chronic lymphocytic leukemia the detection of TP53 mutations and/or del17p currently have a direct effect on treatment decisions. Nevertheless, it is expected that in the near future the role of genetic testing will increase for prediction of response to targeted treatment as well as for more accurate prediction of prognosis in indolent B-cell lymphomas.
Collapse
MESH Headings
- Animals
- DNA Damage
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/microbiology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell, Marginal Zone/etiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Follicular/etiology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/microbiology
- Lymphoma, Follicular/therapy
- Molecular Targeted Therapy/methods
- Mutation
- Signal Transduction
Collapse
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands; Pathology-DNA, location Rijnstate, Wagnerlaan 55, 6815AD Arnhem, The Netherlands.
| | - Blanca Scheijen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Corine J Hess
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - J Han Jm van Krieken
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Patricia J T A Groenen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Bone Marrow-Liver-Spleen Type of Large B-Cell Lymphoma Associated with Hemophagocytic Syndrome: A Rare Aggressive Extranodal Lymphoma. Case Rep Hematol 2017; 2017:8496978. [PMID: 28835859 PMCID: PMC5556984 DOI: 10.1155/2017/8496978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/28/2017] [Indexed: 11/17/2022] Open
Abstract
Recently, an unusual subtype of large B-cell lymphoma (LBCL) with distinctive clinicopathologic features has been recognized; it is characterized by involvement of bone marrow with or without liver and/or spleen, but no lymph node or other extranodal sites, usually associated with fever, anemia, and hemophagocytic lymphohistiocytosis (HLH). Because of this distinctive clinical presentation, it has been designated "bone marrow-liver-spleen" (BLS) type of LBCL. To date there is only one series of 11 cases of BLS type of LBCL with detailed clinical, pathologic, and cytogenetic data. Herein, we describe a case of BLS type LBCL presenting with associated HLH in a 73-year-old female. The bone marrow core biopsy showed cytologically atypical large lymphoma cells present in a scattered interstitial distribution and hemophagocytosis and infrequent large lymphoma cells were seen in the bone marrow aspirate smears. Circulating lymphoma cells were not seen in the peripheral blood smears. The patient underwent treatment with chemotherapy (R-CHOP) but unfortunately passed away 2 months after initial presentation. BLS type of LBCL is a very rare and clinically aggressive lymphoma whose identification may be delayed by clinicians and hematopathologists due to its unusual clinical presentation and pathologic features.
Collapse
|
43
|
Jallades L, Baseggio L, Sujobert P, Huet S, Chabane K, Callet-Bauchu E, Verney A, Hayette S, Desvignes JP, Salgado D, Levy N, Béroud C, Felman P, Berger F, Magaud JP, Genestier L, Salles G, Traverse-Glehen A. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica 2017; 102:1758-1766. [PMID: 28751561 PMCID: PMC5622860 DOI: 10.3324/haematol.2016.160192] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/12/2017] [Indexed: 01/04/2023] Open
Abstract
Splenic diffuse red pulp lymphoma is an indolent small B-cell lymphoma recognized as a provisional entity in the World Health Organization 2008 classification. Its precise relationship to other related splenic B-cell lymphomas with frequent leukemic involvement or other lymphoproliferative disorders remains undetermined. We performed whole-exome sequencing to explore the genetic landscape of ten cases of splenic diffuse red pulp lymphoma using paired tumor and normal samples. A selection of 109 somatic mutations was then evaluated in a cohort including 42 samples of splenic diffuse red pulp lymphoma and compared to those identified in 46 samples of splenic marginal zone lymphoma and eight samples of hairy-cell leukemia. Recurrent mutations or losses in BCOR (the gene encoding the BCL6 corepressor) – frameshift (n=3), nonsense (n=2), splicing site (n=1), and copy number loss (n=4) – were identified in 10/42 samples of splenic diffuse red pulp lymphoma (24%), whereas only one frameshift mutation was identified in 46 cases of splenic marginal zone lymphoma (2%). Inversely, KLF2, TNFAIP3 and MYD88, common mutations in splenic marginal zone lymphoma, were rare (one KLF2 mutant in 42 samples; 2%) or absent (TNFAIP3 and MYD88) in splenic diffuse red pulp lymphoma. These findings define an original genetic profile of splenic diffuse red pulp lymphoma and suggest that the mechanisms of pathogenesis of this lymphoma are distinct from those of splenic marginal zone lymphoma and hairy-cell leukemia.
Collapse
Affiliation(s)
- Laurent Jallades
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Lucile Baseggio
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France
| | - Sarah Huet
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France
| | - Kaddour Chabane
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Evelyne Callet-Bauchu
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France
| | - Aurélie Verney
- Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France
| | - Sandrine Hayette
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Jean-Pierre Desvignes
- Aix-Marseille Université, GMGF, 13385, Marseillee, France.,INSERM, UMR_S 910, 13385, Marseille, France
| | - David Salgado
- Aix-Marseille Université, GMGF, 13385, Marseillee, France.,INSERM, UMR_S 910, 13385, Marseille, France
| | - Nicolas Levy
- Aix-Marseille Université, GMGF, 13385, Marseillee, France.,INSERM, UMR_S 910, 13385, Marseille, France.,APHM, Hôpital TIMONE Enfants, Laboratoire de Génétique Moléculaire, 13385, Marseille, France
| | - Christophe Béroud
- Aix-Marseille Université, GMGF, 13385, Marseillee, France.,INSERM, UMR_S 910, 13385, Marseille, France.,APHM, Hôpital TIMONE Enfants, Laboratoire de Génétique Moléculaire, 13385, Marseille, France
| | - Pascale Felman
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Françoise Berger
- Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Anatomie Pathologique, Pierre-Bénite, France
| | - Jean-Pierre Magaud
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France
| | - Laurent Genestier
- Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France .,Université Claude Bernard Lyon-1, Marseillee, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hématologie, Pierre-Bénite, France
| | - Alexandra Traverse-Glehen
- Cancer Research Center of Lyon, INSERM 1052 CNRS 5286, Team "Clinical and Experimental Models of Lymphomagenesis", Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oulins, France.,Université Claude Bernard Lyon-1, Marseillee, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Anatomie Pathologique, Pierre-Bénite, France
| |
Collapse
|
44
|
Tessoulin B, Eveillard M, Lok A, Chiron D, Moreau P, Amiot M, Moreau-Aubry A, Le Gouill S, Pellat-Deceunynck C. p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell. Blood Rev 2017; 31:251-259. [PMID: 28284458 DOI: 10.1016/j.blre.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
TP53 deletion or mutation is frequent in B-cell malignancies and is associated with a low response rate. We describe here the p53 landscape in B-cell malignancies, from B-Acute Lymphoblastic Leukemia to Plasma Cell Leukemia, by analyzing incidence of gain or loss of function of actors both upstream and within the p53 pathway, namely MYC, RAS, ARF, MDM2, ATM and TP53. Abnormalities are not equally distributed and their incidence is highly variable among malignancies. Deletion and mutation, usually associated, of ATM or TP53 are frequent in Diffuse Large B-Cell Lymphoma and Mantle Cell Lymphoma. MYC gain, absent in post-GC malignancies, is frequent in B-Prolymphocytic-Leukemia, Multiple Myeloma and Plasma Cell Leukemias. RAS mutations are rare except in MM and PCL. Multiple Factorial Analysis notes that MYC deregulation is closely related to TP53 status. Moreover, MYC gain, TP53 deletion and RAS mutations are inversely correlated with survival. Based on this landscape, we further propose targeted therapeutic approaches for the different B-cell malignancies.
Collapse
Affiliation(s)
- B Tessoulin
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France.
| | - M Eveillard
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Hematology Biology Department, Nantes University Hospital, Nantes, France
| | - A Lok
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - D Chiron
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - P Moreau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - M Amiot
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - A Moreau-Aubry
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - S Le Gouill
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - C Pellat-Deceunynck
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.
| |
Collapse
|
45
|
González-Vela MDC, Curiel-Olmo S, Derdak S, Beltran S, Santibañez M, Martínez N, Castillo-Trujillo A, Gut M, Sánchez-Pacheco R, Almaraz C, Cereceda L, Llombart B, Agraz-Doblas A, Revert-Arce J, López Guerrero JA, Mollejo M, Marrón PI, Ortiz-Romero P, Fernandez-Cuesta L, Varela I, Gut I, Cerroni L, Piris MÁ, Vaqué JP. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas. J Invest Dermatol 2017; 137:197-206. [PMID: 27592799 DOI: 10.1016/j.jid.2016.08.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/27/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients.
Collapse
Affiliation(s)
- María Del Carmen González-Vela
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Soraya Curiel-Olmo
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Nerea Martínez
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | - Martha Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Carmen Almaraz
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Laura Cereceda
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Beatriz Llombart
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Antonio Agraz-Doblas
- IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain; Josep Carreras Leukemia Research Institute and School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Revert-Arce
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | | | | | - Pablo Ortiz-Romero
- Dermatology Service, Instituto I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lynnette Fernandez-Cuesta
- International Agency for Research on Cancer (IARC-WHO), Lyon, France; Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ignacio Varela
- IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lorenzo Cerroni
- Department of Dermatology Medical University of Graz, Austria
| | - Miguel Ángel Piris
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - José Pedro Vaqué
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain.
| |
Collapse
|
46
|
Abstract
B-cell non-Hodgkin lymphomas with plasmacytic differentiation are a diverse group of entities with extremely variable morphologic features. Diagnostic challenges can arise in differentiating lymphoplasmacytic lymphoma from marginal zone lymphoma and other low-grade B-cell lymphomas. In addition, plasmablastic lymphomas can be difficult to distinguish from diffuse large B-cell lymphoma or other high-grade lymphomas. Judicious use of immunohistochemical studies and molecular testing can assist in appropriate classification.
Collapse
MESH Headings
- Diagnosis, Differential
- Humans
- Immunophenotyping
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/pathology
- Plasmacytoma/diagnosis
- Plasmacytoma/immunology
- Plasmacytoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Waldenstrom Macroglobulinemia/diagnosis
- Waldenstrom Macroglobulinemia/immunology
- Waldenstrom Macroglobulinemia/pathology
Collapse
Affiliation(s)
- Charles M Harmon
- Department of Pathology, University of Michigan Hospitals and Health Systems, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Lauren B Smith
- Department of Pathology, University of Michigan Hospitals and Health Systems, 5320 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-5602, USA.
| |
Collapse
|
47
|
Piris MA, Onaindía A, Mollejo M. Splenic marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:56-64. [PMID: 28288718 DOI: 10.1016/j.beha.2016.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning.
Collapse
Affiliation(s)
- Miguel A Piris
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Arantza Onaindía
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Manuela Mollejo
- Servicio de Anatomía Patológica, Hospital Virgen de la Salud, Toledo, Spain
| |
Collapse
|
48
|
Arribas AJ, Bertoni F. Methylation patterns in marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:24-31. [PMID: 28288713 DOI: 10.1016/j.beha.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders.
Collapse
Affiliation(s)
- Alberto J Arribas
- Lymphoma & Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.
| | - Francesco Bertoni
- Lymphoma & Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland; Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
49
|
Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:5-12. [PMID: 28288716 DOI: 10.1016/j.beha.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
Genomic studies have improved our understanding of the biological basis of splenic (SMZL) and nodal (NMZL) marginal zone lymphoma by providing a comprehensive and unbiased view of the genes/pathways that are deregulated in these diseases. Consistent with the physiological involvement of NOTCH, NF-κB, B-cell receptor and toll-like receptor signaling in mature B-cells differentiation into the marginal zone B-cells, many oncogenic mutations of genes involved in these pathways have been identified in SMZL and NMZL. Beside genetic lesions, also epigenetic and post-transcriptional modifications contribute to the deregulation of marginal zone B-cell differentiation pathways in SMZL and NMZL. This review describes the progress in understanding the molecular mechanism underlying SMZL and NMZL, including molecular and post-transcriptional modifications, and discusses how information gained from these efforts has provided new insights on potential targets of diagnostic, prognostic and therapeutic relevance in SMZL and NMZL.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Cell Differentiation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/therapy
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Processing, Post-Translational
- Splenic Neoplasms/diagnosis
- Splenic Neoplasms/genetics
- Splenic Neoplasms/metabolism
- Splenic Neoplasms/therapy
Collapse
Affiliation(s)
- Valeria Spina
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
50
|
Kalpadakis C, Pangalis GA, Angelopoulou MK, Vassilakopoulos TP. Treatment of splenic marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:139-148. [PMID: 28288709 DOI: 10.1016/j.beha.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
Splenic marginal zone lymphoma (SMZL) is a distinct lymphoma entity characterized by an indolent clinical course and prolonged survival. Treatment is not standardized, since there are no prospective randomized trials in large series of SMZL patients. Splenectomy and rituximab represent the most effective treatment strategies used so far. The addition of chemotherapy to rituximab has not further improved the outcome, although this issue requires further investigation. Rituximab monotherapy has been associated with high response rates (∼90%), with approximately half of these responses being complete, even at the molecular level. More importantly, many of these responses are long-lasting, with a reported 7-year progression-free survival (PFS) at the rate of 69%. Maintenance rituximab treatment has been associated with further improvement of the quality of response as well as longer response duration in studies derived from one group of investigators. Based on its high efficacy and the good safety profile, rituximab represent one of the best treatment options for SMZL patients. Moreover, rituximab retains its efficacy in the relapse setting in most cases. Splenectomy is a meaningful alternative to rituximab in patients with bulky splenomegaly and cytopenias, without extensive bone marrow infiltration, who are fit for surgery. However splenectomy cannot completely eradicate the disease and it is also associated with greater morbidity or even mortality compared to rituximab. The choice of one of these two treatment approaches (rituximab or splenectomy) should mainly be based on patient's characteristics and on the disease burden. Novel agents are currently testing in low grade lymphomas including a small number of SMZL patients with promising results.
Collapse
Affiliation(s)
- Christina Kalpadakis
- Department of Haematology, Heraklion University Hospital, 71001, University of Crete, Heraklion, Crete, Greece.
| | - Gerassimos A Pangalis
- Department of Haematology, Athens Medical Center-Psychikon Branch, 11525, Athens, Greece.
| | - Maria K Angelopoulou
- Department of Haematology, National and Kapodistrian University, Laikon General Hospital, Athens, Greece.
| | | |
Collapse
|