1
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
2
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
3
|
Bauvois B, Chapiro E, Quiney C, Maloum K, Susin SA, Nguyen-Khac F. The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines 2023; 11:2335. [PMID: 37760777 PMCID: PMC10525793 DOI: 10.3390/biomedicines11092335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic B lymphocytes that escape death, and correlates with the expression of negative prognostic markers such as the CD38 antigen. Although certain new drugs approved by the US Food and Drug Administration improve the clinical outcome of CLL patients, drug resistance and disease relapse still occur. Like CD38, neutrophil gelatinase-associated lipocalin receptor (NGAL-R) is frequently overexpressed in CLL cells. Here, we evaluated the concomitant surface expression of NGAL-R and CD38 in leukemic blood cells from 52 CLL patients (37 untreated, 8 in clinical remission, and 7 relapsed). We provide evidence of a positive correlation between NGAL-R and CD38 levels both in the interpatient cohorts (p < 0.0001) and in individual patients, indicating a constitutive association of NGAL-R and CD38 at the cell level. Patients with progressing CLL showed a time-dependent increase in NGAL-R/CD38 levels. In treated CLL patients who achieved clinical remission, NGAL-R/CD38 levels were decreased, and were significantly lower than in the untreated and relapsed groups (p < 0.02). As NGAL-R and CD38 participate in CLL cell survival, envisioning their simultaneous inhibition with bispecific NGAL-R/CD38 antibodies capable of inducing leukemic cell death might provide therapeutic benefit for CLL patients.
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Claire Quiney
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Karim Maloum
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Santos A. Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| |
Collapse
|
4
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
6
|
Zhou H, Liu S, Zhang N, Fang K, Zong J, An Y, Chang X. Downregulation of Sirt6 by CD38 promotes cell senescence and aging. Aging (Albany NY) 2022; 14:9730-9757. [PMID: 36490326 PMCID: PMC9792202 DOI: 10.18632/aging.204425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) levels accompany aging. CD38 is the main cellular NADase. Cyanidin-3-O-glucoside (C3G), a natural inhibitor of CD38, is a well-known drug that extends the human lifespan. We investigated mechanisms of CD38 in cell senescence and C3G in antiaging. Myocardial H9c2 cells were induced to senescence with D-gal. CD38 siRNA, C3G and UBCS039 (a chemical activator of Sirt6) inhibited D-gal-induced senescence by reducing reactive oxygen species, hexokinase 2 and SA-β-galactosidase levels. These activators also stimulated cell proliferation and telomerase reverse transcriptase levels, while OSS-128167 (a chemical inhibitor of Sirt6) and Sirt6 siRNA exacerbated the senescent process. H9c2 cells that underwent D-gal-induced cell senescence increased CD38 expression and decreased Sirt6 expression; CD38 siRNA and C3G decreased CD38 expression and increased Sirt6 expression, respectively; and Sirt6 siRNA stimulated cell senescence in the presence of C3G and CD38 siRNA. In D-gal-induced acute aging mice, CD38 and Sirt6 exhibited increased and decreased expression, respectively, in myocardial tissues, and C3G treatment decreased CD38 expression and increased Sirt6 expression in the tissues. C3G also reduced IL-1β, IL-6, IL-17A, TNF-α levels and restored NAD+ and NK cell levels in the animals. We suggest that CD38 downregulates Sirt6 expression to promote cell senescence and C3G exerts an antiaging effect through CD38-Sirt6 signaling.
Collapse
Affiliation(s)
- Hongji Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China,Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - NanYang Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Kehua Fang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Yi An
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
7
|
Paulus A, Malavasi F, Chanan-Khan A. CD38 as a multifaceted immunotherapeutic target in CLL. Leuk Lymphoma 2022; 63:2265-2275. [DOI: 10.1080/10428194.2022.2090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Aneel Paulus
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Fabio Malavasi
- Dipartimento Scienze Mediche, Università di Torino, Torino, Italy
- Fondazione Ricerca Molinette ONLUS, Università di Torino, Torino, Italy
| | - Asher Chanan-Khan
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
8
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
9
|
Benzi A, Grozio A, Spinelli S, Sturla L, Guse AH, De Flora A, Zocchi E, Heeren J, Bruzzone S. Role of CD38 in Adipose Tissue: Tuning Coenzyme Availability? Nutrients 2021; 13:nu13113734. [PMID: 34835990 PMCID: PMC8624254 DOI: 10.3390/nu13113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a fundamental molecule in the regulation of energy metabolism, representing both a coenzyme and a substrate for different NAD+ degrading enzymes. Among these enzymes, CD38 can be seen under two perspectives: as the enzyme synthesizing Ca2+-mobilizing second messenger, starting from NAD+, and as the major NAD+-consumer, to be inhibited to increase NAD+ levels. Indeed, the regulation of NAD+ availability is a key event during different processes. In this review, we examine the recent studies related to the modulation of CD38 expression and activity, and the consequent changes in NAD(P)(H), in adipose tissue, during inflammation and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Andrea Benzi
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Alessia Grozio
- Buck Institute for Research on Aging, Novato, CA 94945, USA;
| | - Sonia Spinelli
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Laura Sturla
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.H.G.); (J.H.)
| | - Antonio De Flora
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Elena Zocchi
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.H.G.); (J.H.)
| | - Santina Bruzzone
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
- Correspondence: ; Tel.: +39-0103538150
| |
Collapse
|
10
|
Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, Han C, Zhao X, Liu Y, Shao Y, Wu Z, Zhang L, Meng F, Xiao-Feng Qin F. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Cell Death Dis 2021; 12:680. [PMID: 34226519 PMCID: PMC8256983 DOI: 10.1038/s41419-021-03968-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
It has been recently reported that CD38 expressed on tumor cells of multiple murine and human origins could be upregulated in response to PD-L1 antibody therapy, which led to dysfunction of tumor-infiltrating CD8+ T immune cells due to increasing the production of adenosine. However, the role of tumor expressed-CD38 on neoplastic formation and progression remains elusive. In the present study, we aimed to delineate the molecular and biochemical function of the tumor-associated CD38 in lung adenocarcinoma progression. Our clinical data showed that the upregulation of tumor-originated CD38 was correlated with poor survival of lung cancer patients. Using multiple in vitro assays we found that the enzymatic activity of tumor expressed-CD38 facilitated lung cancer cell migration, proliferation, colony formation, and tumor development. Consistently, our in vivo results showed that inhibition of the enzymatic activity or antagonizing the enzymatic product of CD38 resulted in the similar inhibition of tumor proliferation and metastasis as CD38 gene knock-out or mutation. At biochemical level, we further identified that cADPR, the mainly hydrolytic product of CD38, was responsible for inducing the opening of TRPM2 iron channel leading to the influx of intracellular Ca2+ and then led to increasing levels of NRF2 while decreasing expression of KEAP1 in lung cancer cells. These findings suggested that malignant lung cancer cells were capable of using cADPR catalyzed by CD38 to facilitate tumor progression, and blocking the enzymatic activity of CD38 could be represented as an important strategy for preventing tumor progression.
Collapse
Affiliation(s)
- Long Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yuan Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, the Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Sai Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Minmin Ge
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Haijun Tang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Chenfeng Han
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xin Zhao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yanbin Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yun Shao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Zhao Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Fang Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
11
|
Vaisitti T, Arruga F, Ferrajoli A. Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12092504. [PMID: 32899284 PMCID: PMC7564793 DOI: 10.3390/cancers12092504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
- Correspondence:
| | - Francesca Arruga
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
12
|
Wang H, Li S, Zhang G, Wu H, Chang X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res Ther 2019; 21:220. [PMID: 31661005 PMCID: PMC6819496 DOI: 10.1186/s13075-019-2001-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background CD38+ NK cells are overabundant in rheumatoid arthritis (RA). Cyanidin-3-O-glucoside (C3G) is an inhibitor of CD38. This study investigated the pathogenic role of CD38+ NK cells and the effect of C3G on RA. Methods Rats with bovine type II collagen-induced arthritis (CIA) were injected with C3G. RA synovial fibroblasts (RASFs) or mononuclear cells (MNCs) were cultured with C3G. MNCs were also cocultured with CD38+ NK cells following C3G pretreatment. Results C3G injection significantly alleviated CIA. C3G also significantly increased the level of interleukin (IL)-10 and the regulatory T (Treg) cell proportion, and it decreased the interleukin (IL)-6 and interferon (IFN)-γ levels and CD38+ NK cell proportion in rat peripheral blood and synovial fluid. Additionally, C3G significantly increased RASF apoptosis and decreased RASF proliferation and IL-6 production in the culture medium. Furthermore, C3G stimulated MNCs to increase IL-2 and IL-10 production and the Treg cell proportion, and it caused MNCs to decrease IL-6 and IFN-γ production and the CD38+ NK cell proportion. Although CD38+ NK cells significantly decreased the Treg cell proportion and IL-10 level in MNCs, CD38+ NK cells that had been pretreated with C3G increased the proportion of Treg cells and IL-10 levels and decreased the IL-6 and IFN-γ levels in the coculture. In CD38+ NK cells, C3G significantly increased Sirtuin 6 (Sirt6) expression and the tumor necrosis factor (TNF)-α level, and it decreased natural killer group 2D (NKG2D) expression and the IFN-γ level. However, when CD38+ NK cells were treated with Sirt6 siRNA, C3G did not change the NKG2D expression, the TNF-α level sharply decreased, and the IFN-γ level increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of TNF-α and an anti-IFN-γ antibody, the IL-10+ Treg cell proportion significantly increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of IFN-γ and an anti-TNF-α antibody, the IL-10+ Treg cell proportion sharply decreased. When CIA rats were injected with both C3G and the Sirt6 inhibitor OSS_128167, the rats exhibited joint inflammation and a low Treg cell proportion, but the CD38+ NK proportion was still low. Conclusion C3G has therapeutic effects on CIA and RA. C3G decreased the proportion of CD38+ cells, RASF proliferation, and proinflammatory cytokine secretion, and it increased the Treg cell proportion. C3G also elevated Sirt6 expression to suppress NKG2D expression, increase TNF-α secretion, and decrease IFN-γ secretion in CD38+ NK cells, which stimulates MNCs to differentiate into Treg cells. This study also demonstrates that the inhibition of Treg cell differentiation in MNCs by CD38+ NK cells is a potential cause of the immune imbalance in RA and CIA.
Collapse
Affiliation(s)
- Hongxing Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Shutong Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Guoqing Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Hui Wu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China. .,Qingdao Engineering Technology Center For Major Disease Marker, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019; 10:2301. [PMID: 31636635 PMCID: PMC6788384 DOI: 10.3389/fimmu.2019.02301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia develops as the result of intrinsic features of the transformed cell, such as gene mutations and derived oncogenic signaling, and extrinsic factors, such as a tumor-friendly, immunosuppressed microenvironment, predominantly in the lymph nodes and the bone marrow. There, high extracellular levels of nucleotides, mainly NAD+ and ATP, are catabolized by different ectonucleotidases, which can be divided in two families according to substrate specificity: on one side those that metabolize NAD+, including CD38, CD157, and CD203a; on the other, those that convert ATP, namely CD39 (and other ENTPDases) and CD73. They generate products that modulate intracellular calcium levels and that activate purinergic receptors. They can also converge on adenosine generation with profound effects, both on leukemic cells, enhancing chemoresistance and homing, and on non-malignant immune cells, polarizing them toward tolerance. This review will first provide an overview of ectonucleotidases expression within the immune system, in physiological and pathological conditions. We will then focus on different hematological malignancies, discussing their role as disease markers and possibly pathogenic agents. Lastly, we will describe current efforts aimed at therapeutic targeting of this family of enzymes.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Debant M, Burgos M, Hemon P, Buscaglia P, Fali T, Melayah S, Le Goux N, Vandier C, Potier-Cartereau M, Pers JO, Tempescul A, Berthou C, Bagacean C, Mignen O, Renaudineau Y. STIM1 at the plasma membrane as a new target in progressive chronic lymphocytic leukemia. J Immunother Cancer 2019; 7:111. [PMID: 31014395 PMCID: PMC6480884 DOI: 10.1186/s40425-019-0591-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Dysregulation in calcium (Ca2+) signaling is a hallmark of chronic lymphocytic leukemia (CLL). While the role of the B cell receptor (BCR) Ca2+ pathway has been associated with disease progression, the importance of the newly described constitutive Ca2+ entry (CE) pathway is less clear. In addition, we hypothesized that these differences reflect modifications of the CE pathway and Ca2+ actors such as Orai1, transient receptor potential canonical (TRPC) 1, and stromal interaction molecule 1 (STIM1), the latter being the focus of this study. Methods An extensive analysis of the Ca2+ entry (CE) pathway in CLL B cells was performed including constitutive Ca2+ entry, basal Ca2+ levels, and store operated Ca2+ entry (SOCE) activated following B cell receptor engagement or using Thapsigargin. The molecular characterization of the calcium channels Orai1 and TRPC1 and to their partner STIM1 was performed by flow cytometry and/or Western blotting. Specific siRNAs for Orai1, TRPC1 and STIM1 plus the Orai1 channel blocker Synta66 were used. CLL B cell viability was tested in the presence of an anti-STIM1 monoclonal antibody (mAb, clone GOK) coupled or not with an anti-CD20 mAb, rituximab. The Cox regression model was used to determine the optimal threshold and to stratify patients. Results Seeking to explore the CE pathway, we found in untreated CLL patients that an abnormal CE pathway was (i) highly associated with the disease outcome; (ii) positively correlated with basal Ca2+ concentrations; (iii) independent from the BCR-PLCγ2-InsP3R (SOCE) Ca2+ signaling pathway; (iv) supported by Orai1 and TRPC1 channels; (v) regulated by the pool of STIM1 located in the plasma membrane (STIM1PM); and (vi) blocked when using a mAb targeting STIM1PM. Next, we further established an association between an elevated expression of STIM1PM and clinical outcome. In addition, combining an anti-STIM1 mAb with rituximab significantly reduced in vitro CLL B cell viability within the high STIM1PM CLL subgroup. Conclusions These data establish the critical role of a newly discovered BCR independent Ca2+ entry in CLL evolution, provide new insights into CLL pathophysiology, and support innovative therapeutic perspectives such as targeting STIM1 located at the plasma membrane. Electronic supplementary material The online version of this article (10.1186/s40425-019-0591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marjolaine Debant
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Miguel Burgos
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Patrice Hemon
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Paul Buscaglia
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Tinhinane Fali
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Sarra Melayah
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France
| | - Nelig Le Goux
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Christophe Vandier
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Marie Potier-Cartereau
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | | | - Adrian Tempescul
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Christian Berthou
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Cristina Bagacean
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Olivier Mignen
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Yves Renaudineau
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France. .,IC-CGO network from "Canceropole Grand Ouest", Brest, France. .,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.
| |
Collapse
|
15
|
Manna A, Aulakh S, Jani P, Ahmed S, Akhtar S, Coignet M, Heckman M, Meghji Z, Bhatia K, Sharma A, Sher T, Alegria V, Malavasi F, Chini EN, Chanan-Khan A, Ailawadhi S, Paulus A. Targeting CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res 2019; 25:3974-3985. [PMID: 30940652 DOI: 10.1158/1078-0432.ccr-18-3412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE CD38 has emerged as a high-impact therapeutic target in multiple myeloma, with the approval of daratumumab (anti-CD38 mAb). The clinical importance of CD38 in patients with chronic lymphocytic leukemia (CLL) has been known for over 2 decades, although it's relevance as a therapeutic target in CLL remains understudied. EXPERIMENTAL DESIGN We investigated the biological effects and antitumor mechanisms engaged by daratumumab in primary CLL cells. Besides its known immune-effector mechanisms (antibody-dependent cell-mediated cytotoxicity, complement-dependent death, and antibody-dependent cellular phagocytosis), we also measured direct apoptotic effects of daratumumab alone or in combination with ibrutinib. In vivo antileukemic activity was assessed in a partially humanized xenograft model. The influence of CD38 on B-cell receptor (BCR) signaling was measured via immunoblotting of Lyn, Syk, BTK, PLCγ2, ERK1/2, and AKT. RESULTS In addition to immune-effector mechanisms; daratumumab also induced direct apoptosis of primary CLL cells, which was partially dependent on FcγR cross-linking. For the first time, we demonstrated the influence of CD38 on BCR signaling where interference of CD38 downregulated Syk, BTK, PLCγ2, ERK1/2, and AKT; effects that were further enhanced by addition of ibrutinib. In comparison to single-agent treatment, the combination of ibrutinib and daratumumab resulted in significantly enhanced anti-CLL activity in vitro and significantly decreased tumor growth and prolonged survival in the in vivo CLL xenograft model. CONCLUSIONS Overall, our data demonstrate the antitumor mechanisms of daratumumab in CLL; furthermore, we show how cotargeting BTK and CD38 lead to a robust anti-CLL effect, which has clinical implications.
Collapse
Affiliation(s)
- Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Sonikpreet Aulakh
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Prachi Jani
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Salman Ahmed
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Sharoon Akhtar
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Marie Coignet
- Department of Cancer Prevention & Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Michael Heckman
- Department of Health Science Research, Mayo Clinic, Jacksonville, Florida
| | - Zahara Meghji
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Kirtipal Bhatia
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Aarushi Sharma
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Taimur Sher
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Victoria Alegria
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Fabio Malavasi
- Lab of Immunogenetics, Department of Medical Science, University of Torino, Italy
| | - Eduardo N Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida. .,Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida.,Mayo Clinic Cancer Center at St. Vincent's Hospital, Jacksonville, Florida
| | | | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida. .,Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
16
|
Traxel S, Schadt L, Eyer T, Mordasini V, Gysin C, Munthe LA, Niggli F, Nadal D, Bürgler S. Bone marrow T helper cells with a Th1 phenotype induce activation and proliferation of leukemic cells in precursor B acute lymphoblastic leukemia patients. Oncogene 2018; 38:2420-2431. [PMID: 30532071 DOI: 10.1038/s41388-018-0594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Precursor B cell acute lymphoblastic leukemia (BCP-ALL) constitutes the leading cause of cancer-related death in children. While chromosomal alterations contribute to BCP-ALL pathogenesis, they are insufficient for leukemia development. Epidemiological data and evidence from a mouse model suggest that immune responses to infections may trigger the emergence of leukemia, but the mechanisms remain unclear. Here, we show that T helper (Th) cells from bone marrow of pediatric BCP-ALL patients can be attracted and activated by autologous BCP-ALL cells. Bone-marrow Th cells supportively interacted with BCP-ALL cells, inducing upregulation of important surface molecules and BCP-ALL cell proliferation. These Th cells displayed a Th1-like phenotype and produced high levels of IFN-γ. IFN-γ was responsible for the upregulation of CD38 in BCP-ALL cells, a molecule which we found to be associated with early relapse, and accountable for the production of IP-10, a chemokine involved in BCP-ALL migration and drug resistance. Thus, our data provide mechanistic support for an involvement of Th cell immune responses in the propagation of BCP-ALL and suggest that BCP-ALL cell-supportive Th cells may serve as therapeutic target.
Collapse
Affiliation(s)
- Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Linda Schadt
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tatjana Eyer
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Vanessa Mordasini
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudine Gysin
- Division of Otolaryngology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ludvig A Munthe
- KG Jebsen Centre for B Cell Malignancies-Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Felix Niggli
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Bu X, Kato J, Hong JA, Merino MJ, Schrump DS, Lund FE, Moss J. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 2018; 39:242-251. [PMID: 29228209 DOI: 10.1093/carcin/bgx137] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
The ectodomain of the plasma membrane ectoenzyme CD38 functions as both an NAD glycohydrolase and an ADP-ribosyl cyclase by catalyzing, respectively, the conversion of NAD to nicotinamide and ADP-ribose or cyclic ADP-ribose. CD38 is attracting particular attention in cancer therapy. An anti-CD38 monoclonal antibody (daratumumab) was approved for treatment of patients with multiple myeloma. However, the role of CD38 in non-hematological malignancies has not been explored. Previously, we reported that ADP-ribose-acceptor hydrolase (ARH)-1 deficiency in mice was associated with tumor development. In the present study, we found that in wild-type and ARH1-deficient mice deletion of the CD38 gene reduced tumor formation. Significant reductions in tumor number were observed in lymphomas, adenocarcinomas and hemangio/histolytic sarcomas. Consistent with a role for CD38 in tumorigenesis, CRISPR/Cas9-based knockout of CD38 in A549 human adenocarcinoma cells inhibited anchorage-independent cell growth, cell invasion and xenograft growth in nude mice. CD38 mRNA and protein expression were evaluated in human lung cancer cell lines and in human lung cancer specimens. CD38 overexpression in tumor cells was identified in 11 of 27 patient samples. In addition, some human lung cancer cell lines had dramatically higher CD38 mRNA and protein expression than normal cells. Consistent with these observations, search of the Oncomine database showed that some human lung adenocarcinomas had higher CD38 mRNA levels compared to normal lung tissues. In total, our data are consistent with the conclusion that CD38 plays a role in murine and human lung tumorigenesis and that anti-CD38 treatment may have therapeutic potential in lung cancer.
Collapse
Affiliation(s)
- Xiangning Bu
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiro Kato
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria J Merino
- Translational Surgical Pathology, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
18
|
Paulus A, Manna A, Akhtar S, Paulus SM, Sharma M, Coignet MV, Jiang L, Roy V, Witzig TE, Ansell SM, Allan J, Furman R, Aulakh S, Manochakian R, Ailawadhi S, Chanan-Khan AA, Sher T. Targeting CD38 with daratumumab is lethal to Waldenström macroglobulinaemia cells. Br J Haematol 2018; 183:196-211. [PMID: 30080238 DOI: 10.1111/bjh.15515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
CD38 is expressed on Waldenström macroglobulinaemia (WM) cells, but its role as a therapeutic target remains undefined. With recent approval of the anti-CD38 monoclonal antibody, daratumumab (Dara), we hypothesized that blocking CD38 would be lethal to WM cells. In vitro Dara treatment of WM cells (including ibrutinib-resistant lines) elicited antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), antibody-dependent cell phagocytosis (ADCP) and direct apoptosis. In vivo, Dara treatment was well tolerated and delayed tumour growth in RPCI-WM1-xenografted mice. CD38 is reported to augment B-cell receptor (BCR) signalling; we noted that Dara significantly attenuated phosphorylated SYK, LYN, BTK, PLCγ2, ERK1/2, AKT, mTOR, and S6 levels, and this effect was augmented by cotreatment with ibrutinib. Indeed, WM cells, including ibrutinib-resistant WM cell lines treated with the ibrutinib + Dara combination, showed significantly more cell death through ADCC, CDC, ADCP and apoptosis relative to single-agent Dara or ibrutinib. In summary, we are the first to report the in vitro and in vivo anti-WM activity of Dara. Furthermore, we show a close connection between BCR and CD38 signalling, which can be co-targeted with ibrutinib + Dara to induce marked WM cell death, irrespective of acquired resistance to ibrutinib.
Collapse
Affiliation(s)
- Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sharoon Akhtar
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shumail M Paulus
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Mayank Sharma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Marie V Coignet
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Vivek Roy
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas E Witzig
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - John Allan
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - Richard Furman
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - Sonikpreet Aulakh
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Rami Manochakian
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sikander Ailawadhi
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Asher A Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Taimur Sher
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
19
|
Mele S, Devereux S, Pepper AG, Infante E, Ridley AJ. Calcium-RasGRP2-Rap1 signaling mediates CD38-induced migration of chronic lymphocytic leukemia cells. Blood Adv 2018; 2:1551-1561. [PMID: 29970392 PMCID: PMC6039665 DOI: 10.1182/bloodadvances.2017014506] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
CD38 is a transmembrane exoenzyme that is associated with poor prognosis in chronic lymphocytic leukemia (CLL). High CD38 levels in CLL cells are linked to increased cell migration, but the molecular basis is unknown. CD38 produces nicotinic acid adenine dinucleotide phosphate and adenosine 5'-diphosphate-ribose, both of which can act to increase intracellular Ca2+ levels. Here we show that CD38 expression increases basal intracellular Ca2+ levels and stimulates CLL cell migration both with and without chemokine stimulation. We find that CD38 acts via intracellular Ca2+ to increase the activity of the Ras family GTPase Rap1, which is in turn regulated by the Ca2+-sensitive Rap1 guanine-nucleotide exchange factor RasGRP2. Both Rap1 and RasGRP2 are required for CLL cell migration, and RasGRP2 is polarized in primary CLL cells with high CD38 levels. These results indicate that CD38 promotes RasGRP2/Rap1-mediated CLL cell adhesion and migration by increasing intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Silvia Mele
- Randall Centre for Cell and Molecular Biophysics, and
- School of Cancer Sciences, King's College London, London, United Kingdom
| | - Stephen Devereux
- School of Cancer Sciences, King's College London, London, United Kingdom
| | - Andrea G Pepper
- School of Cancer Sciences, King's College London, London, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; and
| | | | - Anne J Ridley
- Randall Centre for Cell and Molecular Biophysics, and
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Li T, Li SL, Fang C, Hou YN, Zhang Q, Du X, Lee HC, Zhao YJ. Nanobody-based dual epitopes protein identification (DepID) assay for measuring soluble CD38 in plasma of multiple myeloma patients. Anal Chim Acta 2018; 1029:65-71. [PMID: 29907292 DOI: 10.1016/j.aca.2018.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND CD38 is a surface membrane antigen highly expressed in malignant blood cells, such as multiple myeloma (MM). A soluble form of CD38 (sCD38) is also present in the plasma, deriving likely from the shedding from the cells. The plasma levels of sCD38 should thus correlate closely with the proliferation of the MM cells, allowing the development of a simple diagnostic blood test for monitoring the progress of the disease. However, the plasma sCD38 levels are extremely low, requiring the design of a highly sensitive and specific assay. RESULTS In this study, we developed an ultra-sensitive assay, based on two nanobodies (Nbs) targeting two distinct epitopes of sCD38. One Nb acts as a capturer, and the other is fused with the firefly luciferase serving as a reporter to ensure sensitivity. We showed that this Dual epitopes protein IDentification (DepID) assay has sensitivity reaching 10 pg/mL, which is 10 times higher than that of a commercial ELISA kit. By this method, we were able to precisely quantify the levels of sCD38 in the plasma of MM patients, which were significantly higher than those from healthy donors. We further showed that the increase plasma levels of sCD38 correlated with the progress of MM. CONCLUSION We have developed a Nb-based luminescence sandwich assay, named as DepID, for quantification of the soluble CD38 in MM patients' plasma and showed the potency of this method as a tool for general diagnosis of MM or companion diagnosis of the CD38-targeted therapies.
Collapse
Affiliation(s)
- Ting Li
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Lu Li
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Cheng Fang
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Nan Hou
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qiaoxia Zhang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xin Du
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Hon Cheung Lee
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yong Juan Zhao
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
21
|
Quentmeier H, Pommerenke C, Ammerpohl O, Geffers R, Hauer V, MacLeod RAF, Nagel S, Romani J, Rosati E, Rosén A, Uphoff CC, Zaborski M, Drexler HG. Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation. Oncotarget 2018; 7:63456-63465. [PMID: 27566572 PMCID: PMC5325377 DOI: 10.18632/oncotarget.11524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Genetic heterogeneity though common in tumors has been rarely documented in cell lines. To examine how often B-lymphoma cell lines are comprised of subclones, we performed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing that subclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines (12%) consisted of subclones with individual IG mutations. Subclones were also identified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD marker expression. We successfully isolated 10 subclones from four cell lines (HG3, SU-DHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularly characterize these subclones. We describe in detail the clonal structure of cell line HG3, derived from chronic lymphocytic leukemia. HG3 consists of three subclones each bearing clone-specific aberrations, gene expression and DNA methylation patterns. While donor patient leukemic cells were CD5+, two of three HG3 subclones had independently lost this marker. CD5 on HG3 cells was regulated by epigenetic/transcriptional mechanisms rather than by alternative splicing as reported hitherto. In conclusion, we show that the presence of subclones in cell lines carrying individual mutations and characterized by sets of differentially expressed genes is not uncommon. We show also that these subclones can be useful isogenic models for regulatory and functional studies.
Collapse
Affiliation(s)
- Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vivien Hauer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Romani
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Emanuela Rosati
- Department of Experimental Medicine, Bioscience and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Margarete Zaborski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
22
|
Kong YL, Huang Y, Wu JZ, Cao X, Liang JH, Xia Y, Wu W, Cao L, Zhu HY, Wang L, Fan L, Li JY, Xu W. Expression of autophagy related genes in chronic lymphocytic leukemia is associated with disease course. Leuk Res 2018; 66:8-14. [DOI: 10.1016/j.leukres.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/02/2017] [Accepted: 12/31/2017] [Indexed: 12/29/2022]
|
23
|
Schiavoni I, Scagnolari C, Horenstein AL, Leone P, Pierangeli A, Malavasi F, Ausiello CM, Fedele G. CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells. Immunology 2017; 154:122-131. [PMID: 29178427 DOI: 10.1111/imm.12873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of hospitalization due to bronchiolitis in infants. Although the mechanisms behind this association are not completely elucidated, they appear to involve an excessive immune response causing lung pathology. Understanding the host response to RSV infection may help in the identification of targets for therapeutic intervention. We infected in-vitro human monocyte-derived dendritic cells (DCs) with RSV and analysed various aspects of the cellular response. We found that RSV induces in DCs the expression of CD38, an ectoenzyme that catalyses the synthesis of cyclic ADPR (cADPR). Remarkably, CD38 was under the transcriptional control of RSV-induced type I interferon (IFN). CD38 and a set of IFN-stimulated genes (ISGs) were inhibited by the anti-oxidant N-acetyl cysteine. When CD38-generated cADPR was restrained by 8-Br-cADPR or kuromanin, a flavonoid known to inhibit CD38 enzymatic activity, RSV-induced type I/III IFNs and ISGs were markedly reduced. Taken together, these results suggest a key role of CD38 in the regulation of anti-viral responses. Inhibition of CD38 enzymatic activity may represent an encouraging approach to reduce RSV-induced hyperinflammation and a novel therapeutic option to treat bronchiolitis.
Collapse
Affiliation(s)
- Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy.,CERMS, University of Torino, Torino, Italy
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy.,CERMS, University of Torino, Torino, Italy.,Transplantation Immunology 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Clara M Ausiello
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Vaisitti T, Gaudino F, Ouk S, Moscvin M, Vitale N, Serra S, Arruga F, Zakrzewski JL, Liou HC, Allan JN, Furman RR, Deaglio S. Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor. Haematologica 2017; 102:1878-1889. [PMID: 28860341 PMCID: PMC5664392 DOI: 10.3324/haematol.2017.173419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 02/04/2023] Open
Abstract
IT-901 is a novel and selective NF-κB inhibitor with promising activity in pre-clinical models. Here we show that treatment of chronic lymphocytic leukemia cells (CLL) with IT-901 effectively interrupts NF-κB transcriptional activity. CLL cells exposed to the drug display elevated mitochondrial reactive oxygen species, which damage mitochondria, limit oxidative phosphorylation and ATP production, and activate intrinsic apoptosis. Inhibition of NF-κB signaling in stromal and myeloid cells, both tumor-supportive elements, fails to induce apoptosis, but impairs NF-κB-driven expression of molecules involved in cell-cell contacts and immune responses, essential elements in creating a pro-leukemic niche. The consequence is that accessory cells do not protect CLL cells from IT-901-induced apoptosis. In this context, IT-901 shows synergistic activity with ibrutinib, arguing in favor of combination strategies. IT-901 is also effective in primary cells from patients with Richter syndrome (RS). Its anti-tumor properties are confirmed in xenograft models of CLL and in RS patient-derived xenografts, with documented NF-κB inhibition and significant reduction of tumor burden. Together, these results provide pre-clinical proof of principle for IT-901 as a potential new drug in CLL and RS.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Italy .,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | | | - Maria Moscvin
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | | | | | | | - John N Allan
- CLL Research Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Richard R Furman
- CLL Research Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Italy .,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
25
|
Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene 2017; 36:6617-6626. [PMID: 28783166 DOI: 10.1038/onc.2017.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.
Collapse
|
26
|
Piacente F, Caffa I, Ravera S, Sociali G, Passalacqua M, Vellone VG, Becherini P, Reverberi D, Monacelli F, Ballestrero A, Odetti P, Cagnetta A, Cea M, Nahimana A, Duchosal M, Bruzzone S, Nencioni A. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res 2017; 77:3857-3869. [PMID: 28507103 DOI: 10.1158/0008-5472.can-16-3079] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/06/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
In the last decade, substantial efforts have been made to identify NAD+ biosynthesis inhibitors, specifically against nicotinamide phosphoribosyltransferase (NAMPT), as preclinical studies indicate their potential efficacy as cancer drugs. However, the clinical activity of NAMPT inhibitors has proven limited, suggesting that alternative NAD+ production routes exploited by tumors confer resistance. Here, we show the gene encoding nicotinic acid phosphoribosyltransferase (NAPRT), a second NAD+-producing enzyme, is amplified and overexpressed in a subset of common types of cancer, including ovarian cancer, where NAPRT expression correlates with a BRCAness gene expression signature. Both NAPRT and NAMPT increased intracellular NAD+ levels. NAPRT silencing reduced energy status, protein synthesis, and cell size in ovarian and pancreatic cancer cells. NAPRT silencing sensitized cells to NAMPT inhibitors both in vitro and in vivo; similar results were obtained with the NAPRT inhibitor 2-hydroxynicotinic acid. Reducing NAPRT levels in a BRCA2-deficient cancer cell line exacerbated DNA damage in response to chemotherapeutics. In conclusion, NAPRT-dependent NAD+ biosynthesis contributes to cell metabolism and to the DNA repair process in a subset of tumors. This knowledge could be used to increase the efficacy of NAMPT inhibitors and chemotherapy. Cancer Res; 77(14); 3857-69. ©2017 AACR.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, Genoa, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valerio G Vellone
- Department of Integrated, Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Antonia Cagnetta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,Ospedale Policlinico San Martino, I.R.C.C.S. per l'Oncologia, Genoa, Italy
| |
Collapse
|
27
|
Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, Vaisitti T, Gizzi K, Vitale N, Garaffo G, Mereu E, Diop F, Neri F, Incarnato D, Coscia M, Allan J, Piva R, Oliviero S, Furman RR, Rossi D, Gaidano G, Deaglio S. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia 2016; 31:1882-1893. [DOI: 10.1038/leu.2016.383] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
|
28
|
Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol Ther 2016; 172:116-126. [PMID: 27939939 DOI: 10.1016/j.pharmthera.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD38 is an ectoenzyme that catalyzes the conversion of β-nicotinamide adenine dinucleotide (β-NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine diphosphoribose (ADPR) and NADP to nicotinic acid adenine dinucleotide phosphate (NAADP) and adenosine diphosphoribose-2'-phosphate (ADPR-P). The metabolites of NAD and NADP have roles in calcium signaling in different cell types including airway smooth muscle (ASM) cells. In ASM cells, inflammatory cytokines augment CD38 expression and to a greater magnitude in cells from asthmatics, indicating a greater capacity for the generation of cADPR and ADPR in ASM from asthmatics. CD38 deficient mice develop attenuated airway responsiveness to inhaled methacholine following allergen sensitization and challenge compared to wild-type mice indicating its potential role in asthma. Regulation of CD38 expression in ASM cells is achieved by mitogen activated protein kinases, specific isoforms of PI3 kinases, the transcription factors NF-κB and AP-1, and post-transcriptionally by microRNAs. This review will focus on the role of CD38 in intracellular calcium regulation in ASM, contribution to airway inflammation and airway hyperresponsiveness in mouse models of allergic airway inflammation, the transcriptional and post-transcriptional mechanisms of regulation of expression, and outline approaches to inhibit its expression and activity.
Collapse
Affiliation(s)
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota at Twin Cities, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota at Twin Cities, USA
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota at Twin Cities, USA.
| |
Collapse
|
29
|
Mohr A, Renaudineau Y, Bagacean C, Pers JO, Jamin C, Bordron A. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1132977. [PMID: 27467951 DOI: 10.1080/2162402x.2015.1132977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.
Collapse
Affiliation(s)
- Audrey Mohr
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Yves Renaudineau
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Cristina Bagacean
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Jacques-Olivier Pers
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Christophe Jamin
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Anne Bordron
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| |
Collapse
|
30
|
Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci U S A 2015; 113:E16-22. [PMID: 26699502 DOI: 10.1073/pnas.1519273113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies.
Collapse
|
31
|
Bologna C, Buonincontri R, Serra S, Vaisitti T, Audrito V, Brusa D, Pagnani A, Coscia M, D'Arena G, Mereu E, Piva R, Furman RR, Rossi D, Gaidano G, Terhorst C, Deaglio S. SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response. J Clin Invest 2015; 126:181-94. [PMID: 26619119 DOI: 10.1172/jci83013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a variable disease; therefore, markers to identify aggressive forms are essential for patient management. Here, we have shown that expression of the costimulatory molecule and microbial sensor SLAMF1 (also known as CD150) is lost in a subset of patients with an aggressive CLL that associates with a shorter time to first treatment and reduced overall survival. SLAMF1 silencing in CLL-like Mec-1 cells, which constitutively express SLAMF1, modulated pathways related to cell migration, cytoskeletal organization, and intracellular vesicle formation and recirculation. SLAMF1 deficiency associated with increased expression of CXCR4, CD38, and CD44, thereby positively affecting chemotactic responses to CXCL12. SLAMF1 ligation with an agonistic monoclonal antibody increased ROS accumulation and induced phosphorylation of p38, JNK1/2, and BCL2, thereby promoting the autophagic flux. Beclin1 dissociated from BCL2 in response to SLAMF1 ligation, resulting in formation of the autophagy macrocomplex, which contains SLAMF1, beclin1, and the enzyme VPS34. Accordingly, SLAMF1-silenced cells or SLAMF1(lo) primary CLL cells were resistant to autophagy-activating therapeutic agents, such as fludarabine and the BCL2 homology domain 3 mimetic ABT-737. Together, these results indicate that loss of SLAMF1 expression in CLL modulates genetic pathways that regulate chemotaxis and autophagy and that potentially affect drug responses, and suggest that these effects underlie unfavorable clinical outcome experienced by SLAMF1(lo) patients.
Collapse
MESH Headings
- Antigens, CD/physiology
- Autophagy
- Cell Movement
- Chemotaxis
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Kinase 4/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/physiology
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
|
32
|
Monoclonal antibodies in the treatment of multiple myeloma: current status and future perspectives. Leukemia 2015; 30:526-35. [PMID: 26265184 PMCID: PMC4777772 DOI: 10.1038/leu.2015.223] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
Abstract
The treatment landscape for patients with multiple myeloma (MM) is constantly evolving. Over the past decade, the introduction of novel agents such as proteasome inhibitors and immunomodulatory drugs has led to notable changes in therapeutic strategy, and improvements in survival, yet MM remains incurable in the vast majority of cases. More recently, a targeted approach to MM treatment has emerged, using monoclonal antibodies (mAbs) to target antigens expressed on the surface of MM cells. MAbs tested to date kill MM cells via the host's immune system and/or by promoting apoptosis, and appear to have generally improved tolerability compared with currently available treatments. Due to their distinct mode of action, mAbs are promising both for patients who have exhausted current regimens, and as part of first-line treatments in newly diagnosed patients. This review examines the recent developments in mAb-based therapy for MM, primarily focused on those agents in ongoing clinical testing.
Collapse
|
33
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|