1
|
Zhou Q, Zhao D, Zarif M, Davidson MB, Minden MD, Tierens A, Yeung YWT, Wei C, Chang H. A real-world analysis of clinical outcomes in AML with myelodysplasia-related changes: a comparison of ICC and WHO-HAEM5 criteria. Blood Adv 2024; 8:1760-1771. [PMID: 38286462 PMCID: PMC10985805 DOI: 10.1182/bloodadvances.2023011869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
ABSTRACT The proposed fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HAEM5) and International Consensus Classification (ICC) provide different definitions of acute myeloid leukemia with myelodysplasia-related genetics (AML-MR). We conducted a retrospective study which included a cohort of 432 patients, with 354 patients fulfilling WHO-HAEM5 criteria for WHO-AML-MR or 276 patients fulfilling ICC criteria for ICC-AML-MR by gene mutation or cytogenetics (ICC-AML-MR-M/CG). The clinicopathological features were largely similar, irrespective of the classification used, except for higher rates of complex karyotype, monosomy 17, TP53 mutations, and fewer RUNX1 mutations in the WHO-AML-MR group. TP53 mutations were associated with distinct clinicopathological features and dismal outcomes (hazard ratio [HR], 2.98; P < .001). ICC-AML-MR-M/CG group had superior outcome compared with the WHO-AML-MR group (HR, 0.80, P = .032), largely in part due to defining TP53 mutated AML as a standalone entity. In the intensively-treated group, WHO-AML-MR had significantly worse outcomes than AML by differentiation (HR, 1.97; P = .024). Based on ICC criteria, ICC-AML-MR-M/CG had more inferior outcomes compared to AML not otherwise specified (HR, 2.11; P = .048 and HR, 2.55; P = .028; respectively). Furthermore, changing the order of genetic abnormalities defining AML-MR (ie, by gene mutations or cytogenetics) did not significantly affect clinical outcomes. ICC-AML-MR-M/CG showed similar outcomes regardless of the order of assignment. We propose to harmonize the 2 classifications by excluding TP53 mutations from WHO-HAEM5 defined AML-MR group and combining AML-MR defined by gene mutations and cytogenetics to form a unified group.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marta B. Davidson
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark D. Minden
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anne Tierens
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Yu Wing Tony Yeung
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Cuihong Wei
- Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Huang S, Chen P, Wang L, Xu L, Wang N, Li F, Dou L, Liu D. Next-generation sequencing reveals relapse and leukemia-free survival risks in newly diagnosed acute myeloid leukemia treated with CAG regimen combined with decitabine. CANCER PATHOGENESIS AND THERAPY 2024; 2:112-120. [PMID: 38601484 PMCID: PMC11002746 DOI: 10.1016/j.cpt.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 04/12/2024]
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is associated with several biomarkers. Decitabine, a deoxyribonucleic acid (DNA) methyltransferase (DNMT) inhibitor, combined with cytarabine, aclarubicin hydrochloride, and granulocyte colony-stimulating factor (DCAG), has been used in patients newly diagnosed with AML. This regimen has been especially used in older and fragile patients who are immunocompromised or have co-morbidities, as well as those with specific gene mutations. However, the integration of molecular risk stratification and treatment guidance for the DCAG regimen has not been well defined. Therefore, this study aimed to investigate the genetic mutations associated with AML and establish appropriate treatment strategies for patients newly diagnosed with AML. Methods This study analyzed the clinical data and genetic mutations based on next-generation sequencing (NGS) in 124 newly diagnosed patients with AML who received the DCAG regimen at the People's Liberation Army (PLA) General Hospital from January 2008 to August 2020. Factors associated with the cumulative incidence of relapse (CIR) and leukemia-free survival (LFS) in patients newly diagnosed with AML were analyzed. Results The most adverse prognosis of DCAG-treated patients was observed in those with FLT3-ITD, KIT, PTPN11, GATA2, or IDH1 mutations during univariable analysis, whereas PTPN11 mutation was solely significant in multivariable analysis, with an increased likelihood of CIR (P = 0.001) and reduced LFS duration (P = 0.077). Hyperleukocytosis was maintained as an independent risk factor for increased CIR risk (P = 0.044) and decreased LFS duration (P = 0.042) in multivariable analysis. In this study, we validated the risk classification of patients with AML receiving an epigenetic modifier-based induction regimen across a broad age range. Conclusion NGS demonstrated a dismal overall outcome in patients with the rare PTPN11 mutations, indicating the need for new therapies that target this high-risk subtype of AML. These results offer a potential molecular stratification and treatment guidance for patients with AML.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Chen
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Lu Wang
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Lingmin Xu
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Nan Wang
- Chinese PLA Medical School, Beijing 100853, China
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Fei Li
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Liping Dou
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Daihong Liu
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Wan CL, Huang YH, Huang SM, Xu YL, Tan KW, Yan-Qiu, Shen XD, Ge SS, Cao HY, Li YY, Liu SB, Qi JJ, Dai HP, Xue SL. Investigations of the prognostic value of RUNX1 mutation in acute myeloid leukemia patients: Data from a real-world study. Leuk Res 2024; 139:107483. [PMID: 38493755 DOI: 10.1016/j.leukres.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
RUNX1 is one of the recurrent mutated genes in newly diagnosed acute myeloid leukemia (AML). Although historically recognized as a provisional distinct entity, the AML subtype with RUNX1 mutations (AML-RUNX1mut) was eliminated from the 2022 WHO classification system. To gain more insight into the characteristics of AML-RUNX1mut, we retrospectively analyzed 1065 newly diagnosed adult AML patients from the First Affiliated Hospital of Soochow University between January 2017 and December 2021. RUNX1 mutations were identified in 112 patients (10.5%). The presence of RUNX1 mutation (RUNX1mut) conferred a lower composite complete remission (CRc) rate (40.2% vs. 58.4%, P<0.001), but no significant difference was observed in the 5-year overall survival (OS) rate (50.2% vs. 53.9%; HR=1.293; P=0.115) and event-free survival (EFS) rate (51.5% vs. 49.4%; HR=1.487, P=0.089), even within the same risk stratification. Multivariate analysis showed that RUNX1mut was not an independent prognostic factor for OS (HR=1.352, P=0.068) or EFS (HR=1.129, P=0.513). When patients were stratified according to induction regimen, RUNX1mut was an unfavorable factor for CRc both on univariate and multivariate analysis in patients receiving conventional chemotherapy, and higher risk stratification predicted worse OS. In those who received venetoclax plus hypomethylating agents, RUNX1mut was not predictive of CRc and comparable OS and EFS were seen between intermediate-risk and adverse-risk groups. The results of this study revealed that the impact of RUNX1mut is limited. Its prognostic value depended more on treatment and co-occurrent abnormalities. VEN-HMA may abrogate the prognostic impact of RUNX1, which merits a larger prospective cohort to illustrate.
Collapse
Affiliation(s)
- Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Si-Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan-Li Xu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai-Wen Tan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan-Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiang-Dong Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan-Yan Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Jia-Jun Qi
- Education Training Center, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Figueroa M, Ma H, Alfayez M, Morales-Mantilla DE, Wang F, Lu Y, Estecio MR, King KY, Kleinerman E, Moghaddam SJ, Daver N, Andreeff M, Konopleva M, DiNardo C, Chandra J. Cigarette smoke exposure accelerates AML progression in FLT3-ITD models. Blood Adv 2023; 7:6624-6629. [PMID: 37486624 PMCID: PMC10628807 DOI: 10.1182/bloodadvances.2023010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Mary Figueroa
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huaxian Ma
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Fei Wang
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marcos R. Estecio
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katherine Y. King
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Eugenie Kleinerman
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joya Chandra
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Eriksson A, Engvall M, Mathot L, Österroos A, Rippin M, Cavelier L, Ladenvall C, Baliakas P. Somatic Exonic Deletions in RUNX1 Constitutes a Novel Recurrent Genomic Abnormality in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:2826-2834. [PMID: 37022349 DOI: 10.1158/1078-0432.ccr-23-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML. EXPERIMENTAL DESIGN Sixty patients with well-characterized AML were analyzed with multiplex ligation-dependent probe amplification (n = 60), microarray (n = 11), and/or whole-genome sequencing (n = 8). RESULTS In total, 25 (42% of the cohort) RUNX1-aberrant patients (defined by the presence of classical mutations and/or exonic deletions) were identified. Sixteen patients (27%) carried only exonic deletions, 5 (8%) carried classical mutations, and 4 (7%) carried both exonic deletions and mutations. No significant difference was observed between patients with classical RUNX1 mutations and RUNX1 exonic deletions in median overall survival (OS, 53.1 vs. 38.8 months, respectively, P = 0.63). When applying the European Leukemia Net (ELN) classification including the RUNX1-aberrant group, 20% of the patients initially stratified as intermediate-risk (5% of the whole cohort) were reassigned to the high-risk group, which improved the performance of ELN classification regarding OS between intermediate- and high-risk groups (18.9 vs. 9.6 months, P = 0.09). CONCLUSIONS Somatic RUNX1 exonic deletions constitute a novel recurrent aberration in AML. Our findings have important clinical implications regarding AML classification, risk stratification, and treatment decision. Moreover, they argue in favor of further investigating such genomic aberrations not only in RUNX1 but also in other genes implicated in cancer biology and management. See related commentary by Chakraborty and Stengel, p. 2742.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Rippin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
6
|
Huang S, Chen P, Wang L, Xu L, Jia M, Chen J, Wang N, Li F, Liu L, Qin J, Wang C, Cao S, Dou L, Liu D. Next-generation sequencing revealed factors associated with cumulative incidence of relapse and leukemia-free survival in patients with newly diagnosed acute myeloid leukemia. CANCER PATHOGENESIS AND THERAPY 2023; 1:25-32. [PMID: 38328603 PMCID: PMC10846322 DOI: 10.1016/j.cpt.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 02/09/2024]
Abstract
BACKGROUND Several prognostic biomarkers have been validated for acute myeloid leukemia (AML), a heterogeneous hematopoietic malignancy. However, the factors associated with the cumulative incidence of relapse (CIR) and leukemia-free survival (LFS) in real-world patients with AML have not been well defined. METHODS This study examined clinical and mutational data of 246 patients with newly diagnosed AML who received the traditional "3 + 7" regimen in PLA General Hospital from January 2008 to August 2020. Factors associated with CIR and LFS in patients newly diagnosed with AML were analyzed using next-generation sequencing. RESULTS Additional sex combs-like 1 (ASXL1) and Serine/arginine-rich splicing factor 2 (SRSF2) mutations were found to be associated with an increased risk of CIR and a reduced LFS in univariate analysis, while only SRSF2 mutations were associated with these factors in the multivariate analysis. Hyperleukocytosis maintained an independent effect on LFS in the multivariate analysis. Hematopoietic stem cell transplantation conferred a significant prognostic benefit on both CIR and LFS in our cohort. Furthermore, we validated the risk classification of patients with AML receiving traditional induction regimens across a broad age range. Based on next-generation sequencing results, we concluded that SRSF2 mutations were predictive of an increased risk of relapse, inferior LFS rates, and non-relapse mortality in patients with newly diagnosed AML. CONCLUSION These findings indicate that patients with SRSF2 mutations might not benefit from the conventional "3 + 7" regimen. Our results may help in developing molecular stratification strategies and could guide treatment decisions for patients with newly diagnosed AML.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Chen
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Lu Wang
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Lingmin Xu
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Mingyu Jia
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Chen
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Nan Wang
- Chinese PLA Medical School, Beijing 100853, China
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Fei Li
- Department of Hematology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd., Tianjin 301700, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Tianjin 301700, China
| | | | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Tianjin 301700, China
| | - Liping Dou
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Daihong Liu
- Department of Hematology, Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Small S, Oh TS, Platanias LC. Role of Biomarkers in the Management of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:14543. [PMID: 36498870 PMCID: PMC9741257 DOI: 10.3390/ijms232314543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite many recent advances in treatment options, acute myeloid leukemia (AML) still has a high mortality rate. One important issue in optimizing outcomes for AML patients lies in the limited ability to predict response to specific therapies, duration of response, and likelihood of relapse. With evolving genetic characterization and improving molecular definitions, the ability to predict outcomes and long-term prognosis is slowly improving. The majority of the currently used prognostic assessments relate to molecular and chromosomal abnormalities, as well as response to initial therapy. These risk categories, however, do not account for a large amount of the variability in AML. Laboratory techniques now utilized in the clinic extend beyond bone marrow morphology and single gene sequencing, to next-generation sequencing of large gene panels and multiparameter flow cytometry, among others. Other technologic advances, such as gene expression analysis, have yet to demonstrate enough predictive and prognostic power to be employed in clinical medicine outside of clinical trials, but may be incorporated into the clinic in the future. In this review, we discuss the utility of current biomarkers, and present novel biomarker techniques and strategies that are in development for AML patients. Measurable residual disease (MRD) is a powerful prognostic tool that is increasingly being incorporated into clinical practice, and there are some exciting emerging biomarker technologies that have the potential to improve prognostic power in AML. As AML continues to be a difficult-to-treat disease with poor outcomes in many subtypes, advances in biomarkers that lead to better treatment decisions are greatly needed.
Collapse
Affiliation(s)
- Sara Small
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy S. Oh
- Division of Hospital Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Toya T, Harada H, Harada Y, Doki N. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation. Front Oncol 2022; 12:997530. [PMID: 36185231 PMCID: PMC9524153 DOI: 10.3389/fonc.2022.997530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary myeloid malignancies, especially in adults or elderly persons, had been considered quite rare before the next-generation sequencing era; however, increased usage of clinical sequencing has revealed much higher prevalence of inherited myeloid malignancies. DDX41 and various pathogenic germline mutations have newly been recognized as the cause of adult-onset familial leukemia and myeloid malignancies. Although germline predisposition to myeloid neoplasms had been categorized as a provisional entity in the World Health Organization classification of hematopoietic neoplasms in 2016, methodology for the identification of hereditary myeloid malignancies has not been fully established yet. In addition, many unresolved problems, such as epidemiology, the exact pathogenic mechanisms, and ideal treatment strategy, including indications of allogeneic hematopoietic stem cell transplantation, still remain. Related donor selection for stem cell transplant is a particularly sensitive issue due to the possibility of germline mutation of the candidate relatives and the risk of donor cell leukemia after transplantation. Here, we reviewed the current evidence regarding epidemiology, diagnosis, mechanisms of progression, and transplantation strategy for hereditary myeloid malignancies.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers (Basel) 2022; 14:cancers14174132. [PMID: 36077669 PMCID: PMC9454802 DOI: 10.3390/cancers14174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Differential diagnosis between Blastic pDC Neoplasm (BPDCN) and Acute Myeloid Leukemia with pDC expansion (pDC-AML) is particularly challenging, and genomic features can help in diagnosis. This review aims at clarifying recent data on genomics features because the past five years have generated a large amount of original data regarding pDC neoplasms. The genetic landscape of BPDCN is now well-defined, with important updates concerning MYC/MYC rearrangements, but also epigenetic defects and novel concepts in oncogenic and immune pathways. Concerning pDC-AML, they now appear to exhibit an original mutation landscape, especially with RUNX1 mutations, which is of interest for diagnostic criteria and for therapeutic purposes. We highlight here these two different profiles, which contribute to differential diagnosis between BPDCN and pDC-AML. This point is particularly important for the study of different therapeutic strategies between BPDCN and AML. Abstract Plasmacytoid Dendritic Cells (pDC) are type I interferon (IFN)-producing cells that play a key role in immune responses. Two major types of neoplastic counterparts for pDC are now discriminated: Blastic pDC Neoplasm (BPDCN) and Mature pDC Proliferation (MPDCP), associated with myeloid neoplasm. Two types of MPDCP are now better described: Chronic MyeloMonocytic Leukemia with pDC expansion (pDC-CMML) and Acute Myeloid Leukemia with pDC expansion (pDC-AML). Differential diagnosis between pDC-AML and BPDCN is particularly challenging, and genomic features can help for diagnosis. Here, we systematically review the cytogenetic, molecular, and transcriptional characteristics of BPDCN and pDC-AML. BPDCN are characterized by frequent complex karyotypes with recurrent MYB/MYC rearrangements as well as recurrent deletions involving ETV6, IKZF1, RB1, and TP53 loci. Epigenetic and splicing pathways are also particularly mutated, while original processes are dysregulated, such as NF-kB, TCF4, BCL2, and IFN pathways; neutrophil-specific receptors; and cholinergic signaling. In contrast, cytogenetic abnormalities are limited in pDC-AML and are quite similar to other AML. Interestingly, RUNX1 is the most frequently mutated gene (70% of cases). These typical genomic features are of potential interest for diagnosis, and also from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, F-25000 Besancon, France
- Laboratoire d’Hématologie et d’Immunologie Régional, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besancon, France
- Correspondence:
| | - Mary Callanan
- INSERM 1231 and 1209, University of Bourgogne-Franche Comté, F-21000 Dijon, France
- Service d’Oncologie Génétique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Christine Lefebvre
- INSERM 1209 and CNRS UMR 5309, Université Grenoble-Alpes, F-38000 Grenoble, France
- Laboratoire de Génétique des hémopathies, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
10
|
Tazi Y, Arango-Ossa JE, Zhou Y, Bernard E, Thomas I, Gilkes A, Freeman S, Pradat Y, Johnson SJ, Hills R, Dillon R, Levine MF, Leongamornlert D, Butler A, Ganser A, Bullinger L, Döhner K, Ottmann O, Adams R, Döhner H, Campbell PJ, Burnett AK, Dennis M, Russell NH, Devlin SM, Huntly BJP, Papaemmanuil E. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun 2022; 13:4622. [PMID: 35941135 PMCID: PMC9360033 DOI: 10.1038/s41467-022-32103-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 02/02/2023] Open
Abstract
Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool.
Collapse
Grants
- MC_PC_17230 Medical Research Council
- BRC-1215-20014 Department of Health
- 203151/Z/16/Z Wellcome Trust
- MR-R009708-1 Medical Research Council
- C18680/A25508 Cancer Research UK
- 29806 Cancer Research UK
- 25350 Cancer Research UK
- P30 CA008748 NCI NIH HHS
- Wellcome Trust
- 25508 Cancer Research UK
- 25643 Cancer Research UK
- MR/R009708/1 Medical Research Council
- C49940/A25117 Cancer Research UK
- 205254/Z/16/Z Wellcome Trust
- E.P. is a Josie Robertson Investigator and is supported by the European Hematology Association, American Society of Hematology, Gabrielle’s Angels Foundation, V Foundation and The Geoffrey Beene Foundation and is a Damon Runyon Rachleff Innovator fellow. Work in the BJPH lab is funded by Cancer Research UK (C18680/A25508), the European Research Council (647685), MRC (MR-R009708-1), the Kay Kendall Leukaemia Fund (KKL1243), the Wellcome Trust (205254/Z/16/Z) and the Cancer Research UK Cambridge Major Centre (C49940/A25117). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014), and was funded in part, by the Wellcome Trust who supported the Wellcome - MRC Cambridge Stem Cell Institute (203151/Z/16/Z). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. L.B., H.D. and B.J.P.H. are supported by the HARMONY Alliance (IMI Project No. 116026; https://www.harmony-alliance.eu/). The UK-NCRI AML working group trials were supported with research grants from the Medical Research Council (MRC), Cancer Research UK (CRUK), Blood Cancer UK and Cardiff University. We would like to thank all patients and investigators for their participation in the trials and the study.
Collapse
Affiliation(s)
- Yanis Tazi
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Computational Biology and Medicine PhD Program, Weill Cornell Medicine of Cornell University and Rockefeller University, New York, NY, USA
- The Rockefeller University, New York, NY, USA
| | - Juan E Arango-Ossa
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yangyu Zhou
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Thomas
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Amanda Gilkes
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yoann Pradat
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean J Johnson
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, UK
| | - Max F Levine
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Adam Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Oliver Ottmann
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard Adams
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Alan K Burnett
- Visiting Professor University of Glasgow, formerly Cardiff University, Cardiff, UK
| | | | - Nigel H Russell
- Department of Haematology, Nottingham University Hospital, Nottingham, UK
| | - Sean M Devlin
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian J P Huntly
- Department of Haematology and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Wang LL, Guan J, Cheng P, Zhang T, Cheng H, Zou L. [Allogeneic hematopoietic stem cell transplantation for Familial platelet disorder with a propensity for acute myeloid malignancies with Runx1 germline mutations: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:517-520. [PMID: 35968597 PMCID: PMC9800216 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/24/2022]
Affiliation(s)
- L L Wang
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - J Guan
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - P Cheng
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - T Zhang
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - H Cheng
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - L Zou
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| |
Collapse
|
12
|
Illango J, Sreekantan Nair A, Gor R, Wijeratne Fernando R, Malik M, Siddiqui NA, Hamid P. A Systematic Review of the Role of Runt-Related Transcription Factor 1 (RUNX1) in the Pathogenesis of Hematological Malignancies in Patients With Inherited Bone Marrow Failure Syndromes. Cureus 2022; 14:e25372. [PMID: 35765406 PMCID: PMC9233622 DOI: 10.7759/cureus.25372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Somatic runt-related transcription factor 1 (RUNX1) mutations are the most common mutations in various hematological malignancies, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Mono-allelic RUNX1 mutations in germline cells may cause familial platelet disorder (FPD), an inherited bone marrow failure syndrome (IBMFS) associated with an increased lifetime risk of AML. It is suspected that additional RUNX1 mutations may play a role in the pathogenesis of hematological malignancies in IBMFS. This review aims to study the role of RUNX1 mutations in the pathogenesis of hematological malignancies in patients with IBMFS. A PubMed database search was conducted using the following medical subject heading (MeSH) terms: "inherited bone marrow failure syndromes," "hematological neoplasms," "gene expression regulation, leukemic," "RUNX1 protein, human," "RUNX1 protein, mouse," and "Neutropenia, Severe Congenital, Autosomal recessive." Three studies published in 2020 were identified as meeting our inclusion and exclusion criteria. Leukemic progression in severe congenital neutropenia was used as a disease model to evaluate the clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Studies in mice and genetically reprogrammed or induced pluripotent stem cells (iPSCs) have shown that isolated RUNX1 mutations are weakly leukemogenic and only initiate hyperproduction of immature hematopoietic cells when in combination with granulocyte colony-stimulating factor 3 receptor (GCSF3R) mutations. Despite this, whole-exome sequencing (WES) performed on leukemogenic transformed cells revealed that all AML cells had an additional mutation in the CXXC finger protein 4 (CXXC4) gene that caused hyperproduction of the ten-eleven translocation (TET2) protein. This protein causes inflammation in cells with RUNX1 mutations. This process is thought to be critical for clonal myeloid malignant transformation (CMMT) of leukemogenic cells. In conclusion, the combinations of GCSF3R and RUNX1 mutations have a prominent effect on myeloid differentiation resulting in the hyperproduction of myeloblasts. In other studies, it has been noted that the mutations in GCSF3R and RUNX1 genes are not sufficient for the full transformation of leukemogenic cells to AML, and an additional clonal mutation in the CXXC4 gene is essential for full transformation to occur. These data have implicitly demonstrated that RUNX1 mutations are critical in the pathogenesis of various hematological malignancies, and further investigations into the role of RUNX1 are paramount for the development of new cancer treatments.
Collapse
Affiliation(s)
- Janan Illango
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Archana Sreekantan Nair
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajvi Gor
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Mushrin Malik
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nabeel A Siddiqui
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
13
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
George TI, Bajel A. Diagnosis of rare subtypes of acute myeloid leukaemia and related neoplasms. Pathology 2021; 53:312-327. [PMID: 33676766 DOI: 10.1016/j.pathol.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The diagnosis of acute myeloid leukaemia and related neoplasms in adults is challenging as this requires the integration of clinical findings, morphology, immunophenotype, cytogenetics, and molecular genetic findings. Lack of familiarity with rare subtypes of acute leukaemia hinders the diagnosis. In this review, we will describe diagnostic findings of several rare acute myeloid leukaemias and related neoplasms that primarily occur in adults including information on presentation, morphology, immunophenotype, genetics, differential diagnosis, and prognosis. Leukaemias discussed include blastic plasmacytoid dendritic cell neoplasm, acute myeloid leukaemia with t(6;9) (p23;q34.1); DEK-NUP214, acute myeloid leukaemia with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM, acute myeloid leukaemia with BCR-ABL1, acute leukaemias of ambiguous lineage, acute myeloid leukaemia with mutated RUNX1, pure erythroid leukaemia, acute panmyelosis with myelofibrosis, and acute basophilic leukaemia. Case studies with morphological features of the nine subtypes of acute myeloid leukaemia and related neoplasms have been included, and additional evidence available since publication of the 2016 World Health Organization Classification has been added to each subtype.
Collapse
Affiliation(s)
- Tracy I George
- University of Utah School of Medicine, Department of Pathology, Salt Lake City, UT, USA.
| | - Ashish Bajel
- Clinical Haematology, Peter MacCallum Cancer Centre, The Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
15
|
O'Brien G, Zyla J, Manola KN, Pagoni MN, Polanska J, Badie C. Identification of two novel mutations in human acute myeloid leukemia cases. Leuk Lymphoma 2020; 62:454-461. [PMID: 33161783 DOI: 10.1080/10428194.2020.1832664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer that progresses rapidly with a poor prognosis. Cytogenetic analysis provides the most accurate determination of diagnosis and prognosis however, about 42-48% of AML patients have a cytogenetically normal karyotype. Genetic analysis can provide further information and the identification of new mutations could result in improved risk stratification, prognosis and better understanding of the mechanisms of AML leukaemogenesis. In this study, we analyzed genetic alterations in 16 human AML cases by Haloplex sequencing with confirmation of two previously unreported mutations in the genes DNMT3A and RUNX1 by Sanger sequencing or pyrosequencing. The two novel mutations consist of two frameshift mutations identified in two different AML patients and reported as deleterious by bioinformatic analysis. These mutations confirm the exclusion and co-occurrence of specific gene mutation patterns in AML and may provide further information for patient diagnosis and prognosis.
Collapse
Affiliation(s)
- Gráinne O'Brien
- Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, UK
| | - Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Kalliopi N Manola
- Department of Biodiagnostic Sciences and Technologies, INRASTES, National Centre for Research 'Demokritos', Athens, Greece
| | - Maria N Pagoni
- Hematology-Lymphomas Department - BMT Unit, Evangelismos Hospital, Athens, Greece
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, UK
| |
Collapse
|
16
|
Huh SJ, Oh SY, Lee S, Lee JH, Kim SH, Pak MK, Kim HJ. Mutational analysis of extranodal marginal zone lymphoma using next generation sequencing. Oncol Lett 2020; 20:205. [PMID: 32963611 PMCID: PMC7491050 DOI: 10.3892/ol.2020.12068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Extranodal marginal zone lymphoma is a type of low-grade B-cell lymphoma that can be classified as a mucosal-associated lymphoid tissue (MALT) lymphoma. Recently, second-generation or next-generation sequencing (NGS), which allows simultaneous sequencing of hundreds to billions of DNA strands, has been a focus of attention and is rapidly being adopted in various fields. In the present study, paraffin-embedded tissue samples of gastric MALT lymphoma (n=1) and small intestine MALT lymphoma (n=4) were selected, and DNA was extracted from the tissue samples. After performing quality control, NGS was performed using HemaSCAN™, a custom panel of 426 genes, including essential blood cancer genes. NGS revealed single nucleotide variations (SNVs), short insertions and deletions (InDels) and copy number variations (CNVs). These genomic variants were reported as annotated, known or novel variants. An annotated variant, an erb-b2 receptor tyrosine kinase 2 gene amplification, was observed in one patient. Known and novel variants, including SNVs of SET binding protein 6 (SETBP6), Runt-related transcription factor 1 and Kelch-like ECH-associated protein 1 genes, InDel of the marker of proliferation Ki-67 gene, and CNVs of the zinc finger protein 703 and NOTCH1 genes, were observed in ≥2 patients. Additionally, InDels with frameshift mutations were identified in the B-cell lymphoma/leukemia 10, DEAD-box helicase 3 X-linked, forkhead box O3 and mucin 2, oligomeric mucus/gel-forming genes in one patient. Since few NGS studies have been performed on MALT lymphoma, the current results were unable to determine if the different mutations that were identified are ‘actionable’ (that is, potentially responsive to a targeted therapy) Further studies are required to determine the associations between genetic mutations and the development of MALT lymphoma.
Collapse
Affiliation(s)
- Seok Jae Huh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Ji Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Min Kyung Pak
- Department of Pathology, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Hyo-Jin Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
17
|
|
18
|
Yokota A, Huo L, Lan F, Wu J, Huang G. The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies. Mol Cells 2020; 43:145-152. [PMID: 31964134 PMCID: PMC7057846 DOI: 10.14348/molcells.2019.0252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.
Collapse
Affiliation(s)
- Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Li Huo
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 15006, China
| | - Fengli Lan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 40022, China
| | - Jianqiang Wu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Nguyen L, Zhang X, Roberts E, Yun S, McGraw K, Abraham I, Song J, Braswell D, Qin D, Sallman DA, Lancet JE, List AF, Moscinski LC, Padron E, Zhang L. Comparison of mutational profiles and clinical outcomes in patients with acute myeloid leukemia with mutated RUNX1 versus acute myeloid leukemia with myelodysplasia-related changes with mutated RUNX1. Leuk Lymphoma 2020; 61:1395-1405. [PMID: 32091281 DOI: 10.1080/10428194.2020.1723016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies comparing the prognostic role of RUNX1 mutations (RUNX1mut) in acute myeloid leukemia (AML) and acute myeloid leukemia-with myelodysplasia-related changes (AML-MRC) are limited. Our study examines the genetic profile of 118 RUNX1mut AML patients including 57 AML with RUNX1mut and 61 AML-MRC with RUNX1mut and 100 AML, NOS patients with wild type RUNX1 (RUNX1wt). Results revealed that AML-MRC patients with RUNX1mut had shorter median overall survival (OS) (11 ± 3.3 months) when compared to AML with RUNX1mut (19 ± 7.1 months) and AML, NOS with RUNX1wt (not reached) (p = .001). The most common concurrent mutations observed in AML-MRC with RUNX1mut patients were DNMT3A, SRSF2, ASXL1, and IDH2 while in AML with RUNX1mut patients were ASXL1, SRSF2, TET2, IDH2, and DNMT3A. ASXL1 and TET2 mutations appeared to adversely affect OS in AML-MRC, but not in AML with RUNX1mut. Concurrent RUNX1/DNMT3A mutations, in contrast had negative impact on OS in AML with RUNX1mut, but not in AML-MRC with RUNX1mut.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, James A. Haley Veterans' Hospital, Tampa, FL, USA.,Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evans Roberts
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathy McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Diana Braswell
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Dahui Qin
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lynn C Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
20
|
DiFilippo EC, Coltro G, Carr RM, Mangaonkar AA, Binder M, Khan SP, Rodriguez V, Gangat N, Wolanskyj A, Pruthi RK, Chen D, He R, Viswanatha DS, Lasho T, Finke C, Tefferi A, Pardanani A, Patnaik MM. Spectrum of abnormalities and clonal transformation in germline RUNX1 familial platelet disorder and a genomic comparative analysis with somatic RUNX1 mutations in MDS/MPN overlap neoplasms. Leukemia 2020; 34:2519-2524. [PMID: 32060405 DOI: 10.1038/s41375-020-0752-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Giacomo Coltro
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Carr
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Moritz Binder
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shakila P Khan
- Division of Pediatric Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Wolanskyj
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv K Pruthi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dong Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy Finke
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Pediatric Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Abstract
Introduction: Trisomy 8 is one of the most common cytogenetic alterations in acute myeloid leukemia (AML), with a frequency between 10% and 15%.Areas covered: The authors summarize the latest research regarding biological, translational and clinical aspects of trisomy 8 in AML.Expert opinion: Trisomy 8 can be found together with other karyotypes, although it also occurs as a sole aberration. The last decade's research has brought attention to molecular genetic alterations as strong contributors of leukemogenesis. AML with trisomy 8 seems to be associated with mutations in DNA methylation genes, spliceosome complex genes, and myeloid transcription factor genes, and these alterations probably have stronger implication for leukemic pathogenesis, treatment and hence prognosis, than the existence of trisomy 8 itself. Especially mutations in the RUNX1 and ASXL1 genes occur in high frequencies, and search for such mutations should be mandatory part of the diagnostic workup. AML with trisomy 8 is classified as intermediate-risk AML after recent European Leukemia Net (ELN) classification, and hence allogenic hematopoietic stem cell transplantation (Allo-HSCT) should be consider as consolidation therapy for this patient group.Trisomy 8 is frequently occurring in AML, although future molecular genetic workup should be performed, to optimize the diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Manur R, Sung PJ, Loren AW, Ritchie EK, Frank D, Bagg A, Geyer JT, Bogusz AM. Leukemic lineage switch in a t(8;22)(p11.2;q11.2)/ BCR-FGFR1-rearranged myeloid/lymphoid neoplasm with RUNX1 mutation - diagnostic pitfalls and clinical management including FGFR1 inhibitor pemigatinib. Leuk Lymphoma 2019; 61:450-454. [PMID: 31524018 DOI: 10.1080/10428194.2019.1660975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rashmi Manur
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Pamela J Sung
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alison W Loren
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen K Ritchie
- Department of Medicine, Leukemia Program, Weill Cornell Medicine, New York, NY, USA
| | - Dale Frank
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Julia T Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Molecular mechanisms for stemness maintenance of acute myeloid leukemia stem cells. BLOOD SCIENCE 2019; 1:77-83. [PMID: 35402786 PMCID: PMC8975089 DOI: 10.1097/bs9.0000000000000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022] Open
Abstract
Human acute myeloid leukemia (AML) is a fatal hematologic malignancy characterized with accumulation of myeloid blasts and differentiation arrest. The development of AML is associated with a serial of genetic and epigenetic alterations mainly occurred in hematopoietic stem and progenitor cells (HSPCs), which change HSPC state at the molecular and cellular levels and transform them into leukemia stem cells (LSCs). LSCs play critical roles in leukemia initiation, progression, and relapse, and need to be eradicated to achieve a cure in clinic. Key to successfully targeting LSCs is to fully understand the unique cellular and molecular mechanisms for maintaining their stemness. Here, we discuss LSCs in AML with a focus on identification of unique biological features of these stem cells to decipher the molecular mechanisms of LSC maintenance.
Collapse
|
24
|
Chen C, Wang P, Mo W, Zhang Y, Zhou W, Deng T, Zhou M, Chen X, Wang S, Wang C. lncRNA-CCDC26, as a novel biomarker, predicts prognosis in acute myeloid leukemia. Oncol Lett 2019; 18:2203-2211. [PMID: 31452721 PMCID: PMC6676650 DOI: 10.3892/ol.2019.10591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to examine the expression and clinical significance of long non-coding RNA (lncRNA)-CCDC26 in patients with acute myeloid leukemia (AML), and to investigate the potential functions of CCDC26. The Gene Expression Omnibus database and reverse transcription-quantitative polymerase chain reaction analysis were used to detect the expression levels of CCDC26 in patients with AML and healthy volunteers. Clinical data for 93 patients with AML were collected to analyze the clinical significance of CCDC26. Weighted gene co-expression network analysis (WGCNA), a protein-protein interaction (PPI) network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to examine the functions of CCDC26. The expression levels of CCDC26 in the initially diagnosed and relapsed patients with AML were significantly upregulated compared with the control group. The upregulated expression level of CCDC26 in patients with AML was significantly associated with age, anemia, risk stratification and remission. Furthermore, patients with a high CCDC26 expression level had a poorer overall survival (P=0.0105). In addition, the area under the curve (AUC)1year and AUC2year of CCDC26 for overall survival were 0.722 and 0.686, respectively. WGCNA, PPI network and KEGG pathway analysis revealed that CCDC26 was involved in the regulation of a number of biological processes. lncRNA-CCDC26 may serve as a novel biomarker for monitoring the progression and predicting the clinical outcome of AML.
Collapse
Affiliation(s)
- Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
25
|
Xing S, Wang B, Gao Y, Li M, Wang T, Sun Y, Shen Y, Chao H. Cytogenetics and associated mutation profile in patients with acute monocytic leukemia. Int J Lab Hematol 2019; 41:485-492. [PMID: 31099482 DOI: 10.1111/ijlh.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shanshan Xing
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Biao Wang
- Department of Hematology The Third Affiliated Hospital of Soochow University Changzhou China
| | - Yu Gao
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Mengjie Li
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Tong Wang
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Yiwu Sun
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| | - Yimin Shen
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Hongying Chao
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| |
Collapse
|
26
|
Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019; 2019:2141475. [PMID: 31198425 PMCID: PMC6526542 DOI: 10.1155/2019/2141475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.
Collapse
|
27
|
Hartmann L, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. Myeloid malignancies with isolated 7q deletion can be further characterized by their accompanying molecular mutations. Genes Chromosomes Cancer 2019; 58:698-704. [PMID: 30994218 DOI: 10.1002/gcc.22761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
Deletions in the long arm of chromosome 7 (del(7q)) are recurrent cytogenetic aberrations in myeloid neoplasms. They occur either isolated or as part of a complex karyotype and are associated with unfavorable prognosis in certain disease entities. We performed detailed cytogenetic analysis, molecular analysis, and array comparative genomic hybridization in a cohort of 81 patients with a variety of myeloid malignancies and del(7q) as sole chromosomal alteration. In 70% (57/81) of patients, we identified a commonly deleted region (size: 18 Mb) involving the genomic region 101 912.442 (7q22.1)-119 608.824 (7q31.31). Furthermore, in 80 patients, we analyzed 17 genes commonly mutated in myeloid neoplasms and identified high mutation frequencies in ASXL1 34% (27/80), TET2 33% (26/80), RUNX1 25% (20/80), DNMT3A 25% (20/80), while TP53 was rarely affected (5%, 4/80). ASXL1 and TET2 showed similar mutation frequencies across all analyzed entities while RUNX1, CBL, and JAK2 were specifically mutated in patients with acute myeloid leukemia (AML), chronic myelomonocytic leukemia, and myeloproliferative neoplasms, respectively. We detected a significantly higher frequency of RUNX1 (42% vs 13%, P = .0001) and ASXL1 (32% vs 14%, P = .008) mutations in AML patients with del(7q) compared to other AML patients in the Medical Research Council unfavorable risk group (n = 464), indicating a cooperative leukemogenic potential. Our data provide further insight into the pathomechanism of this cytogenetic subgroup.
Collapse
Affiliation(s)
- Luise Hartmann
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| |
Collapse
|
28
|
Genetic alterations crossing the borders of distinct hematopoetic lineages and solid tumors: Diagnostic challenges in the era of high-throughput sequencing in hemato-oncology. Crit Rev Oncol Hematol 2018; 126:64-79. [DOI: 10.1016/j.critrevonc.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/03/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
|
29
|
Lian X, Lin YM, Kozono S, Herbert MK, Li X, Yuan X, Guo J, Guo Y, Tang M, Lin J, Huang Y, Wang B, Qiu C, Tsai CY, Xie J, Gao ZJ, Wu Y, Liu H, Zhou XZ, Lu KP, Chen Y. Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways. J Hematol Oncol 2018; 11:73. [PMID: 29848341 PMCID: PMC5977460 DOI: 10.1186/s13045-018-0611-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Background The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. Methods The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. Results First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. Conclusions We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML. Electronic supplementary material The online version of this article (10.1186/s13045-018-0611-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolan Lian
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Yu-Min Lin
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shingo Kozono
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaohong Yuan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jiangrui Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yafei Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Min Tang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jia Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yiping Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Bixin Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jane Xie
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ziang Jeff Gao
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
30
|
Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, Pabst T, Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev 2018; 32:508-519. [PMID: 29728319 DOI: 10.1016/j.blre.2018.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Diagnostics of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) have recently been experiencing extensive modifications regarding the incorporation of next-generation sequencing (NGS) strategies into established diagnostic algorithms, classification and risk stratification systems, and minimal residual disease (MRD) detection. Considering the increasing arsenal of targeted therapies (e.g. FLT3 or IDH1/IDH2 inhibitors) for AML, timely and comprehensive molecular mutation screening has arrived in daily practice. Next-generation flow strategies allow for immunophenotypic minimal residual disease (MRD) monitoring with very high sensitivity. At the same time, standard diagnostic tools such as cytomorphology or conventional cytogenetics remain cornerstones for the diagnostic workup of myeloid malignancies. Herein, we summarize the most recent advances and new trends for the diagnostics of AML and MDS, discuss the difficulties, which accompany the integration of these new methods and their results into daily routine, and aim to define the role hemato-oncologists may play in this new diagnostic era.
Collapse
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Kohlmann
- Precision Medicine and Genomics, Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, Inselspital, Bern, Bern University Hospital, University of Bern, Switzerland
| | - Martin Fiedler
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
31
|
Saygin C, Hirsch C, Przychodzen B, Sekeres MA, Hamilton BK, Kalaycio M, Carraway HE, Gerds AT, Mukherjee S, Nazha A, Sobecks R, Goebel C, Abounader D, Maciejewski JP, Advani AS. Mutations in DNMT3A, U2AF1, and EZH2 identify intermediate-risk acute myeloid leukemia patients with poor outcome after CR1. Blood Cancer J 2018; 8:4. [PMID: 29321554 PMCID: PMC5802549 DOI: 10.1038/s41408-017-0040-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022] Open
Abstract
Intermediate-risk acute myeloid leukemia (IR-AML) is a clinically heterogeneous disease, for which optimal post-remission therapy is debated. The utility of next-generation sequencing information in decision making for IR-AML has yet to be elucidated. We retrospectively studied 100 IR-AML patients, defined by European Leukemia Net classification, who had mutational information at diagnosis, received intensive chemotherapy and achieved complete remission (CR) at Cleveland Clinic (CC). The Cancer Genome Atlas (TCGA) data were used for validation. In the CC cohort, median age was 58.5 years, 64% had normal cytogenetics, and 31% required >1 induction cycles to achieve CR1. In univariable analysis, patients carrying mutations in DNMT3A, U2AF1, and EZH2 had worse overall and relapse-free survival. After adjusting for other variables, the presence of these mutations maintained an independent effect on survival in both CC and TCGA cohorts. Patients who did not have the mutations and underwent hematopoietic cell transplant (HCT) had the best outcomes. HCT improved outcomes for patients who had these mutations. RUNX1 or ASXL1 mutations did not predict survival, and performance of HCT did not confer a significant survival benefit. Our results provide evidence of clinical utility in considering mutation screening to stratify IR-AML patients after CR1 to guide therapeutic decisions.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cassandra Hirsch
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mikkael A Sekeres
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty K Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matt Kalaycio
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron T Gerds
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Mukherjee
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aziz Nazha
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher Goebel
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donna Abounader
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anjali S Advani
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
32
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Moarii M, Papaemmanuil E. Classification and risk assessment in AML: integrating cytogenetics and molecular profiling. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:37-44. [PMID: 29222235 PMCID: PMC6142605 DOI: 10.1182/asheducation-2017.1.37] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, the composite molecular architecture in acute myeloid leukemia (AML) has been mapped out. We now have a clearer understanding of the key genetic determinants, the major genetic interactions, and the broad order in which these mutations occur. The next impending challenge is to discern how these recent genomic discoveries define disease biology as well as how to use molecular markers to deliver patient-tailored clinical decision support.
Collapse
Affiliation(s)
- Matahi Moarii
- Department of Epidemiology-Biostatistics, Center for Heme Malignancies, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elli Papaemmanuil
- Department of Epidemiology-Biostatistics, Center for Heme Malignancies, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
34
|
Winkelmann N, Schäfer V, Rinke J, Kaiser A, Ernst P, Scholl S, Hochhaus A, Ernst T. Only SETBP1 hotspot mutations are associated with refractory disease in myeloid malignancies. J Cancer Res Clin Oncol 2017; 143:2511-2519. [PMID: 28913558 DOI: 10.1007/s00432-017-2518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION SETBP1 mutations have been established as a diagnostic marker in myeloid malignancies and are associated with inferior survival. Since there is limited data on their clinical impact and stability during disease progression, we sought to investigate the relationship between SETBP1 mutations and disease evolution. METHODS Bidirectional Sanger sequencing of the SETBP1 gene was performed for 442 unselected patients with World Health Organization (WHO) defined myeloid disorders. Follow-up analysis was performed on samples from 123/442 patients to investigate SETBP1 mutation dynamics. Targeted deep next-generation sequencing for a panel of 30 leukemia-associated genes was established to study SETBP1 cooperating mutations. RESULTS 10/442 patients (2.3%) had SETBP1 hotspot mutations (MDS/MPN, n = 7, sAML, n = 3), whereas four patients (1%) had SETBP1 non-hotspot mutations (MPN, n = 1; MDS, n = 2; sAML, n = 1). The median overall survival for patients with SETBP1 hotspot mutations, SETBP1 non-hotspot mutations, and SETBP1 wild type was 14 (range 0-31), 50 (range 0-71), and 47 months (range 0-402), respectively. In Kaplan-Meier analysis, SETBP1 hotspot mutations were significantly associated with reduced overall survival compared to SETBP1 non-hotspot mutations and the SETBP1 wild type (p < 0.001). All 10 patients with SETBP1 hotspot mutations died from relapse or disease progression. Three of four patients with SETBP1 non-hotspot mutations are alive with stable disease. Cooperating CSF3R and TET2 mutations were most frequently observed in patients with SETBP1 hotspot mutations. CONCLUSIONS Patients with SETBP1 hotspot mutations suffered from aggressive disease with rapid evolution and inferior overall survival. Patients with SETBP1 non-hotspot mutations had less aggressive disease and a more favorable prognosis. Diagnostic screens for SETBP1 hotspot mutations may help identifying this dismal patient group and treat them in multicenter clinical studies.
Collapse
Affiliation(s)
- Nils Winkelmann
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Vivien Schäfer
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jenny Rinke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Alexander Kaiser
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Philipp Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Sebastian Scholl
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
35
|
Strati P, Tang G, Duose DY, Mallampati S, Luthra R, Patel KP, Hussaini M, Mirza AS, Komrokji RS, Oh S, Mascarenhas J, Najfeld V, Subbiah V, Kantarjian H, Garcia-Manero G, Verstovsek S, Daver N. Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma 2017; 59:1672-1676. [PMID: 29119847 DOI: 10.1080/10428194.2017.1397663] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myeloid/lymphoid neoplasms with FGFR1 rearrangement are a rare entity. We present a multicenter experience of 17 patients with FISH-confirmed FGFR1 rearrangement. The clinical presentation at diagnosis included myeloproliferative neoplasm (MPN) in 4 (24%) patients, acute leukemia (AL) in 7 (41%), and concomitant MPN with AL in 6 (35%). The two most frequently observed cytogenetic abnormalities were t(8;13)(p11.2;q12)(partner gene ZMYM2) and t(8;22)(p11.2; q11.2)(BCR). Seventy-eight percent of tested patients had a RUNX1 mutation, of whom all had AL. Overall response rate to frontline therapy was 69%, and 76% of patients subsequently received allogeneic stem cell transplant (ASCT). After a median follow-up of 11 months, median progression-free survival was 15 months and median overall survival was not reached. In conclusion, FGFR1-rearranged hematologic malignancies present with features of MPN and/or AL. FGFR1 and RUNX1 are therapeutic targets for ongoing and future clinical trials.
Collapse
Affiliation(s)
- Paolo Strati
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Guilin Tang
- b Department of Hematopathology The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Dzifa Y Duose
- c Department of Malignant Hematology , H Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Saradhi Mallampati
- b Department of Hematopathology The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Rajyalakshmi Luthra
- b Department of Hematopathology The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Keyur P Patel
- b Department of Hematopathology The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Mohammad Hussaini
- c Department of Malignant Hematology , H Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Abu-Sayeef Mirza
- c Department of Malignant Hematology , H Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Rami S Komrokji
- c Department of Malignant Hematology , H Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Stephen Oh
- d Department of Hematology , Washington University School of Medicine , St Louis , MO , USA
| | - John Mascarenhas
- e Department of Hematology/Oncology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Vesna Najfeld
- f Department of Pathology Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Vivek Subbiah
- g Department of Investigational Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Hagop Kantarjian
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Guillermo Garcia-Manero
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Srdan Verstovsek
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Naval Daver
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
36
|
Sweet K, Lancet J. State of the Art Update and Next Questions: Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:703-709. [PMID: 29110833 DOI: 10.1016/j.clml.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023]
Abstract
As our general understanding regarding the complex nature of acute myeloid leukemia (AML) is expanding, so is our ability to translate this biological data into clinically relevant information. The use of whole genome and whole exome sequencing has begun to shed light on the importance of a variety of somatic mutations that are frequently identified in AML. In turn, this has allowed the field to incorporate mutational data into prognostic classifications which can guide treatment decisions. Furthermore, minimal residual disease (MRD) monitoring in AML is more commonplace as the prognostic relevance of MRD at various time points during treat is becoming clear. Many novel treatments have recently been approved, or are expected to gain approval in the near future, and this is opening the door to a more personalized approach to the management of AML.
Collapse
|
37
|
Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv 2017; 1:1440-1451. [PMID: 29296785 DOI: 10.1182/bloodadvances.2017007591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Besides being a classical tumor suppressor, runt-related transcription factor 1 (RUNX1) is now widely recognized for its oncogenic role in the development of acute myeloid leukemia (AML). Here we report that this bidirectional function of RUNX1 possibly arises from the total level of RUNX family expressions. Indeed, analysis of clinical data revealed that intermediate-level gene expression of RUNX1 marked the poorest-prognostic cohort in relation to AML patients with high- or low-level RUNX1 expressions. Through a series of RUNX1 knockdown experiments with various RUNX1 attenuation potentials, we found that moderate attenuation of RUNX1 contributed to the enhanced propagation of AML cells through accelerated cell-cycle progression, whereas profound RUNX1 depletion led to cell-cycle arrest and apoptosis. In these RUNX1-silenced tumors, amounts of compensative upregulation of RUNX2 and RUNX3 expressions were roughly equivalent and created an absolute elevation of total RUNX (RUNX1 + RUNX2 + RUNX3) expression levels in RUNX1 moderately attenuated AML cells. This elevation resulted in enhanced transactivation of glutathione S-transferase α 2 (GSTA2) expression, a vital enzyme handling the catabolization of intracellular reactive oxygen species (ROS) as well as advancing the cell-cycle progressions, and thus ultimately led to the acquisition of proliferative advantage in RUNX1 moderately attenuated AML cells. Besides, treatment with ethacrynic acid, which is known for its GSTA inhibiting property, actually prolonged the survival of AML mice in vivo. Collectively, our findings indicate that moderately attenuated RUNX1 expressions paradoxically enhance leukemogenesis in AML cells through intracellular environmental change via GSTA2, which could be a novel therapeutic target in antileukemia strategy.
Collapse
|
38
|
Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2017; 18:ijms18081618. [PMID: 28933735 PMCID: PMC5578010 DOI: 10.3390/ijms18081618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022] Open
Abstract
(1) Runt-related transcription factor 1 (RUNX1) mutations in acute myeloid leukemia (AML) are often associated with worse prognosis. We assessed co-occurring mutations, response to therapy, and clinical outcomes in patients with and without mutant RUNX1 (mRUNX1); (2) We analyzed 328 AML patients, including 177 patients younger than 65 years who received intensive chemotherapy and 151 patients >65 years who received hypomethylating agents. RUNX1 and co-existing mutations were identified using next-generation sequencing; (3) RUNX1 mutations were identified in 5.1% of younger patients and 15.9% of older patients, and were significantly associated with increasing age (p = 0.01) as well as intermediate-risk cytogenetics including normal karyotype (p = 0.02) in the elderly cohort, and with lower lactate dehydrogenase (LDH; p = 0.02) and higher platelet count (p = 0.012) overall. Identified co-occurring mutations were primarily ASXL1 mutations in older patients and RAS mutations in younger patients; FLT3-ITD and IDH1/2 co-mutations were also frequent. Younger mRUNX1 AML patients treated with intensive chemotherapy experienced inferior treatment outcomes. In older patients with AML treated with hypomethylating agent (HMA) therapy, response and survival was independent of RUNX1 status. Older mRUNX1 patients with prior myelodysplastic syndrome or myeloproliferative neoplasms (MDS/MPN) had particularly dismal outcome. Future studies should focus on the prognostic implications of RUNX1 mutations relative to other co-occurring mutations, and the potential role of hypomethylating agents for this molecularly-defined group.
Collapse
|
39
|
Porter SN, Magee JA. PRKCH regulates hematopoietic stem cell function and predicts poor prognosis in acute myeloid leukemia. Exp Hematol 2017; 53:43-47. [PMID: 28596089 DOI: 10.1016/j.exphem.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
Abstract
Acute myeloid leukemia (AML) cells often co-opt normal hematopoietic stem cell (HSC) programs to drive neoplastic proliferation, and HSC-related gene expression signatures have been identified as biomarkers for poor prognosis in AML patients. We sought to identify new regulators of HSCs and AML cells from previously published HSC and leukemia stem cell (LSC) gene expression signatures. We identified PRKCH (protein kinase C eta) as a gene that is highly expressed in both mouse and human HSCs, as well as in LSCs from independent cohorts of AML patients. Prkch deletion in mice resulted in impaired HSC function. PRKCH was most highly expressed in undifferentiated (FAB M0) subtype AML, and high expression correlated with TP53 and RUNX1 mutations, high-risk cytogenetic features, and poor overall survival. Prkch deletion in an Flt3-ITD/Runx1 mutant mouse AML model did not extend survival. Thus, PRKCH is necessary for normal HSC function; its expression predicts poor survival in AML patients, but it is not required for AML to develop.
Collapse
Affiliation(s)
- Shaina N Porter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A Magee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
40
|
Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 2017; 127:2815-2828. [PMID: 28530640 DOI: 10.1172/jci91788] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Collapse
Affiliation(s)
- Ken Morita
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Kensho Suzuki
- Department of Human Health Sciences, Graduate School of Medicine
| | - Shintaro Maeda
- Department of Human Health Sciences, Graduate School of Medicine
| | - Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | | | - Chieko Tokushige
- Department of Human Health Sciences, Graduate School of Medicine
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rina Maeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayaka Yano
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yoshimi Yamada
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hiroki Kiyose
- Department of Human Health Sciences, Graduate School of Medicine
| | - Mayu Tokumasu
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | - Sunao Tanaka
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yasushi Okuno
- Department of Human Health Sciences, Graduate School of Medicine
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhito Naka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
41
|
Recurrent somatic JAK-STAT pathway variants within a RUNX1-mutated pedigree. Eur J Hum Genet 2017; 25:1020-1024. [PMID: 28513614 DOI: 10.1038/ejhg.2017.80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022] Open
Abstract
Germline variants within the transcription factor RUNX1 are associated with familial platelet disorder and acute leukemia in over 40% of carriers. At present, the somatic events triggering leukemic transformation appear heterogeneous and profiles of leukemia initiation across family members are poorly defined. We report a new RUNX1 family where three sisters harboring a germline nonsense RUNX1 variant, c.601C>T (p.(Arg201*)), developed acute myelomonocytic leukemia (AML) at 5 years of age. Whole-exome sequencing of tumor samples revealed all three siblings independently acquired variants within the JAK-STAT pathway, specifically targeting JAK2 and SH2B3 (a negative regulator of JAK2), while also sharing the 46/1 haplotype linked with sporadic JAK2-positive myeloproliferative neoplasms. In-depth chromosomal characterization of tumors revealed acquired copy number gains and uniparental disomy amplifying RUNX1, JAK2 and SH2B3 variants, highlighting the significance of co-operation between these disrupted pathways. One sibling, presenting with myelodysplasia at 14 years, had no evidence of clonal or subclonal JAK2 or SH2B3 variants, suggesting the latter were specifically associated with leukemic transformation in her sisters. Collectively, the clinical and molecular homogeneity across these three young siblings provides the first notable example of convergent AML evolution in a RUNX1 pedigree, with the recurrent acquisition of JAK-STAT pathway variants giving rise to high-risk AML, characterized by chemotherapy resistance and relapse.
Collapse
|
42
|
Brown AL, Churpek JE, Malcovati L, Döhner H, Godley LA. Recognition of familial myeloid neoplasia in adults. Semin Hematol 2017. [DOI: 10.1053/j.seminhematol.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Callea M, Fattori F, Bertini ES, Cammarata-Scalisi F, Callea F, Bellacchio E. Blood malignancies presenting with mutations at equivalent residues in RUNX1-2 suggest a common leukemogenic pathway. Leuk Lymphoma 2017; 58:2002-2004. [PMID: 28093006 DOI: 10.1080/10428194.2016.1274980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michele Callea
- a Unit of Dentistry , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Fabiana Fattori
- b Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine , Bambino Gesù Children's Hospital , Rome , Italy
| | - Enrico Silvio Bertini
- b Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine , Bambino Gesù Children's Hospital , Rome , Italy
| | - Francisco Cammarata-Scalisi
- c Department of Pediatrics, Unit of Medical Genetics, Faculty of Medicine , University of The Andes , Mérida , Venezuela
| | - Francesco Callea
- d Department of Pathology , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Emanuele Bellacchio
- e Research Laboratories, Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| |
Collapse
|