1
|
Chen MY, Li M, Xu QY, Zhang SW, Ren GX, Liu CS. Therapeutic potential of xtr-miR-22-3p from Plastrum testudinis in acute promyelocytic leukemia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:387-399. [PMID: 39258746 DOI: 10.1080/10286020.2024.2395566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Acute promyelocytic leukemia (APL) is marked by a block at the promyelocyte stage. Treatments like ATRA and ATO face resistance and relapse issues. Plastrum testudinis, a traditional Chinese medicine, may offer therapeutic potential. This study investigated xtr-miR-22-3p from P. testudinis for treating APL. High expression of xtr-miR-22-3p was confirmed, with target prediction indicating interactions with key genes, including PML. xtr-miR-22-3p reduced HL-60 leukemia cell growth, altered the cell cycle, and selectively inhibited HL-60 proliferation while promoting BMSC growth, suggesting its potential as a targeted APL therapy.
Collapse
Affiliation(s)
- Ming-Yang Chen
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meng Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Yi Xu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shu-Wang Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou 061000, China
| | - Guang-Xi Ren
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-Sheng Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Shao XJ, Wang W, Xu AX, Qi XT, Cai MY, Du WX, Cao J, He QJ, Ying MD, Yang B. Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia. Acta Pharmacol Sin 2025; 46:462-473. [PMID: 39227737 PMCID: PMC11747460 DOI: 10.1038/s41401-024-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Lipoylation
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Tretinoin/pharmacology
- Tretinoin/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Resistance, Neoplasm
- Cell Differentiation/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Xue-Jing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ai-Xiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Tian Qi
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min-Yi Cai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Xin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Division of Hematology-Oncology, the Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310015, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
3
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2025; 52:102237. [PMID: 39672002 PMCID: PMC11700300 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
4
|
George GV, Elsadawi M, Evans AG, Ali S, Zhang B, Iqbal MA. Utilization of RT-PCR and Optical Genome Mapping in Acute Promyelocytic Leukemia with Cryptic PML::RARA Rearrangement: A Case Discussion and Systemic Literature Review. Genes (Basel) 2024; 16:7. [PMID: 39858554 PMCID: PMC11765422 DOI: 10.3390/genes16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) PML::RARA. Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early. METHODS We present the case of a 36-year-old male who presented with features concerning for disseminated intravascular coagulation. Although the initial diagnostic work-up, including pathology and flow cytometry evaluation, suggested a diagnosis of APL, karyotype and fluorescence in situ hybridization (FISH), using the PML/RARA dual fusion and RARA breakapart probes, were negative. We performed real-time polymerase chain reaction (RT-PCR) and optical genome mapping (OGM) to further confirm the clinicopathological findings. RESULTS RT-PCR revealed a cryptic PML::RARA fusion transcript. OGM further confirmed the nature and orientation of a cryptic rearrangement with an insertion of RARA into PML at intron 3 (bcr3). In light of these findings, we performed a systematic literature review to understand the prevalence, diagnosis, and prognosis of APL with cryptic PML::RARA rearrangements. CONCLUSIONS This case, in conjunction with the results of our systematic literature review, highlights the importance of performing confirmatory testing in FISH-negative cases of suspected APL to enable prompt diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Giby V. George
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Murad Elsadawi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Andrew G. Evans
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Sarmad Ali
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - M. Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| |
Collapse
|
5
|
Kaçar D, Çavdarlı B, Koca Yozgat A, Işık M, Kurtipek FB, Yıldırım FT, Bayhan T, Gürlek Gökçebay D, Özbek NY, Yaralı N. The importance of targeted next-generation sequencing based genomic profiling in the diagnosis of childhood acute myeloid leukemia: a single center experience. Turk J Pediatr 2024; 66:727-736. [PMID: 39807739 DOI: 10.24953/turkjpediatr.2024.4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/02/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis. METHODS In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML. Results. Variants were detected in 44.8% of patients, and 63.2% of them were in the signaling pathway genes. The number of variants per patient and diversity increased with age. The panel results affected hematopoietic stem cell transplantation decisions, especially in core binding factor AML, and allowed the categorization of diseases according to current classifications. Panel results also pointed out predisposition to germline leukemia to the extent of the panel coverage. No targeted therapy was used based on the variants, and none of the variants were used to monitor minimal residual disease. CONCLUSIONS Targeted NGS results, along with well-known genetic aberrations and treatment responses, can guide treatment modalities. The coverage of the routine panels should include proven mutations of childhood AML and germline leukemia predisposition genes.
Collapse
Affiliation(s)
- Dilek Kaçar
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Büşranur Çavdarlı
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ayça Koca Yozgat
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Melek Işık
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Fatma Burçin Kurtipek
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Fatma Tuba Yıldırım
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Turan Bayhan
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Dilek Gürlek Gökçebay
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Namık Yaşar Özbek
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Neşe Yaralı
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
6
|
Ishikawa Y. Recent progress in AML with recurrent genetic abnormalities. Int J Hematol 2024; 120:525-527. [PMID: 39352624 DOI: 10.1007/s12185-024-03848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by various molecular abnormalities that significantly impact its pathogenesis and prognosis. Currently, the prognosis of AML patients is stratified on the basis of co-existing chromosomal and genetic abnormalities. AML patients with NPM1 or CEBPA mutations, which are frequently identified in cytogenetically normal AML, are classified in the favorable-risk group, although approximately 40% of patients relapse. Similarly, a clinical high-risk group has been identified among patients with acute promyelocytic leukemia, but the underlying molecular abnormalities remain unclear. FLT3 mutations frequently overlap in these favorable-risk AMLs, including core binding factor AML, and their prognostic impact is still controversial. As such, further risk stratification and treatment optimization based on various molecular abnormalities are warranted to improve the prognosis of favorable-risk AMLs. These molecular abnormalities are also considered therapeutic targets, and targeted therapies have been developed over the years. In recent years, several targeted agents have been approved and demonstrated to improve the prognosis of AML. However, resistance to targeted therapies is also a challenge. This Progress in Hematology features current trends and challenges in favorable-risk AML and FLT3 mutations that are frequently identified in these patients.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
7
|
Yokoyama Y. Risk factors and remaining challenges in the treatment of acute promyelocytic leukemia. Int J Hematol 2024; 120:548-555. [PMID: 38386203 DOI: 10.1007/s12185-023-03696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
The treatment of acute promyelocytic leukemia (APL) has evolved with the introduction of all-trans retinoic acid (ATRA) and subsequent arsenic trioxide (ATO), particularly in standard-risk APL with an initial white blood cell count (WBC) < 10,000/μL, where a high cure rate can now be achieved. However, for some patients with risk factors, early death or relapse remains a concern. Insights from the analysis of patients treated with ATRA and chemotherapy have identified risk factors such as WBC, surface antigens, complex karyotypes, FLT3 and other genetic mutations, p73 isoforms, variant rearrangements, and drug resistance mutations. However, in the ATRA + ATO era, the significance of these risk factors is changing. This article provides a comprehensive review of APL risk factors, taking into account the treatment approach, and explores the challenges associated with APL treatments.
Collapse
Affiliation(s)
- Yasuhisa Yokoyama
- Department of Hematology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
9
|
Wang Q, Zeng LJ, Wang M, Weng JY, Pan JL. Identification of a Novel MAPK1::BCR Fusion Gene/t(9;22) (q34;q11) in a Case of Acute Promyelocytic Leukemia. Turk J Haematol 2024; 41:194-199. [PMID: 38979565 PMCID: PMC11589371 DOI: 10.4274/tjh.galenos.2024.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024] Open
MESH Headings
- Female
- Humans
- Middle Aged
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/diagnosis
- Mitogen-Activated Protein Kinase 1
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-bcr/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Hematological Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ling-Ji Zeng
- Guangdong Provincial People’s Hospital, Department of Hematology, Guangzhou, China
| | - Man Wang
- National Clinical Research Center for Hematological Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jian-Yu Weng
- Guangdong Provincial People’s Hospital, Department of Hematology, Guangzhou, China
| | - Jin-Lan Pan
- National Clinical Research Center for Hematological Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Fujihara J, Nishimoto N, Takeshita H. Plasma cell-free DNA in patients with acute promyelocytic leukaemia treated with arsenic trioxide. Ann Clin Biochem 2024; 61:248-254. [PMID: 37944991 DOI: 10.1177/00045632231216596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is free DNA found in circulating blood that originates from apoptosis or necrosis, and elevated cfDNA concentrations have been reported in cancers and other diseases. METHODS In this study, the concentrations and fragment distributions of plasma cfDNA were preliminary investigated in elderly (n = 1) and paediatric (n = 1) patients with acute promyelocytic leukaemia (APL) treated with arsenic trioxide (ATO). RESULTS A slight increase in cfDNA concentrations was observed in the APL patients compared with healthy controls. The change in plasma cfDNA concentrations corresponded to the change in plasma arsenic concentrations during ATO treatment. The fragment distribution pattern did not differ before and during treatment. Three ladder fragments were observed in part of the cfDNA in the second consolidation therapy in an elderly APL patient and the first consolidation therapy of a paediatric APL patient, while two fragments were observed in all other treatment periods. Moreover, APL-related gene mutations were successfully genotyped from plasma cfDNA by using polymerase chain reaction-based methods and these results are consistent with those from leukocytes. CONCLUSION This study is the first to report the concentrations and fragment patterns of cfDNA from APL patients treated with ATO. The results suggested that plasma cfDNA concentration in APL patients increased with ATO treatment and that cfDNA is released mainly via neutrophil extracellular traps (and/or necrosis) in addition to apoptosis. To confirm whether cfDNA concentrations and fragment patterns can be used as a biomarker for APL treated with ATO, further accumulative data are needed.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | | | - Haruo Takeshita
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
11
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
12
|
Wang L, Chen J, Hou B, Wu Y, Yang J, Zhou X, Chen Q, Chen X, Zhang Y, Wang F, Fang J, Cao P, Liu M, Li Y, Zhang P, Liu Y, Zhang R, Liu H, Zheng H. Case report of pediatric TTMV-related acute promyelocytic leukemia with central nervous system infiltration and rapid accumulation of RARA-LBD mutations. Heliyon 2024; 10:e27107. [PMID: 38434265 PMCID: PMC10907776 DOI: 10.1016/j.heliyon.2024.e27107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
TTMV::RARA is a recently reported fusion gene associated with acute promyelocytic leukemia (APL), caused by the integration of torque teno mini virus (TTMV) genomic fragments into the second intron of the RARA gene. Currently, there have been only six documented cases, with clinical presentations showing significant variability. Although initial responses to all-trans retinoic acid (ATRA) treatment may be observed in patients with TTMV::RARA-APL, the overall prognosis remains unfavorable among infrequent reported cases. This article presents a pediatric case that manifested as PML::RARA-negative APL with central nervous system involvement at onset. The patient experienced both intramedullary and extramedullary relapse one year after undergoing allogeneic hematopoietic stem cell transplantation. Upon identification as TTMV::RARA-APL and subsequent administration of two rounds of ATRA-based treatment, the patient rapidly developed multiple RARA ligand-binding domain mutations and demonstrated extensive resistance to ATRA and various other therapeutic interventions. Additionally, the patient experienced ARID1A mutant clone expansion and progressed MYC-targeted gene activation. This case represents the first documentation of extramedullary involvement at both the initial diagnosis and relapse stages, emphasizing the intricate clinical features and challenges associated with the rapid accumulation of multiple ATRA-resistant mutations in TTMV::RARA-APL, characterizing it as a distinct and complex sub-entity of atypical APL.
Collapse
Affiliation(s)
- Linya Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Jiaqi Chen
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Bei Hou
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Ying Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Jun Yang
- Stem Cell Transplantation Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Xiaosu Zhou
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Qihui Chen
- Precision Medicine Center, Beijing Gene Profile Research Institute, Beijing, China
| | - Xue Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yang Zhang
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiancheng Fang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Mingyue Liu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yanan Li
- Hematology and Oncology Department, Beijing Children's Hospital Baoding Hospital, Baoding, China
| | - Pan Zhang
- Stem Cell Transplantation Department, Beijing Children's Hospital, Baoding Hospital, Capital Medical University, Baoding, China
| | - Yan Liu
- Hematology and Oncology Department, Beijing Children's Hospital Baoding Hospital, Baoding, China
| | - Ruidong Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Hongxing Liu
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| |
Collapse
|
13
|
Kim S, Jung J, Ahn SY, Kim M, Jeon SY, Lee CH, Kim DS, Lee SR, Sung HJ, Choi CW, Kim BS, Kim HJ, Kwak JY, Park Y, Ahn JS, Yhim HY. Risk stratification for early mortality in newly diagnosed acute promyelocytic leukemia: a multicenter, non-selected, retrospective cohort study. Front Oncol 2024; 14:1307315. [PMID: 38352893 PMCID: PMC10861669 DOI: 10.3389/fonc.2024.1307315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Despite the current effective treatments for acute promyelocytic leukemia (APL), early mortality (EM), defined as death within 30 days of presentation, is a major hurdle to long-term survival. Methods We performed a multicenter retrospective study to evaluate the incidence and clinical characteristics of EM in patients with newly diagnosed APL and to develop a risk stratification model to predict EM. Results We identified 313 eligible patients diagnosed between 2000 and 2021 from five academic hospitals. The median age was 50 years (range 19-94), and 250 (79.9%) patients were <65 years. Most patients (n=274, 87.5%) received their first dose of all-trans retinoic acid (ATRA) within 24 hours of presentation. EM occurred in 41 patients, with a cumulative incidence of 13.1%. The most common cause of EM was intracranial hemorrhage (n=22, 53.6%), and most EMs (31/41, 75.6%) occurred within the first seven days of APL presentation. In a multivariable analysis, we identified three independent factors predicting EM: age ≥65 years (HR, 2.56), white blood cell count ≥8.0 x 109/L (HR, 3.30), and ATRA administration >24 hours of presentation (HR, 2.95). Based on these factors, patients were stratified into three categories with a significantly increasing risk of EM: 4.1% for low risk (54.3%; no risk factors; HR 1), 18.5% for intermediate risk (34.5%; 1 factor; HR 4.81), and 40.5% for high risk (11.2%; 2-3 factors; HR 13.16). Discussion The risk of EM is still not negligible in this era of ATRA-based therapies. Our risk model serves as a clinically useful tool to identify high-risk patients for EM who may be candidates for novel treatments and aggressive supportive strategies.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jiye Jung
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Mihee Kim
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - So Yeon Jeon
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Dae Sik Kim
- Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul, Republic of Korea
| | - Se Ryeon Lee
- Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, Ansan, Republic of Korea
| | - Hwa Jung Sung
- Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, Ansan, Republic of Korea
| | - Chul Won Choi
- Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul, Republic of Korea
| | - Byung-Soo Kim
- Department of Internal Medicine, Korea University College of Medicine Anam Hospital, Seoul, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Jae-Yong Kwak
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine Anam Hospital, Seoul, Republic of Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Ho-Young Yhim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
14
|
Testa U, Pelosi E. Function of PML-RARA in Acute Promyelocytic Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:321-339. [PMID: 39017850 DOI: 10.1007/978-3-031-62731-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Tretinoin/therapeutic use
- Tretinoin/pharmacology
- Arsenic Trioxide/therapeutic use
- Arsenic Trioxide/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Arsenicals/therapeutic use
- Arsenicals/pharmacology
- Oxides/therapeutic use
- Oxides/pharmacology
- Animals
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Kobayashi H, Tsutsumi H, Misaki Y, Maekawa T, Inoshita N, Kawamura M, Maseki N. Gilteritinib Monotherapy as a Transplant Bridging Option for a Patient with FLT3-Mutated Acute Promyelocytic Leukemia Who Developed a Second Relapse after All-Trans Retinoic Acid + Chemotherapy, Arsenic Trioxide, and High-Dose Cytarabine Therapy. Case Rep Hematol 2023; 2023:8568587. [PMID: 38124780 PMCID: PMC10732830 DOI: 10.1155/2023/8568587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
We report a case of FLT3-mutated APL who developed disease relapse despite all-trans retinoic acid (ATRA) + chemotherapy, and re-induction chemotherapy with arsenic trioxide (ATO) and high-dose (HD) cytarabine (Ara-C) therapy failed to yield complete remission. Because the leukemic cells were resistant to all the aforementioned therapies, we started the patient on monotherapy with gilteritinib, a selective FLT3-inhibitor, as an alternative re-induction treatment option rather than further intensive chemotherapy. The patient showed complete hematologic remission in response to this therapy. This case serves as supporting evidence for the use of single-agent therapy with gilteritinib as a bridge to transplantation in patients with refractory FLT3-mutated APL.
Collapse
Affiliation(s)
| | - Hiroki Tsutsumi
- Department of Hematology, Saitama Cancer Center, Saitama, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takashi Maekawa
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
| | - Naoko Inoshita
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
- Department of Pathology, Moriyama Memorial Hospital, Tokyo, Japan
| | - Machiko Kawamura
- Department of Hematology, Saitama Cancer Center, Saitama, Japan
- Department of Clinical Laboratory Medicine, Saitama Cancer Center, Saitama, Japan
| | - Nobuo Maseki
- Department of Hematology, Saitama Cancer Center, Saitama, Japan
| |
Collapse
|
16
|
Chen J, Zhou X, Chen X, Chen Q, Yang J, Lu Y, Liu H. Pediatric TTMV::RARA-positive relapsed acute promyelocytie leukemia responsive to venetoclax and achieving long remission after allogenic transplantation. Pediatr Blood Cancer 2023; 70:e30665. [PMID: 37717146 DOI: 10.1002/pbc.30665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Jiaqi Chen
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaosu Zhou
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Qihui Chen
- Department of Research and Development, Beijing Geneprofile Technologies Co., Ltd, Beijing, China
| | - Junfang Yang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yue Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hongxing Liu
- Molecular Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Madan V, Shyamsunder P, Dakle P, Woon TW, Han L, Cao Z, Nordin HBM, Jizhong S, Shuizhou Y, Hossain MZ, Koeffler HP. Dissecting the role of SWI/SNF component ARID1B in steady-state hematopoiesis. Blood Adv 2023; 7:6553-6566. [PMID: 37611161 PMCID: PMC10632677 DOI: 10.1182/bloodadvances.2023009946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The adenosine triphosphate (ATP)-dependent chromatin remodeling complex, SWItch/Sucrose Non-Fermentable (SWI/SNF), has been implicated in normal hematopoiesis. The AT-rich interaction domain 1B (ARID1B) and its paralog, ARID1A, are mutually exclusive, DNA-interacting subunits of the BRG1/BRM-associated factor (BAF) subclass of SWI/SNF complex. Although the role of several SWI/SNF components in hematopoietic differentiation and stem cell maintenance has been reported, the function of ARID1B in hematopoietic development has not been defined. To this end, we generated a mouse model of Arid1b deficiency specifically in the hematopoietic compartment. Unlike the extensive phenotype observed in mice deficient in its paralog, ARID1A, Arid1b knockout (KO) mice exhibited a modest effect on steady-state hematopoiesis. Nonetheless, transplantation experiments showed that the reconstitution of myeloid cells in irradiated recipient mice was dependent on ARID1B. Furthermore, to assess the effect of the complete loss of ARID1 proteins in the BAF complex, we generated mice lacking both ARID1A and ARID1B in the hematopoietic compartment. The double-KO mice succumbed to acute bone marrow failure resulting from complete loss of BAF-mediated chromatin remodeling activity. Our Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed that >80% of loci regulated by ARID1B were distinct from those regulated by ARID1A; and ARID1B controlled expression of genes crucial in myelopoiesis. Overall, loss of ARID1B affected chromatin dynamics in murine hematopoietic stem and progenitor cells, albeit to a lesser extent than cells lacking ARID1A.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Shi Jizhong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yu Shuizhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore
| |
Collapse
|
18
|
Rérolle D, de Thé H. The PML hub: An emerging actor of leukemia therapies. J Exp Med 2023; 220:e20221213. [PMID: 37382966 PMCID: PMC10309189 DOI: 10.1084/jem.20221213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress, PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress. Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.
Collapse
Affiliation(s)
- Domitille Rérolle
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
- Chaire d'Oncologie Cellulaire et Moléculaire, Collège de France, Paris, France
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital St. Louis, Paris, France
| |
Collapse
|
19
|
Iriyama C, Murate K, Iba S, Okamoto A, Goto N, Yamamoto H, Kato T, Mihara K, Miyama T, Hattori K, Kajiya R, Okamoto M, Mizutani Y, Yamada S, Tsukamoto T, Hirose Y, Mutoh T, Watanabe H, Tomita A. Utility of cerebrospinal fluid liquid biopsy in distinguishing CNS lymphoma from cerebrospinal infectious/demyelinating diseases. Cancer Med 2023; 12:16972-16984. [PMID: 37501501 PMCID: PMC10501233 DOI: 10.1002/cam4.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Distinguishing between central nervous system lymphoma (CNSL) and CNS infectious and/or demyelinating diseases, although clinically important, is sometimes difficult even using imaging strategies and conventional cerebrospinal fluid (CSF) analyses. To determine whether detection of genetic mutations enables differentiation between these diseases and the early detection of CNSL, we performed mutational analysis using CSF liquid biopsy technique. METHODS In this study, we extracted cell-free DNA from the CSF (CSF-cfDNA) of CNSL (N = 10), CNS infectious disease (N = 10), and demyelinating disease (N = 10) patients, and performed quantitative mutational analysis by droplet-digital PCR. Conventional analyses were also performed using peripheral blood and CSF to confirm the characteristics of each disease. RESULTS Blood hemoglobin and albumin levels were significantly lower in CNSL than CNS infectious and demyelinating diseases, CSF cell counts were significantly higher in infectious diseases than CNSL and demyelinating diseases, and CSF-cfDNA concentrations were significantly higher in infectious diseases than CNSL and demyelinating diseases. Mutation analysis using CSF-cfDNA detected MYD88L265P and CD79Y196 mutations in 60% of CNSLs each, with either mutation detected in 80% of cases. Mutual existence of both mutations was identified in 40% of cases. These mutations were not detected in either infectious or demyelinating diseases, and the sensitivity and specificity of detecting either MYD88/CD79B mutations in CNSL were 80% and 100%, respectively. In the four cases biopsied, the median time from collecting CSF with the detected mutations to definitive diagnosis by conventional methods was 22.5 days (range, 18-93 days). CONCLUSIONS These results suggest that mutation analysis using CSF-cfDNA might be useful for differentiating CNSL from CNS infectious/demyelinating diseases and for early detection of CNSL, even in cases where brain biopsy is difficult to perform.
Collapse
Affiliation(s)
- Chisako Iriyama
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Kenichiro Murate
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Sachiko Iba
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Akinao Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Naoe Goto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hideyuki Yamamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Toshiharu Kato
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Keichiro Mihara
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Takahiko Miyama
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Keiko Hattori
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Ryoko Kajiya
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Masataka Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
- Department of Hematology and OncologyFujita Health University Okazaki Medical CenterOkazakiJapan
| | - Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Seiji Yamada
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Tetsuya Tsukamoto
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Yuichi Hirose
- Department of NeurosurgeryFujita Health University School of MedicineToyoakeJapan
| | - Tatsuro Mutoh
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Akihiro Tomita
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| |
Collapse
|
20
|
Franza M, Albanesi J, Mancini B, Pennisi R, Leone S, Acconcia F, Bianchi F, di Masi A. The clinically relevant CHK1 inhibitor MK-8776 induces the degradation of the oncogenic protein PML-RARα and overcomes ATRA resistance in acute promyelocytic leukemia cells. Biochem Pharmacol 2023:115675. [PMID: 37406967 DOI: 10.1016/j.bcp.2023.115675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by the expression of the oncogenic fusion protein PML-RARα. The current treatment approach for APL involves differentiation therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, the development of resistance to therapy, occurrence of differentiation syndrome, and relapses necessitate the exploration of new treatment options that induce differentiation of leukemic blasts with low toxicity. In this study, we investigated the cellular and molecular effects of MK-8776, a specific inhibitor of CHK1, in ATRA-resistant APL cells. Treatment of APL cells with MK-8776 resulted in a decrease in PML-RARα levels, increased expression of CD11b, and increased granulocytic activity consistent with differentiation. Interestingly, we showed that the MK-8776-induced differentiating effect resulted synergic with ATO. We found that the reduction of PML-RARα by MK-8776 was dependent on both proteasome and caspases. Specifically, both caspase-1 and caspase-3 were activated by CHK1 inhibition, with caspase-3 acting upstream of caspase-1. Activation of caspase-3 was necessary to activate caspase-1 and promote PML-RARα degradation. Transcriptomic analysis revealed significant modulation of pathways and upstream regulators involved in the inflammatory response and cell cycle control upon MK-8776 treatment. Overall, the ability of MK-8776 to induce PML-RARα degradation and stimulate differentiation of immature APL cancer cells into more mature forms recapitulates the concept of differentiation therapy. Considering the in vivo tolerability of MK-8776, it will be relevant to evaluate its potential clinical benefit in APL patients resistant to standard ATRA/ATO therapy, as well as in patients with other forms of acute leukemias.
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Jacopo Albanesi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Benedetta Mancini
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Stefano Leone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Filippo Acconcia
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.
| |
Collapse
|
21
|
Patiño-Mercau JR, Baliñas-Gavira C, Andrades A, Benitez-Cantos MS, Rot AE, Rodriguez MI, Álvarez-Pérez JC, Cuadros M, Medina PP. BCL7A is silenced by hypermethylation to promote acute myeloid leukemia. Biomark Res 2023; 11:32. [PMID: 36941700 PMCID: PMC10026484 DOI: 10.1186/s40364-023-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Recent massive sequencing studies have revealed that SWI/SNF complexes are among the most frequently altered functional entities in solid tumors. However, the role of SWI/SNF in acute myeloid leukemia is poorly understood. To date, SWI/SNF complexes are thought to be oncogenic in AML or, at least, necessary to support leukemogenesis. However, mutation patterns in SWI/SNF genes in AML are consistent with a tumor suppressor role. Here, we study the SWI/SNF subunit BCL7A, which has been found to be recurrently mutated in lymphomas, but whose role in acute myeloid malignancies is currently unknown. METHODS Data mining and bioinformatic approaches were used to study the mutational status of BCL7A and the correlation between BCL7A expression and promoter hypermethylation. Methylation-specific PCR, bisulfite sequencing, and 5-aza-2'-deoxycytidine treatment assays were used to determine if BCL7A expression was silenced due to promoter hypermethylation. Cell competition assays after BCL7A expression restoration were used to assess the role of BCL7A in AML cell line models. Differential expression analysis was performed to determine pathways and genes altered after BCL7A expression restoration. To establish the role of BCL7A in tumor development in vivo, tumor growth was compared between BCL7A-expressing and non-expressing mouse xenografts using in vivo fluorescence imaging. RESULTS BCL7A expression was inversely correlated with promoter methylation in three external cohorts: TCGA-LAML (N = 160), TARGET-AML (N = 188), and Glass et al. (2017) (N = 111). The AML-derived cell line NB4 silenced the BCL7A expression via promoter hypermethylation. Ectopic BCL7A expression in AML cells decreased their competitive ability compared to control cells. Additionally, restoration of BCL7A expression reduced tumor growth in an NB4 mouse xenograft model. Also, differential expression analysis found that BCL7A restoration altered cell cycle pathways and modified significantly the expression of genes like HMGCS1, H1-0, and IRF7 which can help to explain its tumor suppressor role in AML. CONCLUSIONS BCL7A expression is silenced in AML by promoter methylation. In addition, restoration of BCL7A expression exerts tumor suppressor activity in AML cell lines and xenograft models.
Collapse
Affiliation(s)
- Juan Rodrigo Patiño-Mercau
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology I, Facultad de Ciencias, University of Granada, Avda. de Fuentenueva S/N, 18071, Granada, Spain
| | - Carlos Baliñas-Gavira
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Present Address: Institut Curie, Paris Sciences Et Lettres Research University, Sorbonne University, INSERM U934/CNRS UMR3215, Paris, France
| | - Alvaro Andrades
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology I, Facultad de Ciencias, University of Granada, Avda. de Fuentenueva S/N, 18071, Granada, Spain
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain
| | - Maria S Benitez-Cantos
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Ana Ercegovič Rot
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Present Address: International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maria Isabel Rodriguez
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Juan Carlos Álvarez-Pérez
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology I, Facultad de Ciencias, University of Granada, Avda. de Fuentenueva S/N, 18071, Granada, Spain
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain
| | - Marta Cuadros
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Pedro P Medina
- Gene Expression Regulation and Cancer Group (CTS-993), GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain.
- Department of Biochemistry and Molecular Biology I, Facultad de Ciencias, University of Granada, Avda. de Fuentenueva S/N, 18071, Granada, Spain.
- Health Research Institute of Granada (Ibs.Granada), Granada, Spain.
| |
Collapse
|
22
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
23
|
Hussein MAR, Ahmed AE, ElNahass Y, El-Dahshan D, Ali MAM. Downregulation of IRAIN long non-coding RNA predicts unfavourable clinical outcome in acute myeloid leukaemia patients. Biomarkers 2023; 28:323-340. [PMID: 36657106 DOI: 10.1080/1354750x.2023.2171128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although it has been shown that the long non-coding RNA (lncRNA) insulin-like growth factor type 1 receptor (IGF1R) antisense imprinted non-protein coding RNA (IRAIN) is downregulated in leukaemia cell lines, its usefulness as a prognostic marker in acute myeloid leukaemia (AML) has not yet been thoroughly investigated. Here, we sought to determine whether the expression of IRAIN is associated with clinical outcome of AML patients. SUBJECTS & METHODS Using quantitative real-time polymerase chain reaction (qRT-PCR), IRAIN expression levels were assessed in peripheral blood leukocyte samples from 150 patients with AML and 50 healthy controls. Analysis was done on the relationship between IRAIN expression and clinical outcomes in AML patients. RESULTS When compared to healthy controls, IRAIN expression was markedly reduced in AML patients (P = 0.019). IRAIN expression could distinguish French-American-British (FAB) subtypes of AML (P = 0.024). Low IRAIN expression status was associated with shorter event-free survival (EFS) in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.004). IRAIN downregulation was identified as an independent adverse prognostic marker for complete remission (CR) not only in the in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.006) but also in the AML-M4/M5 subgroup (P = 0.033). CONCLUSION Aberrantly low IRAIN expression is closely associated with lower CR rates in AML patients, particularly in non-t(15;17) cytogenetically abnormal AML and M4/M5 AML, suggesting that the determination of IRAIN expression level at diagnosis provides valuable prognostic information, serves as a promising biomarker for evaluating treatment response, and helps predicting clinical outcome of AML patients.
Collapse
Affiliation(s)
- Mohamed A R Hussein
- Residues Laboratories, General Organization for Export & Import Control, Cairo International Airport, Cairo, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser ElNahass
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Dina El-Dahshan
- Department of Clinical Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Iyer SG, Elias L, Stanchina M, Watts J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front Oncol 2023; 12:1062524. [PMID: 36741714 PMCID: PMC9889825 DOI: 10.3389/fonc.2022.1062524] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The transformation of acute promyelocytic leukemia (APL) from an often fatal to highly curable cancer with long-term survival exceeding 90% is one of the greatest and most inspiring successes in oncology. A deeper understanding of the pathogenesis of APL heralded the introduction of highly effective therapies targeting the mutant protein that drives the disease, leading to the chemotherapy-free approach to cure almost all patients. In this review, we discuss the paradigm of treatment of APL in 2023, reinforce the high risk of early death without prompt initiation of treatment at first clinical suspicion, and dedicate a special focus to novel agents and future directions to improve cure rates and quality of life in patients affected by APL.
Collapse
Affiliation(s)
- Sunil Girish Iyer
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laila Elias
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michele Stanchina
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Justin Watts
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
25
|
Strange Bedfellows: NPM1 Mutations in Acute Promyelocytic Leukemia. Hematol Oncol Stem Cell Ther 2023; 16:91-93. [PMID: 36634276 DOI: 10.1016/j.hemonc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/28/2020] [Indexed: 01/27/2023] Open
|
26
|
Goto H, Yakushijin K, Adachi Y, Matsumoto H, Yamamoto K, Matsumoto S, Yamashita T, Higashime A, Kawaguchi K, Kurata K, Matsuoka H, Minami H. A Pathogenic NRAS c.38 G>A (p.G13D) Mutation in RARA Translocation-negative Acute Promyelocytic-like Leukemia with Concomitant Myelodysplastic Syndrome. Intern Med 2022; 62:1329-1334. [PMID: 36130886 DOI: 10.2169/internalmedicine.0174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An acute promyelocytic leukemia (APL) patient not demonstrating the retinoic acid receptor α (RARA) translocation is rare. A 76-year-old man was diagnosed with myelodysplastic syndrome (MDS). After a year, abnormal promyelocytes were detected with pancytopenia and disseminated intravascular coagulopathy. Morphologically, the patient was diagnosed with APL; however, a genetic examination failed to detect RARA translocation. Thereafter, whole-genome sequencing revealed an NRAS missense mutation [c.38 G>A (p.G13D)]. This mutation was not detected in posttreatment bone marrow aspirate, despite residual MDS. Few reports are available on similar cases. Furthermore, the NRAS c.38 G>A mutation may be a novel pathogenic variant exacerbating RARA translocation-negative acute promyelocytic-like leukemia.
Collapse
Affiliation(s)
- Hideaki Goto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
- Department of Oncology and Hematology, Hyogo Prefectural HarimaHimeji General Medical Center, Japan
- Department of Internal Medicine, JCHO Kobe Central Hospital, Japan
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Yoko Adachi
- Department of Internal Medicine, JCHO Kobe Central Hospital, Japan
| | | | - Katsuya Yamamoto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Sakuya Matsumoto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Tomoe Yamashita
- Department of Clinical Laboratory, Kobe University Hospital, Japan
| | - Ako Higashime
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Koji Kawaguchi
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Keiji Kurata
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Hiroshi Matsuoka
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Hospital, Japan
| |
Collapse
|
27
|
In APL, noncoding mutations and SNP converge on WT1. Blood 2022; 140:1060-1061. [PMID: 36074531 DOI: 10.1182/blood.2022017214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
|
28
|
Song H, Liu Y, Tan Y, Zhang Y, Jin W, Chen L, Wu S, Yan J, Li J, Chen Z, Chen S, Wang K. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. Blood 2022; 140:1132-1144. [PMID: 35653587 PMCID: PMC9461475 DOI: 10.1182/blood.2021014945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.
Collapse
Affiliation(s)
- Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
29
|
A novel RARA-SNX15 fusion in PML-RARA-positive acute promyelocytic leukemia with t(11;17;15)(q13;q21.2;q24.1). Int J Hematol 2022; 116:956-960. [PMID: 35854096 DOI: 10.1007/s12185-022-03421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.
Collapse
|
30
|
Yang MZ, Li L, Wei H, Liu BC, Liu KQ, Li DP, Zhang L, Yang RC, Mi YC, Wang JX, Wang Y. [Clinical and genetic characteristics of patients with newly diagnosed acute promyelocytic leukemia: a single-center retrospective of 790 cases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:336-341. [PMID: 35680634 PMCID: PMC9189486 DOI: 10.3760/cma.j.issn.0253-2727.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/05/2022]
Abstract
Objective: To retrospectively analyze the data of Chinese patients with newly diagnosed acute promyelocytic leukemia (APL) to preliminarily discuss the clinical and cytogenetic characteristics. Methods: From February 2004 to June 2020, patients with newly diagnosed APL aged ≥ 15 years who were admitted to the Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College were chosen. Clinical and laboratory features were retrospectively analyzed. Results: A total of 790 cases were included, with a male to female ratio of 1.22. The median age of the patients was 41 (15-76) years. Patients aged between 20 and 59 predominated, with 632 patients (80%) of 790 patients classified as low and intermediate risk and 158 patients (20%) of 790 patients classified as high risk. The white blood cell, platelet, and hemoglobin levels at diagnosis were 2.3 (0.1-176.1) ×10(9)/L, 29.5 (2.0-1220.8) ×10(9)/L, and 89 (15-169) g/L, respectively, and 4.8% of patients were complicated with psoriasis. The long-form type of PML-RARα was most commonly seen in APL, accounting for 58%. Both APTT extension (10.3%) and creatinine>14 mg/L (1%) are rarely seen in patients at diagnosis. Cytogenetics was performed in 715 patients with newly diagnosed APL. t (15;17) with additional chromosomal abnormalities were found in 155 patients, accounting for 21.7%; among which, +8 was most frequently seen. A complex karyotype was found in 64 (9.0%) patients. Next-generation sequencing was performed in 178 patients, and 113 mutated genes were discovered; 75 genes had an incidence rate>1%. FLT3 was the most frequently seen, which accounted for 44.9%, and 20.8% of the 178 patients present with FLT3-ITD. Conclusions: Patients aged 20-59 years are the most common group with newly diagnosed APL. No obvious difference was found in the ratio of males to females. In terms of risk stratification, patients divided into low and intermediate risk predominate. t (15;17) with additional chromosomal abnormalities accounted for 21% of 715 patients, in which +8 was most commonly seen. The long-form subtype was most frequently seen in PML-RARα-positive patients, and FLT3 was most commonly seen in the mutation spectrum of APL.
Collapse
Affiliation(s)
- M Z Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - H Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - B C Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - K Q Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - D P Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - R C Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y C Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
31
|
Wang M, Lin H, Chu X, Wang Z, Yang X, Cen J, Shen H, Pan J, Wang Y, Shen H, Chen S, Zhang X, Wen L, Yao L. Identification of a recurrent fusion NUP98-RARG in acute myeloid leukaemia resembling acute promyelocytic leukaemia. Br J Haematol 2022; 197:e73-e78. [PMID: 35421256 DOI: 10.1111/bjh.18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Man Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Haiqing Lin
- Department of Hematology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxia Chu
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Zheng Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Xiaofei Yang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jiannong Cen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Hongjie Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jinlan Pan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongshi Shen
- Department of Hematology and Oncology, No. 904 Hospital of the Joint Logistics Support Force of the Liberation Army, Wuxi, China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinyou Zhang
- Department of Hematology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lijun Wen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Li Yao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Shao X, Chen Y, Wang W, Du W, Zhang X, Cai M, Bing S, Cao J, Xu X, Yang B, He Q, Ying M. Blockade of deubiquitinase YOD1 degrades oncogenic PML/RARα and eradicates acute promyelocytic leukemia cells. Acta Pharm Sin B 2022; 12:1856-1870. [PMID: 35847510 PMCID: PMC9279643 DOI: 10.1016/j.apsb.2021.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.
Collapse
|
33
|
Shu X, Wu Q, Guo T, Yin H, Liu J. Acute Promyelocytic Leukemia Presenting With a Myeloid Sarcoma of the Spine: A Case Report and Literature Review. Front Oncol 2022; 12:851406. [PMID: 35311073 PMCID: PMC8931201 DOI: 10.3389/fonc.2022.851406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Myeloid sarcoma is a rare extramedullary tumor of immature myeloid cells. Certain known acute myeloid leukemia cytogenetic abnormalities, in particular t(8,21), has been associated with a higher incidence. Myeloid sarcoma, which rarely happens in acute promyelocytic leukemias, is more common in recurrent patients after the advent of all-trans retinoic acid (ATRA) and are rare in untreated acute promyelocytic leukemia. We described a case of, to our knowledge, de novo myeloid sarcoma of the spine confirmed as acute promyelocytic leukemia. Myeloid sarcoma is diagnosed by spinal tumor biopsy, and microscopic examination of a bone marrow smear and cytogenetic analysis led to a confirmed diagnosis of acute promyelocytic leukemia.
Collapse
|
34
|
Tran J, Gaulin C, Tallman MS. Advances in the Treatment of Hairy Cell Leukemia Variant. Curr Treat Options Oncol 2022; 23:99-116. [PMID: 35178674 DOI: 10.1007/s11864-021-00927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Hairy cell leukemia variant (HCL-V) is a rare B cell lymphoproliferative disorder with a clinical-pathological distinction from the classic form of hairy cell leukemia (HCL-C). HCL-V is more aggressive in nature, has a higher tendency to be refractory to conventional purine analog pharmacotherapies, and leads to a poorer prognosis. Hence, these differing features bring paramount importance to the diagnosis and management of HCL-V. While there is no genetic mutation diagnostic of HCL-V, genetic profiling efforts have identified potential therapeutic targets (i.e., MAP2K1, KDM6A, CREBBP, ARID1A, CCND3, U2AF1, KMT2C) and yielded prognostic markers (i.e., IGHV4-34 rearrangements). To date, combination chemoimmunotherapies, such as cladribine and rituximab, have shown the best results in HCL-V. Future directions include targeted therapies such as moxetumomab pasudotox, ibrutinib, trametinib, and binimetinib and potentially anti-CD22 chimeric antigen receptor T cell therapy. The purpose of this review is to provide an outline of the diagnostic approach and an update on the therapeutic advancements in HCL-V.
Collapse
Affiliation(s)
- Julie Tran
- University of Arizona College of Medicine, 475 N 5th St, HSEB C536, Phoenix, AZ, 85004, USA.
| | - Charles Gaulin
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
35
|
Ngo S, Oxley EP, Ghisi M, Garwood MM, McKenzie MD, Mitchell HL, Kanellakis P, Susanto O, Hickey MJ, Perkins AC, Kile BT, Dickins RA. Acute myeloid leukemia maturation lineage influences residual disease and relapse following differentiation therapy. Nat Commun 2021; 12:6546. [PMID: 34764270 PMCID: PMC8586014 DOI: 10.1038/s41467-021-26849-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.
Collapse
Affiliation(s)
- Steven Ngo
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Ethan P. Oxley
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Margherita Ghisi
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Maximilian M. Garwood
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Mark D. McKenzie
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Helen L. Mitchell
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Peter Kanellakis
- grid.1051.50000 0000 9760 5620Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Olivia Susanto
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Michael J. Hickey
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Andrew C. Perkins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Benjamin T. Kile
- grid.1002.30000 0004 1936 7857Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Ross A. Dickins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| |
Collapse
|
36
|
Metabolic adaptation drives arsenic trioxide resistance in acute promyelocytic leukemia. Blood Adv 2021; 6:652-663. [PMID: 34625794 PMCID: PMC8791572 DOI: 10.1182/bloodadvances.2021005300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Metabolic rewiring promotes ATO resistance in APL, independent of PML mutation status. Inhibition of mitochondrial respiration combined with ATO is a potential therapeutic option for relapsed APL and non-M3 AML.
Acquired genetic mutations can confer resistance to arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL). However, such resistance-conferring mutations are rare and do not explain most disease recurrence seen in the clinic. We have generated stable ATO-resistant promyelocytic cell lines that are less sensitive to all-trans retinoic acid (ATRA) and the combination of ATO and ATRA compared with the sensitive cell line. Characterization of these resistant cell lines that were generated in-house showed significant differences in immunophenotype, drug transporter expression, anti-apoptotic protein dependence, and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) mutation. Gene expression profiling revealed prominent dysregulation of the cellular metabolic pathways in these ATO-resistant APL cell lines. Glycolytic inhibition by 2-deoxyglucose (2-DG) was sufficient and comparable to the standard of care (ATO) in targeting the sensitive APL cell line. 2-DG was also effective in the in vivo transplantable APL mouse model; however, it did not affect the ATO-resistant cell lines. In contrast, the resistant cell lines were significantly affected by compounds targeting mitochondrial respiration when combined with ATO, irrespective of the ATO resistance-conferring genetic mutations or the pattern of their anti-apoptotic protein dependency. Our data demonstrate that combining mitocans with ATO can overcome ATO resistance. We also show that this combination has potential for treating non-M3 acute myeloid leukemia (AML) and relapsed APL. The translation of this approach in the clinic needs to be explored further.
Collapse
|
37
|
Kirtonia A, Ashrafizadeh M, Zarrabi A, Hushmandi K, Zabolian A, Bejandi AK, Rani R, Pandey AK, Baligar P, Kumar V, Das BC, Garg M. Long noncoding RNAs: A novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol 2021; 237:450-465. [PMID: 34569616 DOI: 10.1002/jcp.30590] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefe K Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reshma Rani
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, India
| | - Amit K Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
38
|
Yao H, Huo L, Ping N, Liu H, Li H, Ding Z, Shen H, Xie J, Qiu Q, Ma L, Jiang A, Wang Q, Wu D, Yang X, Song Y, Chen S. Recurrent mutations in multiple components of the SWI/SNF complex in myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2021; 196:441-444. [PMID: 34535894 DOI: 10.1111/bjh.17795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Yao
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, P.R. China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Li Huo
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Nana Ping
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Hong Liu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Zixuan Ding
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Hongjie Shen
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Jundan Xie
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Qiaocheng Qiu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Liang Ma
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Airui Jiang
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Qian Wang
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Depei Wu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Xiaofei Yang
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| | - Yaohua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, P.R. China
| | - Suning Chen
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P.R. China
| |
Collapse
|
39
|
Zeisig BB, So CWE. Therapeutic Opportunities of Targeting Canonical and Noncanonical PcG/TrxG Functions in Acute Myeloid Leukemia. Annu Rev Genomics Hum Genet 2021; 22:103-125. [PMID: 33929894 DOI: 10.1146/annurev-genom-111120-102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional deregulation is a key driver of acute myeloid leukemia (AML), a heterogeneous blood cancer with poor survival rates. Polycomb group (PcG) and Trithorax group (TrxG) genes, originally identified in Drosophila melanogaster several decades ago as master regulators of cellular identity and epigenetic memory, not only are important in mammalian development but also play a key role in AML disease biology. In addition to their classical canonical antagonistic transcriptional functions, noncanonical synergistic and nontranscriptional functions of PcG and TrxG are emerging. Here, we review the biochemical properties of major mammalian PcG and TrxG complexes and their roles in AML disease biology, including disease maintenance as well as drug resistance. We summarize current efforts on targeting PcG and TrxG for treatment of AML and propose rational synthetic lethality and drug-induced antagonistic pleiotropy options involving PcG and TrxG as potential new therapeutic avenues for treatment of AML.
Collapse
Affiliation(s)
- Bernd B Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| |
Collapse
|
40
|
Wang Y, Rui Y, Shen Y, Li J, Liu P, Lu Q, Fang Y. Myeloid Sarcoma Type of Acute Promyelocytic Leukemia With a Cryptic Insertion of RARA Into FIP1L1: The Clinical Utility of NGS and Bioinformatic Analyses. Front Oncol 2021; 11:688203. [PMID: 34249738 PMCID: PMC8264125 DOI: 10.3389/fonc.2021.688203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background Acute promyelocytic leukemia (APL) is characterized by the presence of coagulopathy at onset and translocation t (15; 17) (q22; 21), meanwhile, other translocation variants of APL have also been reported. The FIP1L1-RARA fusion gene has recently been reported as a novel RARA-associated fusion gene. Objectives We report a case of de novo myeloid sarcoma (MS) type of APL with FIP1L1-RARA found by next-generation sequencing (NGS) that was not detected by conventional analyze analysis for RARA translocations. Methods We performed typical morphological, magnetic resonance imaging (MRI), conventional tests for PML-RARA dual-fusion translocation probe, high-through sequencing and NGS. Meanwhile, bioinformatics analyses were done by using public repositories, including ONCOMINE, COSMIC, and GeneMANIA analysis. Results A 28-month-old girl with a complex karyotype that includes 46,XX,t(4;17)(q12;q22)[9]/46,idem,del(16)(q22)[3]/45,idem,-x,-4,-9,-15,del(16)(q22),+marl,+mar2,+mar3[7]/46,xx[3], c.38G>A (p.Gly13Asp) in the KRAS gene, and a cryptic insertion of RARA gene into the FIP1L1 gene was diagnosed with APL complicated by the de novo MS. Conclusion We report a FIP1L1-RARA fusion in a child with APL who presented with an extramedullary tumor in the skull without the classic karyotype using NGS, whom we treated with good results. NGS analysis should be considered for APL variant cases. Further experimental studies to the association between the mutation in KRAS gene and FIP1L1-RARA fusion on the clinical phenotype and progression of APL are needed to identify more effective therapeutic targets for APL.
Collapse
Affiliation(s)
- Yongren Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yaoyao Rui
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Poning Liu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Qin Lu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv 2021; 5:900-912. [PMID: 33560403 DOI: 10.1182/bloodadvances.2020003709] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.
Collapse
|
42
|
Fabiani E, Cicconi L, Nardozza AM, Cristiano A, Rossi M, Ottone T, Falconi G, Divona M, Testi AM, Annibali O, Castelli R, Lazarevic V, Rego E, Montesinos P, Esteve J, Venditti A, Della Porta M, Arcese W, Lo-Coco F, Voso MT. Mutational profile of ZBTB16-RARA-positive acute myeloid leukemia. Cancer Med 2021; 10:3839-3847. [PMID: 34042280 PMCID: PMC8209618 DOI: 10.1002/cam4.3904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background The ZBTB16‐RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor‐α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all‐trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis. Aims The mutational profile of ZBTB16‐RARA rearranged AML has not been described so far. Materials and methods We performed targeted next‐generation sequencing of 24 myeloid genes in BM diagnostic samples from seven ZBTB16‐RARA+AML, 103 non‐RARA rearranged AML, and 46 APL. The seven ZBTB16‐RARA‐positive patients were then screened for additional mutations using whole exome sequencing (n = 3) or an extended cancer panel including 409 genes (n = 4). Results ZBTB16‐RARA+AML showed an intermediate number of mutations per patient and involvement of different genes, as compared to APL and other AMLs. In particular, we found a high incidence of ARID1A mutations in ZBTB16‐RARA+AML (five of seven cases, 71%). Mutations in ARID2 and SMARCA4, other tumor suppressor genes also belonging to SWI/SNF chromatin remodeling complexes, were also identified in one case (14%). Discussion and conclusion Our data suggest the association of mutations of the ARID1A gene and of the other members of the SWI/SNF chromatin remodeling complexes with ZBTB16‐RARA+AMLs, where they may support the peculiar disease phenotype.
Collapse
Affiliation(s)
- Emiliano Fabiani
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Laura Cicconi
- Unit of Hematology, Santo Spirito Hospital, Rome, Italy
| | - Anna Maria Nardozza
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Marianna Rossi
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine and Hematology, Sapienza University, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Biomedico, Rome, Italy
| | - Roberto Castelli
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Milan, Italy
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Eduardo Rego
- Department of Internal Medicine, Medical School of Ribeirao Preto, Sau Paulo, Brazil
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnico la Fe, Valencia, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Matteo Della Porta
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| |
Collapse
|
43
|
Esnault C, Rahmé R, de Thé H. [Arsenic: The gold standard for acute promyelocytic leukaemia with FLT3-ITD mutation]. Med Sci (Paris) 2021; 37:544-546. [PMID: 34003103 DOI: 10.1051/medsci/2021048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cécile Esnault
- Inserm U944, CNRS UMR7212, IRSL, Université de Paris, Hôpital Saint-Louis, 16, rue de la Grange aux Belles, Paris, France
| | - Ramy Rahmé
- Department of oncological sciences, Icahn school of medicine, Mount Sinai, 1425 Madison Avenue, New York, États-Unis
| | - Hugues de Thé
- Inserm U944, CNRS UMR7212, IRSL, Université de Paris, Hôpital Saint-Louis, 16, rue de la Grange aux Belles, Paris, France. - Collège de France, Université Paris sciences et lettres, Inserm U1050, CNRS UMR7241, 11 place Marcelin Berthelot, 75005 Paris, France. - Service de biochimie, AP-HP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
44
|
Zhang X, Sun J, Yu W, Jin J. Current views on the genetic landscape and management of variant acute promyelocytic leukemia. Biomark Res 2021; 9:33. [PMID: 33957999 PMCID: PMC8101136 DOI: 10.1186/s40364-021-00284-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of promyelocytes in bone marrow. More than 95% of patients with this disease belong to typical APL, which express PML-RARA and are sensitive to differentiation induction therapy containing all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), and they exhibit an excellent clinical outcome. Compared to typical APL, variant APL showed quite different aspects, and how to recognize, diagnose, and treat variant APL remained still challenged at present. Herein, we drew the genetic landscape of variant APL according to recent progresses, then discussed how they contributed to generate APL, and further shared our clinical experiences about variant APL treatment. In practice, when APL phenotype was exhibited but PML-RARA and t(15;17) were negative, variant APL needed to be considered, and fusion gene screen as well as RNA-sequencing should be displayed for making the diagnosis as soon as possible. Strikingly, we found that besides of RARA rearrangements, RARB or RARG rearrangements also generated the phenotype of APL. In addition, some MLL rearrangements, NPM1 rearrangements or others could also drove variant APL in absence of RARA/RARB/RARG rearrangements. These results indicated that one great heterogeneity existed in the genetics of variant APL. Among them, only NPM1-RARA, NUMA-RARA, FIP1L1-RARA, IRF2BP2-RARA, and TFG-RARA have been demonstrated to be sensitive to ATRA, so combined chemotherapy rather than differentiation induction therapy was the standard care for variant APL and these patients would benefit from the quick switch between them. If ATRA-sensitive RARA rearrangement was identified, ATRA could be added back for re-induction of differentiation. Through this review, we hoped to provide one integrated view on the genetic landscape of variant APL and helped to remove the barriers for managing this type of disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| | - Jiewen Sun
- Center Laboratory, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| |
Collapse
|
45
|
Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of Cohesin Mutation in Acute Myeloid Leukemia and Its Clinical Significance. Front Oncol 2021; 11:579881. [PMID: 33928020 PMCID: PMC8076553 DOI: 10.3389/fonc.2021.579881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of gene mutation is a major contributor to the initiation and propagation of acute myeloid leukemia (AML). Accumulating evidence suggests that genes encoding cohesin subunits have a high prevalence of mutations in AML, especially in the t(8;21) subtype. Therefore, it is important to understand how cohesin mutations contribute to leukemogenesis. However, the fundamental understanding of cohesin mutation in clonal expansion and myeloid transformation in hematopoietic cells remains ambiguous. Previous studies briefly introduced the cohesin mutation in AML; however, an in-depth summary of mutations in AML was not provided, and the correlation between cohesin and AML1-ETO in t (8;21) AML was also not analyzed. By summarizing the major findings regarding the cohesin mutation in AML, this review aims to define the characteristics of the cohesin complex mutation, identify its relationships with co-occurring gene mutations, assess its roles in clonal evolution, and discuss its potential for the prognosis of AML. In particular, we focus on the function of cohesin mutations in RUNX1-RUNX1T1 fusion.
Collapse
Affiliation(s)
- Caixia Han
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
46
|
Andrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, dos Santos-Bueno FV, Vianna DT, Marques LVC, Terra-Granado E, Zalcberg I, Santos MDO, Costa JT, Noronha EP, Thuler LCS, Wiemels JL, Pombo-de-Oliveira MS. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol 2021; 11:642744. [PMID: 33816294 PMCID: PMC8017304 DOI: 10.3389/fonc.2021.642744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have suggested a variation in the incidence of acute promyelocytic leukemia (APL) among the geographic regions with relatively higher percentages in the Latin American population. We aimed to explore the population burden of pediatric APL, gathering information from the population-based cancer registry (PBCR) and the diagnosis of APL obtained through incident cases from a hospital-based cohort. The homozygous deletion in glutathione S-transferases (GSTs) leads to a loss of enzyme detoxification activity, possibly affecting the treatment response. Mutations in the RAS pathway genes are also considered to be a key component of the disease both in the pathogenesis and in the outcomes. We have assessed mutations in a RAS-MAP kinase pathway (FLT3, PTPN11, and K-/NRAS) and GST variant predisposition risk in the outcome. Out of the 805 children and adolescents with acute myeloid leukemia (AML) who are registered in the PBCR, 35 (4.3%) were APL cases. The age-adjusted incidence rate (AAIR) was 0.03 per 100,000 person-years. One-hundred and sixty-three patients with APL were studied out of 931 AML cases (17.5%) from a hospital-based cohort. Mutations in FLT3, KRAS, and NRAS accounted for 52.1% of the cases. Patients with APL presented a 5-year probability of the overall survival (OS) of 67.3 ± 5.8%. A GST-theta 1 (GSTT1) null genotype conferred adverse prognosis, with an estimated hazard ratio of 2.8, 95% confidence interval (CI) 1.2-6.9. We speculate that the GSTT1 polymorphism is associated with therapeutics and would allow better OS of patients with APL with a GSTT1 null genotype.
Collapse
Affiliation(s)
- Francianne G. Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suellen V. M. Feliciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ingrid Sardou-Cezar
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gisele D. Brisson
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Filipe V. dos Santos-Bueno
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Danielle T. Vianna
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa V. C. Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ilana Zalcberg
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marceli de O. Santos
- Surveillance and Prevention, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Juliana T. Costa
- Department of Pediatric Hematology-Oncology, Hospital Martagão Gesteira, Salvador, Brazil
| | - Elda P. Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luiz C. S. Thuler
- Clinical Research Department, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Chen Y, Miao S, Zhao W. Identification and validation of significant gene mutations to predict clinical benefit of immune checkpoint inhibitors in lung adenocarcinoma. Am J Transl Res 2021; 13:1051-1063. [PMID: 33841639 PMCID: PMC8014424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICI) has achieved remarkable clinical benefit in advanced lung adenocarcinoma (LUAD). However, effective clinical use of ICI agents is encumbered by the high rate of innate resistance. The aim of our research is to identify significant gene mutations which can predict clinical benefit of immune checkpoint inhibitors in LUAD. METHODS The "mafComapre" function of "MafTools" package was used to screen the differentially mutated genes between durable clinical benefit (DCB) group and no durable clinical benefit (NDB) group based on the somatic mutation data from NSCLc_PD1_mSK_2018. Machine learning was performed to select significantly mutated genes to accurately classify patients into DCB group and NDB group. A nomogram model was constructed based on the significantly mutated genes to predict the susceptibility of patients to ICI. Finally, we explored the correlation between two classifications of immune cell infiltration, PD-1 and PD-L1 expression, tumor mutational burden (TMB) and prognosis. RESULTS Through utilize machine learning, 6 significantly mutated genes were obtained from 8 differentially mutated genes and used to accurately classify patients into DCB group and NDB group. The DCA curve and clinical impact curve revealed that the patients can benefit from the decisions made based on the nomogram model. Patients highly sensitive to ICI have elevated immune activity, higher expression of PD-1 and PD-L1, increased TMB, and well prognosis if they accept ICI treatment. CONCLUSIONS Our research selected 6 significantly mutated genes that can predict clinical benefit of ICI in LUAD patients.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ultrasound, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Shaoyi Miao
- Department of Respiratory, The Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Wancheng Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical UniversityShenyang 110000, China
| |
Collapse
|
48
|
Feusier JE, Arunachalam S, Tashi T, Baker MJ, VanSant-Webb C, Ferdig A, Welm BE, Rodriguez-Flores JL, Ours C, Jorde LB, Prchal JT, Mason CC. Large-Scale Identification of Clonal Hematopoiesis and Mutations Recurrent in Blood Cancers. Blood Cancer Discov 2021; 2:226-237. [PMID: 34027416 DOI: 10.1158/2643-3230.bcd-20-0094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by detectable hematopoietic-associated gene mutations in a person without evidence of hematologic malignancy. We sought to identify additional cancer-presenting mutations useable for CHIP detection by performing a data mining analysis of 48 somatic mutation studies reporting mutations at diagnoses of 7,430 adult and pediatric patients with hematologic malignancies. Following extraction of 20,141 protein-altering mutations, we identified 434 significantly recurrent mutation hotspots, 364 of which occurred at loci confidently assessable for CHIP. We then performed an additional large-scale analysis of whole exome sequencing data from 4,538 persons belonging to three non-cancer cohorts for clonal mutations. We found the combined cohort prevalence of CHIP with mutations identical to those reported at blood cancer mutation hotspots to be 1.8%, and that some of these CHIP mutations occurred in children. Our findings may help to improve CHIP detection and pre-cancer surveillance for both children and adults.
Collapse
Affiliation(s)
- Julie E Feusier
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA.,Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sasi Arunachalam
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tsewang Tashi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,VA Medical Center, Salt Lake City, UT, USA
| | - Monika J Baker
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Chad VanSant-Webb
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Amber Ferdig
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Christopher Ours
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Josef T Prchal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,VA Medical Center, Salt Lake City, UT, USA
| | - Clinton C Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
49
|
Dillon R, Ahearne MJ, Quek L, Potter N, Jovanovic J, Foot N, Valganon M, Jayne S, Dennis M, Raj K, Tauro S, Dyer MJS, Russell N, Solomon E, Grimwade D. Therapy-related leukaemias with balanced translocations can arise from pre-existing clonal haematopoiesis. Leukemia 2021; 35:2407-2411. [PMID: 33547376 PMCID: PMC8324469 DOI: 10.1038/s41375-021-01150-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Richard Dillon
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK ,grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK ,grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Matthew J. Ahearne
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Lynn Quek
- grid.421962.a0000 0004 0641 4431Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK ,grid.13097.3c0000 0001 2322 6764Department of Haematology, King’s College, London, UK
| | - Nicola Potter
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - Jelena Jovanovic
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - Nicola Foot
- grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Mikel Valganon
- grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Sandrine Jayne
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Mike Dennis
- grid.415720.50000 0004 0399 8363Department of Haematology, The Christie Hospital, Manchester, UK
| | - Kavita Raj
- grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK
| | - Sudhir Tauro
- grid.416266.10000 0000 9009 9462Department of Haematology, Ninewells Hospital and Medical School, Dundee, UK
| | - Martin J. S. Dyer
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Nigel Russell
- grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK
| | - Ellen Solomon
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - David Grimwade
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| |
Collapse
|
50
|
Fouzia NA, Sharma V, Ganesan S, Palani HK, Balasundaram N, David S, Kulkarni UP, Korula A, Devasia AJ, Nair SC, Janet NB, Abraham A, Mani T, Lakshmanan J, Balasubramanian P, George B, Mathews V. Management of relapse in acute promyelocytic leukaemia treated with up-front arsenic trioxide-based regimens. Br J Haematol 2020; 192:292-299. [PMID: 33216980 PMCID: PMC7894296 DOI: 10.1111/bjh.17221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The standard of care for patients with acute promyelocytic leukaemia (APL) relapsing after front-line treatment with arsenic trioxide (ATO)-based regimens remains to be defined. A total of 67 patients who relapsed after receiving ATO-based up-front therapy and were also salvaged using an ATO-based regimen were evaluated. The median (range) age of patients was 28 (4-54) years. While 63/67 (94%) achieved a second molecular remission (MR) after salvage therapy, three (4·5%) died during salvage therapy. An autologous stem cell transplant (auto-SCT) was offered to all patients who achieved MR, 35/63 (55·6%) opted for auto-SCT the rest were administered an ATO + all-trans retinoic acid maintenance regimen. The mean (SD) 5-year Kaplan-Meier estimate of overall survival and event-free survival of those who received auto-SCT versus those who did not was 90·3 (5·3)% versus 58·6 (10·4)% (P = 0·004), and 87·1 (6·0)% versus 47·7 (10·3)% (P = 0·001) respectively. On multivariate analysis, failure to consolidate MR with an auto-SCT was associated with a significantly increased risk of relapse [hazard ratio (HR) 4·91, 95% confidence interval (CI) 1·56-15·41; P = 0·006]. MR induction with ATO-based regimens followed by an auto-SCT in children and young adults with relapsed APL who were treated with front-line ATO-based regimens was associated with excellent long-term survival.
Collapse
Affiliation(s)
- N A Fouzia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vibhor Sharma
- Department of Haematology, Christian Medical College, Vellore, India
| | - Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Hamenth K Palani
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Sachin David
- Department of Haematology, Christian Medical College, Vellore, India
| | - Uday P Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Sukesh C Nair
- Department of Immunohaematology and Transfusion Medicine, Christian Medical College, Vellore, India
| | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Thenmozhi Mani
- Department of Biostatistics, Christian Medical College, Vellore, India
| | | | | | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|