1
|
Reinhardt C, Ochsenbein AF. Immune checkpoints regulate acute myeloid leukemia stem cells. Leukemia 2025:10.1038/s41375-025-02566-x. [PMID: 40175626 DOI: 10.1038/s41375-025-02566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Acute myeloid leukemia stem cells (LSCs) express major histocompatibility complex (MHC) class I and II and many different immune checkpoint ligands and receptors, in which respect they resemble professional antigen-presenting cells. In addition, LSCs reside in the bone marrow (BM), a primary and secondary lymphoid organ, surrounded by immune cells. The function of these immune checkpoints (ICs) in the regulation of an anti-tumor immune response is well studied and IC inhibitors (ICIs) became a standard of care in many solid tumors. However, ICIs have very limited efficacy in AML. Nevertheless, the expression especially of immune activating ligands and receptors on LSCs is somewhat unexpected, since these cells have to evade protective immunity. Many ICs have been shown to mediate direct signaling in AML blasts and LSCs and thereby regulate self-renewal, differentiation and expansion of leukemic cells. Thus, the expression of ICs on the cell surface or their soluble forms often correlate with worse survival. In this review we summarize recent data on selected ICs of the immunoglobulin superfamily (IgSF) and the tumor necrosis factor receptor superfamily (TNFRSF) that have a documented role in the regulation of LSCs, independent of their immune regulatory role, and might become novel therapeutic targets.
Collapse
Affiliation(s)
- Chantal Reinhardt
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
- Department of Medicine Solna, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Adrian F Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.
| |
Collapse
|
2
|
Luo Y, Yuan Y, Liu D, Peng H, Shen L, Chen Y. Targeting novel immune checkpoints in the B7-H family: advancing cancer immunotherapy from bench to bedside. Trends Cancer 2025:S2405-8033(25)00055-X. [PMID: 40113530 DOI: 10.1016/j.trecan.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The B7-H family of immune checkpoint molecules is a crucial component of the immune regulatory network for tumors, offering new opportunities to modulate the tumor microenvironment (TME). The B7-H family - which includes B7-H2 (inducible T cell costimulatory ligand, ICOSL), B7-H3, B7-H4, B7-H5 (V-domain immunoglobulin suppressor of T cell activation, VISTA), B7-H6, and B7-H7 (HHLA2) - is known for its diverse roles in regulating innate and adaptive immunity. These molecules can exhibit co-stimulatory or co-inhibitory effects on T cells, influencing processes such as T cell activation, differentiation, and effector functions, and they are involved in the recruitment and polarization of various immune cells. This review explores the structural characteristics, receptor-ligand interactions, and signaling pathways associated with each B7-H family member. We also discuss the family's impact on tumor immunity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Luo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Early Drug Development Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing 102200, China.
| |
Collapse
|
3
|
Xia F, Zhang Z, Qian Z, Fang X, Wang J, Wang Y, Sun G, Yu Y, Wang N, Zhen J, Liu Y, Lu Y. The immune checkpoint molecule B7-H4 regulates β-cell mass and insulin secretion by modulating cholesterol metabolism through Stat5 signalling. Mol Metab 2025; 91:102069. [PMID: 39571901 PMCID: PMC11636127 DOI: 10.1016/j.molmet.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE B7-H4 (B7S1, B7x, VTCN1) is an important immune checkpoint molecule that maintains immune homeostasis and is also expressed in pancreatic β cells. The polymorphism of B7-H4 influences the prevalence of Type 2 diabetes (T2D), suggesting a potential role of B7-H4 in the physiological function of pancreatic β cells and the pathogenesis of T2D. METHODS β-cell-specific B7-H4 knockout mice (B7-H4 cKO mice) and their wild-type littermates were used to investigate the in vivo effects of B7-H4 on pancreatic β-cell morphology and function. AAV2/8-ins2-B7H4 and a control virus were infused via the pancreatic intraduct into high-fat diet (HFD)-treated mice to elucidate the therapeutic effect of B7-H4. RNA sequencing was conducted on primary islets. A Luminex assay was used to quantify cytokine changes in B7-H4 cKO mice. Electron microscopy imaging was used to observe insulin secretory vesicles in pancreatic β cells. RESULTS Lesion of B7-H4 in β cells results in glucose intolerance due to reduced β-cell mass and deficient insulin secretion, whereas overexpression of B7-H4 in β cells ameliorates glucose intolerance in HFD-fed mice. Mechanistically, B7-H4 deficiency activates signal transducer and activator of transcription 5 (Stat5) signalling, which inhibits the expression of apolipoprotein F (Apof), leading to reduced cholesterol efflux and accumulated cholesterol in β cells, thereby impairing insulin processing and secretion. Overexpression of Apof in β cells or intraperitoneal injection of a Stat5 inhibitor reverses the metabolic phenotype and insulin secretion deficiency in B7-H4 cKO mice. CONCLUSION Our study demonstrated that B7-H4 plays an important role in regulating β-cell mass and insulin secretion, which may shed new light on the development of novel strategies for T2D treatment.
Collapse
Affiliation(s)
- Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| | - Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Zhen Qian
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Fang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junxue Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yan Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Guoting Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ninjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Junke Zhen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Kegyes D, Milea PA, Mazga AI, Tigu AB, Nistor M, Cenariu D, Tomai R, Buruiana S, Einsele H, Daniela Tănase A, Tomuleasa C. Looking ahead to targeting macrophages by CAR T- or NK-cells in blood cancers. Expert Opin Ther Targets 2024; 28:779-787. [PMID: 39235181 DOI: 10.1080/14728222.2024.2400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The bone marrow microenvironment (BME) is critical for healthy hematopoiesis and is often disrupted in hematologic malignancies. Tumor-associated macrophages (TAMs) are a major cell type in the tumor microenvironment (TME) and play a significant role in tumor growth and progression. Targeting TAMs and modulating their polarization is a promising strategy for cancer therapy. AREAS COVERED In this review, we discuss the importance of TME and different multiple possible targets to modulate immunosuppressive TAMs such as: CD123, Sphingosine 1-Phosphate Receptors, CD19/CD1d, CCR4/CCL22, CSF1R (CD115), CD24, CD40, B7 family proteins, MARCO, CD47, CD163, CD204, CD206 and folate receptors. EXPERT OPINION Innovative approaches to combat the immunosuppressive milieu of the tumor microenvironment in hematologic malignancies are of high clinical significance and may lead to increased survival, improved quality of life, and decreased toxicity of cancer therapies. Standard procedures will likely involve a combination of CAR T/NK-cell therapies with other treatments, leading to more comprehensive cancer care.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Paul Alexandru Milea
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea-Isabella Mazga
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Tomai
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Hermann Einsele
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany
| | - Alina Daniela Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ciprian Tomuleasa
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
5
|
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, Świętochowska E. B7H4 Role in Solid Cancers: A Review of the Literature. Cancers (Basel) 2024; 16:2519. [PMID: 39061159 PMCID: PMC11275172 DOI: 10.3390/cancers16142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Katarzyna Psykała
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
6
|
Zhang Z, Sun G, Wang Y, Wang N, Lu Y, Chen Y, Xia F. Integrated Bioinformatics Analysis Revealed Immune Checkpoint Genes Relevant to Type 2 Diabetes. Diabetes Metab Syndr Obes 2024; 17:2385-2401. [PMID: 38881696 PMCID: PMC11179640 DOI: 10.2147/dmso.s458030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Chronic low-grade inflammation of the pancreatic islets is the characteristic of type 2 diabetes (T2D), and some of the immune checkpoints may play important roles in the pancreatic islet inflammation. Thus, we aim to explore the immune checkpoint genes (ICGs) associated with T2D, thereby revealing the role of ICGs in the pathogenesis of T2D based on bioinformatic analyses. Methods Differentially expressed genes (DEGs) and immune checkpoint genes (ICGs) of islets between T2D and control group were screened from datasets of the Gene Expression Omnibus (GEO). A risk model was built based on the coefficients of ICGs calculated by ridge regression. Functional enrichment analysis and immune cell infiltration estimation were conducted. Correlations between ICGs and hub genes, T2D-related disease genes, insulin secretion genes, and beta cell function-related genes were analyzed. Finally, we conducted RT-PCR to verify the expression of these ICGs. Results In total, pancreatic islets from 19 cases of T2D and 84 healthy subjects were included. We identified 458 DEGs. Six significantly upregulated ICGs (CD44, CD47, HAVCR2, SIRPA, TNFSF9, and VTCN1) in T2D were screened out. These ICGs were significantly correlated with several hub genes and T2D-related genes; furthermore, they were correlated with insulin secretion and β cell function-related genes. The analysis of immune infiltration showed that the concentrations of eosinophils, T cells CD4 naive, and T cells regulatory (Tregs) were significantly higher, but CD4 memory resting T cells and monocytes were lower in islets of T2D patients. The infiltrated immune cells in T2D pancreatic islet were associated with these six ICGs. Finally, the expression levels of four ICGs were confirmed by RT-PCR, and three ICGs were validated in another independent dataset. Conclusion In conclusion, the identified ICGs may play an important role in T2D. Identification of these differential genes may provide new clues for the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoting Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Shi Z, Wu H. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data. Comput Biol Med 2024; 173:108336. [PMID: 38513390 DOI: 10.1016/j.compbiomed.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Single-cell Hi-C (scHi-C) has emerged as a powerful technology for deciphering cell-to-cell variability in three-dimensional (3D) chromatin organization, providing insights into genome-wide chromatin interactions and their correlation with cellular functions. Nevertheless, the accurate identification of cell types across different datasets remains a formidable challenge, hindering comprehensive investigations into genome structure. In response, we introduce CTPredictor, an innovative computational method that integrates multi-scale features to accurately predict cell types in various datasets. CTPredictor strategically incorporates three distinct feature sets, namely, small intra-domain contact probability (SICP), smoothed small intra-domain contact probability (SSICP), and smoothed bin contact probability (SBCP). The resulting fusion classification model significantly enhances the accuracy of cell type prediction based on single-cell Hi-C data (scHi-C). Rigorous benchmarking against established methods and three conventional machine learning approaches demonstrates the robust performance of CTPredictor, positioning it as an advanced tool for cell type prediction within scHi-C data. Beyond its prediction capabilities, CTPredictor holds promise in illuminating 3D genome structures and their functional significance across a wide array of biological processes.
Collapse
Affiliation(s)
- Zhenqi Shi
- School of Software, Shandong University, 250100, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, 250100, Jinan, China.
| |
Collapse
|
8
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
9
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
10
|
Depletion of B7-H4 from C3H10 T1/2 Mesenchymal Stem Cells Attenuates their Immunomodulatory Therapy in Experimental Autoimmune Encephalomyelitis Mice. Neurotox Res 2022; 40:763-774. [DOI: 10.1007/s12640-022-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
11
|
Zhang W, Qiu Y, Xie X, Fu Y, Wang L, Cai Z. B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy? Front Oncol 2021; 11:647526. [PMID: 33869045 PMCID: PMC8044412 DOI: 10.3389/fonc.2021.647526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
T cells play a vital role in the immune responses against tumors. Costimulatory or coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have shown remarkable benefits in patients with various tumor, but few patients have displayed significant immune responses against tumors after PD-1/PD-L1 immunotherapy and many have been completely unresponsive. Thus, researchers must explore novel immune checkpoints that trigger durable antitumor responses and improve clinical outcomes. In this regard, other B7 family checkpoint molecules have been identified, namely PD-L2, B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the expression, clinical significance and roles of B7 family molecules in lymphoma, as well as in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and immunotherapeutic strategies for patients with lymphoma.
Collapse
Affiliation(s)
- Wei Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yu Qiu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yao Fu
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Hao TT, Liao R, Lei DL, Hu GL, Luo F. Inhibition of B7-H4 promotes hepatocellular carcinoma cell apoptosis and autophagy through the PI3K signaling pathway. Int Immunopharmacol 2020; 88:106889. [PMID: 32805693 DOI: 10.1016/j.intimp.2020.106889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
B7-H4 and autophagy can regulate or be induced by the PI3K signaling pathway. However, the association between B7-H4 and autophagy in hepatocellular carcinoma (HCC)remains unclear. The aim of this work was to investigate whether B7-H4 regulates autophagy via the PI3K signaling pathway in HCC cells. Here, western blotting was used to measure the expression of the related proteins involved in changes in of autophagy and apoptosis, such as LC3, P62, cleaved caspase 3, cleaved PARP, BCL-2, and BAX in Huh7 and Hep3B cells. Additionally, PI3K/AKT/mTOR signaling pathway proteins were measured. Cell counting kit-8 and flow cytometry were used to analyze the effects of B7-H4 siRNA interference on cell proliferation with the interference of B7-H4 siRNA. We found that B7-H4 siRNA increased HCC cell apoptosis and autophagy, and reduced cell proliferation. Moreover, the apoptosis-related proteins cleaved caspase 3, cleaved PARP and BAX were increased and Bcl-2 was decreased after B7-H4 siRNA interference. The expression level of the autophagy-related protein LC3Ⅱ was upregulated, while expression of the autophagy adaptor P62 expression was decreased in B7-H4 siRNA-pretreated cells. Furthermore, our data revealed that B7-H4 regulated apoptosis and autophagy through the PI3K signaling pathway in HCC cells. Therefore, these results suggested that B7-H4 plays an important role in HCC progression by affecting cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Tuan-Tuan Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Deng-Liang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gang-Li Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Li A, Zhang N, Zhao Z, Chen Y, Zhang L. Overexpression of B7-H4 promotes renal cell carcinoma progression by recruiting tumor-associated neutrophils via upregulation of CXCL8. Oncol Lett 2020; 20:1535-1544. [PMID: 32724395 PMCID: PMC7377185 DOI: 10.3892/ol.2020.11701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
The immune checkpoint molecule B7 family member H4 (B7-H4) plays a similar role to programmed death-ligand 1 in tumor immune evasion by regulating T-cell-mediated immune responses. However, besides the role in T-cell immunity, B7-H4 also affects tumor cell biology by promoting tumor cell proliferation, metastasis and angiogenesis. In order to explore the effect of B7-H4 on tumor cell biology, it is necessary to investigate the gene expression profile when B7-H4 is overexpressed. In the present study, 786-O cells were transfected to stably express B7-H4. A microarray technique was subsequently used to screen B7-H4-related differentially expressed genes (DEGs) in B7-H4/786-O cells compared with negative control (NC)/786-O cells. The protein expression of the upregulated DEGs, including non-metastatic cells 5, NME/NM23 family member 5 (NME5), membrane metalloendopeptidase (MME), vascular non-inflammatory molecule 1 (VNN1), matrix metalloproteinase (MMP) 7, tumor necrosis factor, C-X-C motif chemokine ligand (CXCL) 8, CXCL1 and C-C motif chemokine ligand (CCL) 2, was investigated using western blotting. Kidney renal papillary cell carcinoma mRNA-sequencing data obtained from The Cancer Genome Atlas revealed that chemokines, including CXCL1/2/3, CXCL8, MMP7 and CCL20, were positively correlated with B7-H4 gene expression. Furthermore, 59 clinical renal cell carcinoma tissues were collected and analyzed by immunohistochemical staining. The results revealed the positive correlation of B7-H4 with CCL20 and CXCL8, and validated the DEGs identified in tumor cell lines. 786-O transfectants were inoculated into non-obese diabetic/severe combined immunodeficiency mice, and tumor growth was investigated. B7-H4 overexpression promoted tumor growth and administration of anti-CXCL8 antibody reversed this effect. Furthermore, B7-H4 overexpression increased the number of tumor-infiltrating neutrophils while inhibition of CXCL8 abrogated this effect. These data indicated that recruitment of neutrophils in the tumor microenvironment by CXCL8 serves an important role in the tumor promotion effect of B7-H4. The present study revealed a novel mechanism of B7-H4 in tumor promotion in addition to T cell inhibition.
Collapse
Affiliation(s)
- Anqi Li
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ningyue Zhang
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiming Zhao
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yali Chen
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liang Zhang
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
14
|
Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:201-226. [PMID: 32185712 DOI: 10.1007/978-981-15-3266-5_9] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune checkpoint molecules, including inhibitory and stimulatory immune checkpoint molecules, are defined as ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. Most of the immune checkpoint molecules that have been described so far are expressed on cells of the adaptive immune system, particularly on T cells, and of the innate immune system. They are crucial for maintaining the self-tolerance and modulating the length and magnitude of immune responses of effectors in different tissues to minimize the tissue damage. More and more evidences have shown that inhibitory or stimulatory immune checkpoint molecules are expressed on a sizeable fraction of tumor types. Although the main function of tumor cell-associated immune checkpoint molecules is considered to mediate the immune evasion, it has been reported that the immune checkpoint molecules expressed on tumor cells also play important roles in the maintenance of many malignant behaviors, including self-renewal, epithelial-mesenchymal transition, metastasis, drug resistance, anti-apoptosis, angiogenesis, or enhanced energy metabolisms. In this section, we mainly focus on delineating the roles of the tumor cell-associated immune checkpoint molecules beyond immune evasion, such as PD-L1, PD-1, B7-H3, B7-H4, LILRB1, LILRB2, TIM3, CD47, CD137, and CD70.
Collapse
Affiliation(s)
- Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Wang JY, Wang WP. B7-H4, a promising target for immunotherapy. Cell Immunol 2019; 347:104008. [PMID: 31733822 DOI: 10.1016/j.cellimm.2019.104008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
The coinhibitory molecule B7-H4, an important member of the B7 family, is abnormally expressed in tumors, inflammation and autoimmune diseases. B7-H4 negatively regulates T cell immune response and promotes immune escape by inhibiting the proliferation, cytokine secretion, and cell cycle of T cells. Moreover, B7-H4 plays an extremely important role in tumorigenesis and tumor development including cell proliferation, invasion, metastasis, anti-apoptosis, etc. In addition, B7-H4 has the other biological functions, such as protection against type 1 diabetes (T1D) and islet cell transplantation. Therefore, B7-H4 has been identified as a novel marker or a therapeutic target for the treatment of tumors, inflammation, autoimmune diseases, and organ transplantation. Here, we summarized the expression profiles, physiological and pathological functions, and regulatory mechanisms of B7-H4, the signaling pathways involved, as well as B7-H4-based immunotherapy.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wei-Peng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
The B7x Immune Checkpoint Pathway: From Discovery to Clinical Trial. Trends Pharmacol Sci 2019; 40:883-896. [PMID: 31677920 DOI: 10.1016/j.tips.2019.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
B7x (B7 homolog x, also known as B7-H4, B7S1, and VTCN1) was discovered by ourselves and others in 2003 as the seventh member of the B7 family. It is an inhibitory immune checkpoint of great significance to human disease. Tissue-expressed B7x minimizes autoimmune and inflammatory responses. It is overexpressed in a broad spectrum of human cancers, where it suppresses antitumor immunity. Further, B7x and PD-L1 tend to have mutually exclusive expression in cancer cells. Therapeutics targeting B7x are effective in animal models of cancers and autoimmune disorders, and early-phase clinical trials are underway to determine the efficacy and safety of targeting B7x in human diseases. It took 15 years moving from the discovery of B7x to clinical trials. Further studies will be necessary to identify its receptors, reveal its physiological functions in organs, and combine therapies targeting B7x with other treatments.
Collapse
|
17
|
Cong S, Luo H, Li X, Wang F, Hua Y, Zhang L, Zhang Z, Li N, Hou L. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through PTEN signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2446-2454. [PMID: 31934071 PMCID: PMC6949577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Isatin has gained attention in recent years owing to its anticancer properties and is thought to offer medical benefits. Isatin is an endogenous oxidized indole with various behavioral and metabolic properties and is commonly found in mammalian tissues and fluids. It has several plausible applications in biomedical research and has also been investigated as a potential anticancer agent. However, its effects on neuroblastoma (NB) cells are unclear. Here, we evaluate the effects of isatin on neuroblastoma cell metastasis and invasion and reveal the underlying mechanism. METHODS NB cell viability was evaluated with the cell counting kit (CCK)-8 assay. NB cell invasion and migration abilities were tested with transwell and wound healing experiments. The relative mRNA expression of associated molecules was detected with real-time polymerase chain reaction (RT-PCR) and quantitative PCR. The expression level of related proteins was detected with western blotting. RESULTS Isatin inhibited the proliferation, invasion, and migration of neuroblastoma cells in a dose-dependent manner. Isatin increased the expression level of H3K4m1 and phosphatase and tensin homolog (PTEN) and decreased the phosphorylation level of PTEN downstream proteins phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin, focal adhesion kinase, and SHC. Together, these results support the potential anti-metastatic effects of isatin on NB cells.
Collapse
Affiliation(s)
- Shaobo Cong
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Haoyue Luo
- Medical College of Qingdao UniversityQingdao 266071, Shandong, China
| | - Xue Li
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Fangling Wang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Yanan Hua
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| |
Collapse
|