1
|
Barth I, Lee H. Nanophotonic sensing and label-free imaging of extracellular vesicles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:177. [PMID: 40295495 PMCID: PMC12037801 DOI: 10.1038/s41377-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Li Q, Xu E, Zhang X, Tian J, Liu Z. High-Sensitivity Goos-Hänchen Shift Sensing via Surface Plasmon Resonance and Beam Displacement Amplification. SENSORS (BASEL, SWITZERLAND) 2025; 25:1329. [PMID: 40096111 PMCID: PMC11902807 DOI: 10.3390/s25051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Surface plasmon resonance (SPR) sensing technology has been widely utilized in fields such as biomedicine, food safety, and drug screening for real-time, rapid, and label-free detection of biomolecular interactions. However, conventional SPR sensing methods find it difficult to provide the necessary sensitivity and stability when detection applications go toward ultra-low concentrations and tiny molecular weight analytes. Here, we present a high-sensitivity Goos-Hänchen shift sensing based on SPR and beam displacement amplification technology (BDAT). The incorporation of BDAT significantly amplifies the magnitude of GH shift with remarkable stability, enhancing the sensing sensitivity by an order of magnitude. The sensor achieves a sensitivity of 3.62 × 104 μm/RIU and a minimum detection limit of 3.10 × 10-5 RIU. Furthermore, both theoretical and experimental results demonstrate that GH shift sensing offers superior performance compared with traditional intensity-based SPR, particularly for low-concentration solutions. The BDAT approach amplifies GH shifts by at least 12 times, significantly improving sensitivity. With the use of SPR and BDAT, we are able to generate a large GH shift, which makes it easier to detect low concentrations and offers a wide range of possible uses in clinical diagnostics and biomedicine.
Collapse
Affiliation(s)
- Qian Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China; (Q.L.); (E.X.); (J.T.)
- State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Enze Xu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China; (Q.L.); (E.X.); (J.T.)
- State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Xiaoliang Zhang
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong 030600, China;
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China; (Q.L.); (E.X.); (J.T.)
- State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Zhibo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China; (Q.L.); (E.X.); (J.T.)
- State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Moussa NAM, Lee S, Kang SH. MoS 2-Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:111. [PMID: 39852726 PMCID: PMC11768002 DOI: 10.3390/nano15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The combination of molybdenum disulfide (MoS2) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS2's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS2-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS2's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue. This review explores various synthesis strategies for MoS2-plasmonic hybrids, including seed-mediated growth, in situ deposition, and heterojunction formation, which enable tailored configurations optimized for specific biological applications. The primary focus areas include highly sensitive biosensors for detecting cancer and infectious disease biomarkers, high-resolution imaging of cellular dynamics, and the development of phototherapy methods that allow for accurate tumor ablation through light-induced thermal and reactive oxygen species generation. Despite the promising advancements of MoS2-plasmonic hybrids, translating these platforms into clinical practice requires overcoming considerable challenges, such as synthesis reproducibility, toxicity, stability in physiological conditions, targeted delivery, and scalable manufacturing. Addressing these challenges is essential for realizing their potential as next-generation tools in diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Nayra A. M. Moussa
- Basic and Clinical Medical Science Department, Faculty of Dentistry, Deraya University, New Minya 61768, Egypt;
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Adi W, Rosas S, Beisenova A, Biswas SK, Mei H, Czaplewski DA, Yesilkoy F. Trapping light in air with membrane metasurfaces for vibrational strong coupling. Nat Commun 2024; 15:10049. [PMID: 39567485 PMCID: PMC11579285 DOI: 10.1038/s41467-024-54284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Optical metasurfaces can manipulate electromagnetic waves in unprecedented ways at ultra-thin engineered interfaces. Specifically, in the mid-infrared (mid-IR) region, metasurfaces have enabled numerous biochemical sensing, spectroscopy, and vibrational strong coupling (VSC) applications via enhanced light-matter interactions in resonant cavities. However, mid-IR metasurfaces are usually fabricated on solid supporting substrates, which degrade resonance quality factors (Q) and hinder efficient sample access to the near-field electromagnetic hotspots. Besides, typical IR-transparent substrate materials with low refractive indices, such as CaF2, NaCl, KBr, and ZnSe, are usually either water-soluble, expensive, or not compatible with low-cost mass manufacturing processes. Here, we present novel free-standing Si-membrane mid-IR metasurfaces with strong light-trapping capabilities in accessible air voids. We employ the Brillouin zone folding technique to excite tunable, high-Q quasi-bound states in the continuum (qBIC) resonances with our highest measured Q-factor of 722. Leveraging the strong field localizations in accessible air cavities, we demonstrate VSC with multiple quantities of PMMA molecules and the qBIC modes at various detuning frequencies. Our new approach of fabricating mid-IR metasurfaces into semiconductor membranes enables scalable manufacturing of mid-IR photonic devices and provides exciting opportunities for quantum-coherent light-matter interactions, biochemical sensing, and polaritonic chemistry.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Samir Rosas
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Aidana Beisenova
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Shovasis Kumar Biswas
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Hongyan Mei
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - David A Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
6
|
Javaid Z, Iqbal MA, Javeed S, Maidin SS, Morsy K, Shati AA, Choi JR. Reviewing advances in nanophotonic biosensors. Front Chem 2024; 12:1449161. [PMID: 39318420 PMCID: PMC11420028 DOI: 10.3389/fchem.2024.1449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Biosensing, a promising branch of exploiting nanophotonic devices, enables meticulous detection of subwavelength light, which helps to analyze and manipulate light-matter interaction. The improved sensitivity of recent high-quality nanophotonic biosensors has enabled enhanced bioanalytical precision in detection. Considering the potential of nanophotonics in biosensing, this article summarizes recent advances in fabricating nanophotonic and optical biosensors, focusing on their sensing function and capacity. We typically classify these types of biosensors into five categories: phase-driven, resonant dielectric nanostructures, plasmonic nanostructures, surface-enhanced spectroscopies, and evanescent-field, and review the importance of enhancing sensor performance and efficacy by addressing some major concerns in nanophotonic biosensing, such as overcoming the difficulties in controlling biological specimens and lowering their costs for ease of access. We also address the possibility of updating these technologies for immediate implementation and their impact on enhancing safety and health.
Collapse
Affiliation(s)
- Zunaira Javaid
- Department of Biochemistry, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Saher Javeed
- Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Siti Sarah Maidin
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A. Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Reuter C, Hauswald W, Burgold-Voigt S, Hübner U, Ehricht R, Weber K, Popp J. Imaging Diffractometric Biosensors for Label-Free, Multi-Molecular Interaction Analysis. BIOSENSORS 2024; 14:398. [PMID: 39194627 DOI: 10.3390/bios14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Biosensors are used for the specific and sensitive detection of biomolecules. In conventional approaches, the suspected target molecules are bound to selected capture molecules and successful binding is indicated by additional labelling to enable optical readout. This labelling requires additional processing steps tailored to the application. While numerous label-free interaction assays exist, they often compromise on detection characteristics. In this context, we introduce a novel diffractometric biosensor, comprising a diffractive biosensor chip and an associated optical reader assembly. This innovative system can capture an entire assay, detecting various types of molecules in a label-free manner and present the results within in a single, comprehensive image. The applicability of the biosensor is assessed for the detection of viral DNA as well as proteins directly in human plasma, investigating different antigens. In our experiments, we achieve a detection limit of 4.2 pg/mm², which is comparable to other label-free optical biosensors. The simplicity and robustness of the method make it a compelling option for advancing biosensing technologies. This work contributes to the development of an imaging diffractometric biosensor with the potential for multiple applications in molecular interaction analysis.
Collapse
Affiliation(s)
- Cornelia Reuter
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Haegele S, Martínez-Cercós D, Arrés Chillón J, Paulillo B, Terborg RA, Pruneri V. Multispectral Holographic Intensity and Phase Imaging of Semitransparent Ultrathin Films. ACS PHOTONICS 2024; 11:1873-1886. [PMID: 38766501 PMCID: PMC11100288 DOI: 10.1021/acsphotonics.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
In this paper, we demonstrate a novel optical characterization method for ultrathin semitransparent and absorbing materials through multispectral intensity and phase imaging. The method is based on a lateral-shearing interferometric microscopy (LIM) technique, where phase-shifting allows extraction of both the intensity and the phase of transmitted optical fields. To demonstrate the performance in characterizing semitransparent thin films, we fabricated and measured cupric oxide (CuO) seeded gold ultrathin metal films (UTMFs) with mass-equivalent thicknesses from 2 to 27 nm on fused silica substrates. The optical properties were modeled using multilayer thin film interference and a parametric model of their complex refractive indices. The UTMF samples were imaged in the spectral range from 475 to 750 nm using the proposed LIM technique, and the model parameters were fitted to the measured data in order to determine the respective complex refractive indices for varying thicknesses. Overall, by using the combined intensity and phase not only for imaging and quality control but also for determining the material properties, such as complex refractive indices, this technique demonstrates a high potential for the characterization of the optical properties, of (semi-) transparent thin films.
Collapse
Affiliation(s)
- Sebastian Haegele
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Daniel Martínez-Cercós
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Javier Arrés Chillón
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Bruno Paulillo
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Roland A. Terborg
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Valerio Pruneri
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Barth I, Conteduca D, Dong P, Wragg J, Sahoo PK, Arruda GS, Martins ER, Krauss TF. Phase noise matching in resonant metasurfaces for intrinsic sensing stability. OPTICA 2024; 11:354-361. [PMID: 38638165 PMCID: PMC11023067 DOI: 10.1364/optica.510524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 04/20/2024]
Abstract
Interferometry offers a precise means of interrogating resonances in dielectric and plasmonic metasurfaces, surpassing spectrometer-imposed resolution limits. However, interferometry implementations often face complexity or instability issues due to heightened sensitivity. Here, we address the necessity for noise compensation and tolerance by harnessing the inherent capabilities of photonic resonances. Our proposed solution, termed "resonant phase noise matching," employs optical referencing to align the phases of equally sensitive, orthogonal components of the same mode. This effectively mitigates drift and noise, facilitating the detection of subtle phase changes induced by a target analyte through spatially selective surface functionalization. Validation of this strategy using Fano resonances in a 2D photonic crystal slab showcases noteworthy phase stability (σ < 10 - 4 π ). With demonstrated label-free detection of low-molecular-weight proteins at clinically relevant concentrations, resonant phase noise matching presents itself as a potentially valuable strategy for advancing scalable, high-performance sensing technology beyond traditional laboratory settings.
Collapse
Affiliation(s)
- Isabel Barth
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Donato Conteduca
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pin Dong
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Jasmine Wragg
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pankaj K. Sahoo
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Guilherme S. Arruda
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Emiliano R. Martins
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Thomas F. Krauss
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
10
|
Barth I, Lee H. Phase-driven progress in nanophotonic biosensing. LIGHT, SCIENCE & APPLICATIONS 2024; 13:76. [PMID: 38494520 PMCID: PMC10944832 DOI: 10.1038/s41377-024-01415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10-7 RIU.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
11
|
Cheng Q, Li T. Complex-frequency waves: beat loss and win sensitivity. LIGHT, SCIENCE & APPLICATIONS 2024; 13:40. [PMID: 38296959 PMCID: PMC10831086 DOI: 10.1038/s41377-024-01388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Recent experiments have demonstrated that synthesized complex-frequency waves can impart a virtual gain to molecule sensing systems, which can effectively restore information lost due to intrinsic molecular damping. The enhancement notably amplifies the signal of trace molecular vibrational fingerprints, thereby substantially improving the upper limit of sensitivity.
Collapse
Affiliation(s)
- Qingqing Cheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, 324000, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
12
|
Capitaine A, Fajri ML, Sciacca B. Pushing the Limits of Capillary Assembly for the Arbitrary Positioning of Sub-50nm Nanocubes in Printable Plasmonic Surfaces. SMALL METHODS 2024; 8:e2300373. [PMID: 37391271 DOI: 10.1002/smtd.202300373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Indexed: 07/02/2023]
Abstract
The fabrication of high quality nanophotonic surfaces for integration in optoelectronic devices remains a challenge because of the complexity and cost of top-down nanofabrication strategies. Combining colloidal synthesis with templated self-assembly emerged as an appealing low-cost solution. However, it still faces several obstacles before integration in devices can become a reality. This is mostly due to the difficulty in assembling small nanoparticles (<50 nm) in complex nanopatterns with a high yield. In this study, a reliable methodology is proposed to fabricate printable nanopatterns with an aspect ratio varying from 1 to 10 and a lateral resolution of 30 nm via nanocube assembly and epitaxy. Investigating templated assembly via capillary forces, a new regime was identified that was used to assemble 30-40 nm nanocubes in a patterned polydimethylsiloxane template with a high yield for both Au and Ag with multiple particles per trap. This new method relies on the generation and control of an accumulation zone at the contact line that is thin as opposed to dense, displaying higher versatility. This is in contrast with conventional wisdom, identifying a dense accumulation zone as a requirement for high-yield assembly. In addition, different formulations are proposed that can be used for the colloidal dispersion, showing that the standard water-surfactant solutions can be replaced by surfactant-free ethanol solutions, with good assembly yield. This allows to minimize the presence of surfactants that can affect electronic properties. Finally, it is shown that the obtained nanocube arrays can be transformed into continuous monocrystalline nanopatterns via nanocube epitaxy at near ambient temperature, and transferred to different substrates via contact printing. This approach opens new doors to the templated assembly of small colloids and could find potential applications in various optoelectronic devices ranging from solar cells to light-emitting diodes and displays.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| | - Muhammad L Fajri
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| | - Beniamino Sciacca
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| |
Collapse
|
13
|
Girerd T, Mandorlo F, Jamois C, Benyattou T, Ferrier L, Berguiga L. Optical sensing based on phase interrogation with a Young's interference hologram using a digital micromirror device. OPTICS EXPRESS 2024; 32:3647-3659. [PMID: 38297581 DOI: 10.1364/oe.507643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 02/02/2024]
Abstract
We propose a new holographic interferometric technique of phase interrogation for nanophotonic sensors, allowing to reach low phase noise and fluctuation by using a digital micromirror device spatial light modulator. With the spatial light modulator, both beam shaping and phase shifting interferometry can be simultaneously managed, hence enabling the interrogation of nanophotonic devices with a common-path heterodyne Young's interference experiment. The efficiency of the technique is illustrated in the particular case of temperature sensing using Tamm plasmon photonic crystals. The hologram sensor allows to probe resonant structures with deep attenuation at resonance, such as resonant structures at critical coupling or with phase singularities.
Collapse
|
14
|
Zhu S, Jaffiol R, Crunteanu A, Vézy C, Chan ST, Yuan W, Ho HP, Zeng S. Label-free biosensing with singular-phase-enhanced lateral position shift based on atomically thin plasmonic nanomaterials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:2. [PMID: 38161210 PMCID: PMC10757996 DOI: 10.1038/s41377-023-01345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Rapid plasmonic biosensing has attracted wide attention in early disease diagnosis and molecular biology research. However, it was still challenging for conventional angle-interrogating plasmonic sensors to obtain higher sensitivity without secondary amplifying labels such as plasmonic nanoparticles. To address this issue, we developed a plasmonic biosensor based on the enhanced lateral position shift by phase singularity. Such singularity presents as a sudden phase retardation at the dark point of reflection from resonating plasmonic substrate, leading to a giant position shift on reflected beam. Herein, for the first time, the atomically thin layer of Ge2Sb2Te5 (GST) on silver nanofilm was demonstrated as a novel phase-response-enhancing plasmonic material. The GST layer was not only precisely engineered to singularize phase change but also served as a protective layer for active silver nanofilm. This new configuration has achieved a record-breaking largest position shift of 439.3 μm measured in calibration experiments with an ultra-high sensitivity of 1.72 × 108 nm RIU-1 (refractive index unit). The detection limit was determined to be 6.97 × 10-7 RIU with a 0.12 μm position resolution. Besides, a large figure of merit (FOM) of 4.54 × 1011 μm (RIU∙°)-1 was evaluated for such position shift interrogation, enabling the labelfree detection of trace amounts of biomolecules. In targeted biosensing experiments, the optimized sensor has successfully detected small cytokine biomarkers (TNF-α and IL-6) with the lowest concentration of 1 × 10-16 M. These two molecules are the key proinflammatory cancer markers in clinical diagnosis, which cannot be directly screened by current clinical techniques. To further validate the selectivity of our sensing systems, we also measured the affinity of integrin binding to arginylglycylaspartic acid (RGD) peptide (a key protein interaction in cell adhesion) with different Mn2+ ion concentrations, ranging from 1 nM to 1 mM.
Collapse
Affiliation(s)
- Shaodi Zhu
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Rodolphe Jaffiol
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
| | - Aurelian Crunteanu
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Cyrille Vézy
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
| | - Sik-To Chan
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France.
| |
Collapse
|
15
|
Tselikov GI, Danilov A, Shipunova VO, Deyev SM, Kabashin AV, Grigorenko AN. Topological Darkness: How to Design a Metamaterial for Optical Biosensing with Ultrahigh Sensitivity. ACS NANO 2023; 17:19338-19348. [PMID: 37738093 PMCID: PMC10569102 DOI: 10.1021/acsnano.3c06655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Due to the absence of labels and fast analyses, optical biosensors promise major advances in biomedical diagnostics, security, environmental, and food safety applications. However, the sensitivity of the most advanced plasmonic biosensor implementations has a fundamental limitation caused by losses in the system and/or geometry of biochips. Here, we report a "scissor effect" in topologically dark metamaterials which is capable of providing ultrahigh-amplitude sensitivity to biosensing events, thus solving the bottleneck sensitivity limitation problem. We explain how the "scissor effect" can be realized via the proper design of topologically dark metamaterials and describe strategies for their fabrication. To validate the applicability of this effect in biosensing, we demonstrate the detection of folic acid (vitamin important for human health) in a wide 3-log linear dynamic range with a limit of detection of 0.22 nM, which is orders of magnitude better than those previously reported for all optical counterparts. Our work provides possibilities for designing and realizing plasmonic, semiconductor, and dielectric metamaterials with ultrasensitivity to binding events.
Collapse
Affiliation(s)
- Gleb I. Tselikov
- Aix
Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy−case 917, 13288 Marseille Cedex 9, France
| | - Artem Danilov
- Aix
Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy−case 917, 13288 Marseille Cedex 9, France
| | - Victoria O. Shipunova
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, Moscow 117997, Russia
- MEPhI, Institute of Engineering Physics
for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Andrei V. Kabashin
- Aix
Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy−case 917, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
16
|
Kabashin AV, Kravets VG, Grigorenko AN. Label-free optical biosensing: going beyond the limits. Chem Soc Rev 2023; 52:6554-6585. [PMID: 37681251 DOI: 10.1039/d3cs00155e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Label-free optical biosensing holds great promise for a variety of applications in biomedical diagnostics, environmental and food safety, and security. It is already used as a key tool in the investigation of biomolecular binding events and reaction constants in real time and offers further potential additional functionalities and low-cost designs. However, the sensitivity of this technology does not match the routinely used but expensive and slow labelling methods. Therefore, label-free optical biosensing remains predominantly a research tool. Here we discuss how one can go beyond the limits of detection provided by standard optical biosensing platforms and achieve a sensitivity of label-free biosensing that is superior to labelling methods. To this end we review newly emerging optical implementations that overcome current sensitivity barriers by employing novel structural architectures, artificial materials (metamaterials and hetero-metastructures) and using phase of light as a sensing parameter. Furthermore, we elucidate the mechanism of plasmonic phase biosensing and review hyper-sensitive transducers, which can achieve detection limits at the single molecule level (less than 1 fg mm-2) and make it possible to detect analytes at several orders of magnitude lower concentrations than so far reported in literature. We finally discuss newly emerging layouts based on dielectric nanomaterials, bound states in continuum, and exceptional points.
Collapse
Affiliation(s)
- Andrei V Kabashin
- Aix Marseille Université, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France.
| | - Vasyl G Kravets
- School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
| | | |
Collapse
|
17
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
18
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
20
|
Camphausen R, Sansa Perna A, Cuevas Á, Demuth A, Arrés Chillón J, Gräfe M, Steinlechner F, Pruneri V. Fast quantum-enhanced imaging with visible-wavelength entangled photons. OPTICS EXPRESS 2023; 31:6039-6050. [PMID: 36823870 DOI: 10.1364/oe.471429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Quantum resources can provide supersensitive performance in optical imaging. Detecting entangled photon pairs from spontaneous parametric down conversion (SPDC) with single-photon avalanche diode (SPAD) image sensor arrays (ISAs) enables practical wide-field quantum-enhanced imaging. However, matching the SPDC wavelength to the peak detection efficiency range of complementary metal-oxide-semiconductor (CMOS) compatible mass-producible SPAD-ISAs has remained technologically elusive, resulting in low imaging speeds to date. Here, we show that a recently developed visible-wavelength entangled photon source enables high-speed quantum imaging. By operating at high detection efficiency of a SPAD-ISA, we increase acquisition speed by more than an order of magnitude compared to previous similar quantum imaging demonstrations. Besides being fast, the quantum-enhanced phase imager operating at short wavelengths retrieves nanometer scale height differences, tested by imaging evaporated silica and protein microarray spots on glass samples, with sensitivity improved by a factor of 1.351 ± 0.004 over equivalent ideal classical imaging. This work represents an important stepping stone towards scalable real-world quantum imaging advantage, and may find use in biomedical and industrial applications as well as fundamental research.
Collapse
|
21
|
Pioz MJ, Espinosa RL, Laguna MF, Santamaria B, Murillo AMM, Hueros ÁL, Quintero S, Tramarin L, Valle LG, Herreros P, Bellido A, Casquel R, Holgado M. A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies. BIOSENSORS 2022; 12:bios12121091. [PMID: 36551058 PMCID: PMC9776401 DOI: 10.3390/bios12121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/07/2023]
Abstract
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
Collapse
Affiliation(s)
- María Jesús Pioz
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- University of Nebrija, C/del Hostal, Campus Berzosa, 28248 Madrid, Spain
| | - Rocío L. Espinosa
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María Fe Laguna
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaria
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Metch, Chem & Industrial Design Engineering Department, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Ana María M. Murillo
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Álvaro Lavín Hueros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sergio Quintero
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luis G Valle
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Pedro Herreros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Alberto Bellido
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Multiplex Molecular Diagnostics S.L. C/ Munner 10, 08022 Barcelona, Spain
| | - Rafael Casquel
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
22
|
Nava G, Zanchetta G, Giavazzi F, Buscaglia M. Label-free optical biosensors in the pandemic era. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4159-4181. [PMID: 39634532 PMCID: PMC11502114 DOI: 10.1515/nanoph-2022-0354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2024]
Abstract
The research in the field of optical biosensors is continuously expanding, thanks both to the introduction of brand new technologies and the ingenious use of established methods. A new awareness on the potential societal impact of this research has arisen as a consequence of the Covid-19 pandemic. The availability of a new generation of analytical tools enabling a more accurate understanding of bio-molecular processes or the development of distributed diagnostic devices with improved performance is now in greater demand and more clearly envisioned, but not yet achieved. In this review, we focus on emerging innovation opportunities conveyed by label-free optical biosensors. We review the most recent innovations in label-free optical biosensor technology in consideration of their competitive potential in selected application areas. The operational simplicity implicit to label-free detection can be exploited in novel rapid and compact devices for distributed diagnostic applications. The adaptability to any molecular recognition or conformational process facilitates the integration of DNA nanostructures carrying novel functions. The high sensitivity to nanoscale objects stimulates the development of ultrasensitive systems down to digital detection of single molecular binding events enhanced by nanoparticles and direct enumeration of bio-nanoparticles like viruses.
Collapse
Affiliation(s)
- Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| |
Collapse
|
23
|
A smart tablet-phone-based system using dynamic light modulation for highly sensitive colorimetric biosensing. Talanta 2022; 252:123862. [DOI: 10.1016/j.talanta.2022.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
|
24
|
All-Dielectric Refractive Index Sensor Based on Multiple Fano Resonance with High Sensitivity in the Long-Wave Infrared Region. COATINGS 2022. [DOI: 10.3390/coatings12070970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper, we propose an all-dielectric metamaterials structure which contains four asymmetric square holes in the unit cell to design a high-sensitivity refractive index sensor in the long-wave infrared region. Theoretical analysis of the electromagnetic field distributions shows that the four transmission dips originate from magnetic dipole, electric quadrupole and Toroidal dipole. And its position can be tuned by adjusting different geometric parameters, which can optimize the structure to obtain a narrower linewidth to improve the performance of the sensor. Finally, we evaluate the performance of the structure as refractive index sensor by changing the refractive index of the tested substrate. The results show the refractive index sensor has high sensitivity in the long-wave infrared region: the highest sensitivity is 2803 nm/RIU and the figure of merit will reach up to 350.
Collapse
|
25
|
Dai Z, Xu X, Wang Y, Li M, Zhou K, Zhang L, Tan Y. Surface plasmon resonance biosensor with laser heterodyne feedback for highly-sensitive and rapid detection of COVID-19 spike antigen. Biosens Bioelectron 2022; 206:114163. [PMID: 35272216 PMCID: PMC8898347 DOI: 10.1016/j.bios.2022.114163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
The ongoing outbreak of the COVID-19 has highlighted the importance of the pandemic prevention and control. A rapid and sensitive antigen assay is crucial in diagnosing and curbing pandemic. Here, we report a novel surface plasmon resonance biosensor based on laser heterodyne feedback interferometry for the detection of SARS-CoV-2 spike antigen, which is achieved by detecting the tiny difference in refractive index between different antigen concentrations. The biosensor converts the refractive index changes at the sensing unit into the intensity changes of light through surface plasmon resonance, achieving label-free and real-time detection of biological samples. Moreover, the gain amplification effect of the laser heterodyne feedback interferometry further improved the sensitivity of this biosensor. The biosensor can rapidly respond to continuous and periodic changes in the refractive index with a high resolution of 3.75 × 10-8 RIU, demonstrating the repeatability of the biosensor. Afterwards, the biosensor is immobilized by the anti-SARS-CoV-2 spike monoclonal antibodies, thus realizing the specific recognition of the antigen. The biosensor exhibited a high sensitivity towards the concentration of the antigen with a linear dynamic range of five orders of magnitude and a resolution of 0.08 pg/mL. These results indicate that this principle can be used as a rapid diagnostic method for COVID-19 antigens without sample labelling.
Collapse
Affiliation(s)
- Zongren Dai
- The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Xin Xu
- The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Yifan Wang
- The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Mingfang Li
- The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Kaiming Zhou
- Aston Institute of Photonic Technologies, Aston University, Birmingham, B4 7ET, UK.
| | - Lin Zhang
- Aston Institute of Photonic Technologies, Aston University, Birmingham, B4 7ET, UK.
| | - Yidong Tan
- The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Adi W, Biswas D, Shelef MA, Yesilkoy F. Multiplexed COVID-19 antibody quantification from human sera using label-free nanoplasmonic biosensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:2130-2143. [PMID: 35519285 PMCID: PMC9045896 DOI: 10.1364/boe.454919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
Serological assays that can reveal immune status against COVID-19 play a critical role in informing individual and public healthcare decisions. Currently, antibody tests are performed in central clinical laboratories, limiting broad access to diverse populations. Here we report a multiplexed and label-free nanoplasmonic biosensor that can be deployed for point-of-care antibody profiling. Our optical imaging-based approach can simultaneously quantify antigen-specific antibody response against SARS-CoV-2 spike and nucleocapsid proteins from 50 µL of human sera. To enhance the dynamic range, we employed multivariate data processing and multi-color imaging and achieved a quantification range of 0.1-100 µg/mL. We measured sera from a COVID-19 acute and convalescent (N = 24) patient cohort and negative controls (N = 5) and showed highly sensitive and specific past-infection diagnosis. Our results were benchmarked against an electrochemiluminescence assay and showed good concordance (R∼0.87). Our integrated nanoplasmonic biosensor has the potential to be used in epidemiological sero-profiling and vaccine studies.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dhruv Biswas
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Karki A, Cincotti G, Chen S, Stanishev V, Darakchieva V, Wang C, Fahlman M, Jonsson MP. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107172. [PMID: 35064601 DOI: 10.1002/adma.202107172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system. In addition to repeated on/off switching of the polymeric nanoantennas, the concept enables gradual electrical tuning of the nano-optical response, which was found to be related to the modulation of both density and mobility of the mobile polaronic charge carriers in the polymer. The resonance position of the PEDOT:Sulf nanoantennas can be conveniently controlled by disk size, here reported down to a wavelength of around 1270 nm. The presented concept may be used for electrically tunable metasurfaces, with tunable farfield as well as nearfield. The work thereby opens for applications ranging from tunable flat meta-optics to adaptable smart windows.
Collapse
Affiliation(s)
- Akchheta Karki
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Giancarlo Cincotti
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Vallery Stanishev
- Terahertz Materials Analysis Center (THeMAC), Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
- Center for III-Nitride Technology, C3NiT-Janzèn, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
| | - Vanya Darakchieva
- Terahertz Materials Analysis Center (THeMAC), Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
- Center for III-Nitride Technology, C3NiT-Janzèn, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
- Solid State Physics and NanoLund, Lund University, Lund, S-221 00, Sweden
| | - Chuanfei Wang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| |
Collapse
|
28
|
Anăstăsoaie V, Tomescu R, Kusko C, Mihalache I, Dinescu A, Parvulescu C, Craciun G, Caramizoiu S, Cristea D. Influence of Random Plasmonic Metasurfaces on Fluorescence Enhancement. MATERIALS 2022; 15:ma15041429. [PMID: 35207970 PMCID: PMC8874827 DOI: 10.3390/ma15041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
One of the strategies employed to increase the sensitivity of the fluorescence-based biosensors is to deposit chromophores on plasmonic metasurfaces which are periodic arrays of resonating nano-antennas that allow the control of the electromagnetic field leading to fluorescence enhancement. While artificially engineered metasurfaces realized by micro/nano-fabrication techniques lead to a precise tailoring of the excitation field and resonant cavity properties, the technological overhead, small areas, and high manufacturing cost renders them unsuitable for mass production. A method to circumvent these challenges is to use random distribution of metallic nanoparticles sustaining plasmonic resonances, which present the properties required to significantly enhance the fluorescence. We investigate metasurfaces composed of random aggregates of metal nanoparticles deposited on a silicon and glass substrates. The finite difference time domain simulations of the interaction of the incident electromagnetic wave with the structures reveals a significant enhancement of the excitation field, which is due to the resonant plasmonic modes sustained by the nanoparticles aggregates. We experimentally investigated the role of these structures in the fluorescent behaviour of Rhodamine 6G dispersed in polymethylmethacrylate finding an enhancement that is 423-fold. This suggests that nanoparticle aggregates have the potential to constitute a suitable platform for low-cost, mass-produced fluorescent biosensors.
Collapse
|
29
|
Li F, Shen J, Guan C, Xie Y, Wang Z, Lin S, Chen J, Zhu J. Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers. Biosens Bioelectron 2022; 203:114038. [PMID: 35121450 DOI: 10.1016/j.bios.2022.114038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Plasmonic metasurface biosensors have great potential on label-free high-throughput clinical detection of human tumor markers. In the past decades, nanopillar and nanohole metasurfaces have become the common choices for plasmonic biosensing, because they typically enable universal simple large-area nanopatterns via a low-cost reproducible fabrication manner. The two kinds of metasurfaces have the complementary shapes and are used to be assumed as the same type of two-dimensional plasmonic nanograting for biosensing. Up to date, there is still a lack of comparison study on their biosensing performance, which is critical to guide their better applications on tumor marker detection. In this study, we compare the bulk/surface refractive index and sensitivity of plasmonic nanopillar (PNP) and plasmonic nanohole (PNH) metasurfaces in order to evaluate their biosensing capabilities. The sensing physics about their space near-field utilization is systematically revealed. The PNH metasurface demonstrates a higher biomolecule sensitivity versus the complementary PNP metasurface, and its limit of detection for bovine serum albumin reaches ∼0.078 ng/mL, which implies a greater potential of detecting cancer biomarkers. We further adopt the PNH metasurfaces for immunoassay of three typical tumor markers by testing clinical human serum samples. The results imply that the immunodetection of alpha-fetoprotein has the most optimal sensing efficiency with the lowest detection concentration (<5 IU/mL), which is much lower than its clinical diagnosis threshold of ∼16.5 IU/mL for medical examination. Our work has not only illuminated the distinct biosensing properties of complementary metasurfaces, but also provided a promising way to boost plasmonic biosensing for point-of-care testing.
Collapse
Affiliation(s)
- Fajun Li
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Jiaqing Shen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Chaoheng Guan
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Yinong Xie
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Zhenbiao Wang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Shaowei Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Science, Xiamen University, Xiamen, 361003, China
| | - Jinfeng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
30
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Seyyedmasoumian S, Attariabad A, Farmani A. FEM analysis of a λ 3/125 high sensitivity graphene plasmonic biosensor for low hemoglobin concentration detection. APPLIED OPTICS 2022; 61:120-125. [PMID: 35200803 DOI: 10.1364/ao.443822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
A highly sensitive plasmonic refractive index biosensor for hemoglobin protein detection in blood is presented in the near-infrared region. The proposed Au split-ring resonator structure with an extra arm is used to increase electric field enhancement intensity in the vicinity of the nanostructure, which excites localized surface plasmon resonances in the metal-dielectric interface and leads to unity absorption. The footprint of the proposed structure is λ3/125 (λ denoting center wavelength). Through the results from the finite element method (FEM), by variation of the spacer material, and inserting a graphene layer between the spacer and the gold nanostructure, maximum sensitivities of 1804.1 nm/RIU and 2448.45 nm/RIU are achieved, respectively.
Collapse
|
32
|
Camphausen R, Cuevas Á, Duempelmann L, Terborg RA, Wajs E, Tisa S, Ruggeri A, Cusini I, Steinlechner F, Pruneri V. A quantum-enhanced wide-field phase imager. SCIENCE ADVANCES 2021; 7:eabj2155. [PMID: 34788099 PMCID: PMC8598016 DOI: 10.1126/sciadv.abj2155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Quantum techniques can be used to enhance the signal-to-noise ratio in optical imaging. Leveraging the latest advances in single-photon avalanche diode array cameras and multiphoton detection techniques, here, we introduce a supersensitive phase imager, which uses space-polarization hyperentanglement to operate over a large field of view without the need of scanning operation. We show quantum-enhanced imaging of birefringent and nonbirefringent phase samples over large areas, with sensitivity improvements over equivalent classical measurements carried out with equal number of photons. The potential applicability is demonstrated by imaging a biomedical protein microarray sample. Our technology is inherently scalable to high-resolution images and represents an essential step toward practical quantum-enhanced imaging.
Collapse
Affiliation(s)
- Robin Camphausen
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| | - Álvaro Cuevas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| | - Luc Duempelmann
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Roland A. Terborg
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Ewelina Wajs
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Simone Tisa
- Micro Photon Device SRL, Via Waltraud Gebert Deeg 3f, 39100 Bolzano, Italy
| | - Alessandro Ruggeri
- Micro Photon Device SRL, Via Waltraud Gebert Deeg 3f, 39100 Bolzano, Italy
| | - Iris Cusini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milano, Italy
| | - Fabian Steinlechner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| |
Collapse
|
33
|
A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing. Nat Commun 2021; 12:6483. [PMID: 34759292 PMCID: PMC8580965 DOI: 10.1038/s41467-021-26652-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Surface plasmon resonance is a well-established technology for real-time highly sensitive label-free detection and measurement of binding kinetics between biological samples. A common drawback, however, of surface plasmon resonance detection is the necessity for far field angular resolved measurement of specular reflection, which increases the size as well as requiring precise calibration of the optical apparatus. Here we present an alternative optoelectronic approach in which the plasmonic sensor is integrated within a photovoltaic cell. Incident light generates an electronic signal that is sensitive to the refractive index of a solution via interaction with the plasmon. The photogenerated current is enhanced due to the coupling of the plasmon mode with Fabry-Pérot modes in the absorbing layer of the photovoltaic cell. The near field electrical detection of surface plasmon resonance we demonstrate will enable a next generation of cheap, compact and high throughput biosensors. Surface plasmon resonance is well established for biosensing applications, but commonly limited by complex optical detection. Here, the authors present a plasmonic sensor integrated in a photovoltaic cell, which generates an electronic signal sensitive to the solution refractive index via plasmon interaction
Collapse
|
34
|
Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal. SENSORS 2021; 21:s21196535. [PMID: 34640853 PMCID: PMC8512066 DOI: 10.3390/s21196535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Interferometric methods of optical sensing based on the phase shift of the Bloch surface waves (BSWs) and guided waves (GWs) supported by a one-dimensional photonic crystal are presented. The photonic crystal, composed of six SiO2/TiO2 bilayers with a termination layer of TiO2, is employed in the Kretschmann configuration. Under resonance condition, an abrupt phase change is revealed, and the corresponding phase shift is measured by interferometric techniques applied in both the spectral and spatial domains. The spectral interferometric technique employing a birefringent quartz crystal is used to obtain interference of projections of p- and s-polarized light waves reflected from the photonic crystal. The phase shifts are retrieved by processing the spectral interferograms recorded for various values of relative humidity (RH) of air, giving the sensitivity to the RH as high as 0.029 rad/%RH and 0.012 rad/%RH for the BSW and GW, respectively. The spatial interferometric technique employs a Wollaston prism and an analyzer to generate an interference pattern, which is processed to retrieve the phase difference, and results are in good agreement with those obtained by sensing the phase shift in the spectral domain. In addition, from the derivative of the spectral phase shifts, the peak positions are obtained, and their changes with the RH give the sensitivities of 0.094 nm/%RH and 0.061 nm/%RH for the BSW and GW, respectively. These experimental results demonstrate an efficient optical sensing with a lot of applications in various research areas.
Collapse
|
35
|
Akter N, Hasan MM, Pala N. A Review of THz Technologies for Rapid Sensing and Detection of Viruses including SARS-CoV-2. BIOSENSORS 2021; 11:349. [PMID: 34677305 PMCID: PMC8534088 DOI: 10.3390/bios11100349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Virus epidemics such as Ebola virus, Zika virus, MERS-coronavirus, and others have wreaked havoc on humanity in the last decade. In addition, a coronavirus (SARS-CoV-2) pandemic and its continuously evolving mutants have become so deadly that they have forced the entire technical advancement of healthcare into peril. Traditional ways of detecting these viruses have been successful to some extent, but they are costly, time-consuming, and require specialized human resources. Terahertz-based biosensors have the potential to lead the way for low-cost, non-invasive, and rapid virus detection. This review explores the latest progresses in terahertz technology-based biosensors for the virus, viral particle, and antigen detection, as well as upcoming research directions in the field.
Collapse
Affiliation(s)
| | | | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA; (N.A.); (M.M.H.)
| |
Collapse
|
36
|
Wu J, Dai B, Li Z, Pan T, Zhang D, Lin F. Emerging optofluidic technologies for biodiagnostic applications. VIEW 2021. [DOI: 10.1002/viw.20200035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jiandong Wu
- Bionic Sensing and Intelligence Center Institute of Biomedical and Health Engineering Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Tingrui Pan
- Department of Biomedical Engineering University of California Davis California USA
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Francis Lin
- Department of Physics and Astronomy University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
37
|
Ghosh S, Li N, Xiong Y, Ju YG, Rathslag MP, Onal EG, Falkiewicz E, Kohli M, Cunningham BT. A compact photonic resonator absorption microscope for point of care digital resolution nucleic acid molecular diagnostics. BIOMEDICAL OPTICS EXPRESS 2021; 12:4637-4650. [PMID: 34513214 PMCID: PMC8407813 DOI: 10.1364/boe.427475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 05/05/2023]
Abstract
Rapid, sensitive, and selective detection of nucleic acid biomarkers for health diagnostic applications becomes feasible for point of care scenarios when the detection instrument is inexpensive, simple, and robust. Here, we report the design, implementation, and characterization of a point of care instrument for photonic resonator absorption microscopy (PRAM) that takes advantage of resonant optical coupling between plasmonic gold nanoparticle tags and a photonic crystal (PC) surface. Matching the PC resonant wavelength to the gold nanoparticle's surface plasmon wavelength generates localized and efficient quenching of the PC resonant reflection intensity, resulting in the ability to clearly detect and count individual gold nanoparticles when they are captured on the PC surface. Surface-captured nanoparticles are observed by illuminating the PC at normal incidence with polarized light from a low-intensity red LED, and recording of PC reflected intensity on an inexpensive CMOS image sensor. A contrast limited adaptive histogram equalization (CLAHE) image processing algorithm was applied to derive counts of captured nanoparticles. The instrument is utilized in the context of an activate capture + digital counting (AC + DC) assay for a specific miRNA sequence, using nucleic acid toehold probes applied to gold nano-urchin (AuNU) nanoparticles to achieve 160 aM detection limits in a 30 min. assay.
Collapse
Affiliation(s)
- Shreya Ghosh
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- S. G. and N. L. contributed equally to this work
| | - Nantao Li
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- S. G. and N. L. contributed equally to this work
| | - Yanyu Xiong
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Young-Gu Ju
- Department of Physics Education, Kyungpook National University, 80 Daehak-ro, Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| | - Michael P Rathslag
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ege G Onal
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erika Falkiewicz
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Manish Kohli
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian T Cunningham
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Manoccio M, Esposito M, Primiceri E, Leo A, Tasco V, Cuscunà M, Zuev D, Sun Y, Maruccio G, Romano A, Quattrini A, Gigli G, Passaseo A. Femtomolar Biodetection by a Compact Core-Shell 3D Chiral Metamaterial. NANO LETTERS 2021; 21:6179-6187. [PMID: 34251835 DOI: 10.1021/acs.nanolett.1c01791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced sensing tools, detecting extremely low concentrations of circulating biomarkers, can open unexplored routes toward early diagnostics and diseases progression monitoring. Here, we demonstrate the sensing capabilities of a chip-based metamaterial, combining 3D chiral geometry with a functional core-shell nanoarchitecture. The chiral metamaterial provides a circular polarization-dependent optical response, allowing analysis in a complex environment without significant background interferences. The functional nanoarchitecture, based on the conformal coating with a polymer shell, modifies the chiral metamaterial near- and far-field optical response because of the energy transfer between dielectric shell polarization charges and plasmonic core free electrons, leading to efficient interaction with biomolecules. The system sensitivity slope is 27 nm/pM, in the detection of TAR DNA-binding protein 43, clinically relevant for neurodegenerative diseases. Measurements were performed in spiked solution and in human serum with concentrations from 1 pM down to 10 fM, which is a range not accessible with common immunological assays, opening new perspectives for next-generation biomedical systems.
Collapse
Affiliation(s)
- Mariachiara Manoccio
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Marco Esposito
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | | | - Angelo Leo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Vittorianna Tasco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Massimo Cuscunà
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Dmitry Zuev
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy Av., St. Petersburg 197101, Russia
| | - Yali Sun
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy Av., St. Petersburg 197101, Russia
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Alessandro Romano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Adriana Passaseo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
39
|
Li Q, Bencherif SA, Su M. Edge-Enhanced Microwell Immunoassay for Highly Sensitive Protein Detection. Anal Chem 2021; 93:10292-10300. [PMID: 34251806 DOI: 10.1021/acs.analchem.1c01754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly sensitive biosensors that can detect low concentrations of protein biomarkers at the early stages of diseases or proteins secreted from single cells are of importance for disease diagnosis and treatment assessment. This work reports a new signal amplification mechanism, that is, edge enhancement based on the vertical sidewalls of microwells for ultra-sensitive protein detection. The fluorescence emission at the edge of the microwells is highly amplified due to the microscopic axial resolution (depth of field) and demonstrates a microring effect. The enhanced fluorescence intensity from microrings is calibrated for bovine serum albumin detection, which shows a 6-fold sensitivity enhancement and a lower limit of detection at the microwell edge, compared to those obtained on a flat surface. The microwell chip is used to separate single cells, and the wall of each microwell is used to detect interferon-γ secretion from T cells stimulated with a peptide and whole cancer cells. Given its edge-enhancement ability, the microwell technique can be a highly sensitive biosensing platform for disease diagnosis at an early stage and for assessing potential treatments at the single-cell level.
Collapse
Affiliation(s)
- Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Jahani Y, Arvelo ER, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat Commun 2021; 12:3246. [PMID: 34059690 PMCID: PMC8167130 DOI: 10.1038/s41467-021-23257-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Biosensors are indispensable tools for public, global, and personalized healthcare as they provide tests that can be used from early disease detection and treatment monitoring to preventing pandemics. We introduce single-wavelength imaging biosensors capable of reconstructing spectral shift information induced by biomarkers dynamically using an advanced data processing technique based on an optimal linear estimator. Our method achieves superior sensitivity without wavelength scanning or spectroscopy instruments. We engineered diatomic dielectric metasurfaces supporting bound states in the continuum that allows high-quality resonances with accessible near-fields by in-plane symmetry breaking. The large-area metasurface chips are configured as microarrays and integrated with microfluidics on an imaging platform for real-time detection of breast cancer extracellular vesicles encompassing exosomes. The optofluidic system has high sensing performance with nearly 70 1/RIU figure-of-merit enabling detection of on average 0.41 nanoparticle/µm2 and real-time measurements of extracellular vesicles binding from down to 204 femtomolar solutions. Our biosensors provide the robustness of spectrometric approaches while substituting complex instrumentation with a single-wavelength light source and a complementary-metal-oxide-semiconductor camera, paving the way toward miniaturized devices for point-of-care diagnostics.
Collapse
Affiliation(s)
- Yasaman Jahani
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eduardo R Arvelo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kirill Koshelev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australia
- School of Physics and Engineering, ITMO University, St Petersburg, Russia
| | - Chiara Cianciaruso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australia
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
41
|
Thi Huong V, Thi Ta HK, Mai NXD, Van Tran TT, Khuyen BX, Trinh KTL, Lee NY, Phan BT, Tran NHT. Development of a highly sensitive sensor chip using optical diagnostic based on functionalized plasmonically active AuNPs. NANOTECHNOLOGY 2021; 32:335505. [PMID: 33979787 DOI: 10.1088/1361-6528/ac0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Measuring solution concentration plays an important role in chemical, biochemical, clinical diagnosis, environmental monitoring, and biological analyses. In this work, we develop a transmission-mode localized surface plasmon resonance sensor chip system and convenient method which is highly efficient, highly sensitive for detection sensing using multimode fiber. The plasmonically active sensor's surface AuNPs with high-density NPs were decorated onto 1 cm sensing length of various clad-free fiber in the form of homogeneous monolayer utilizing a self-assembly process for immobilization of the target molecule. The carboxyl bond is formed through a functional reaction on the sensor head. Using the significance in the refractive index difference and numerical aperture, which is caused by a variation in the concentration of measuring bovine serum albumin (BSA) protein which can be accurately measured by the output signal. The refractive index variation of the medium analyte layer can be converted to signal output power change at the He-Ne wavelength of 632.8 nm. The sensor detection limit was estimated to be 0.075 ng ml-1for BSA protein which shows high sensitivity compared to other types of label-free optical biosensors. This also leads to a possibility of finding the improvement in the sensitivity label-free biosensors. The conventional method should allow multimode fiber biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence.
Collapse
Affiliation(s)
- Vu Thi Huong
- Faculty Department of Information Communication, Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
| | - Ngoc Xuan Dat Mai
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
| | - Thi Thanh Van Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Bach Thang Phan
- Vietnam National University, HoChiMinh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Vietnam
- Laboratory of Advanced Materials, University of Science, HoChiMinh City, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Vietnam
- Vietnam National University, HoChiMinh City, Vietnam
| |
Collapse
|
42
|
Felix-Rendon U, Berini P, De Leon I. Ultrasensitive nanoplasmonic biosensor based on interferometric excitation of multipolar plasmonic modes. OPTICS EXPRESS 2021; 29:17365-17374. [PMID: 34154281 DOI: 10.1364/oe.425123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
We propose a nanoplasmonic interferometric biosensor, which exploits the selective excitation of multipolar plasmonic modes in a nanoslit to provide a novel scheme for highly-sensitive biosensing. In this design, two counter-propagating surface plasmon polaritons interfere at the location of the nanoslit, selectively exciting the dipolar and quadrupolar modes of the structure depending on the phase relationship induced by the analyte. The contrasting radiation patterns produced by these modes result in large changes in the angular distribution of the transmitted light that depends on the analyte concentration. The resultant far-field is numerically modeled and the sensing performance of the structure is assessed, resulting in maximum bulk and surface sensitivities of SB = 1.12 × 105 deg/RIU and SS = 302 deg/RIU, respectively, and a bulk-sensing resolution of the order of 10-8 RIU. The design allows ample control over the trade-off between operating range and resolution through the slit's width, making this platform suitable for a broad range of sensing requirements.
Collapse
|
43
|
Saemisch L, van Hulst NF, Liebel M. One-Shot Phase Image Distinction of Plasmonic and Dielectric Nanoparticles. NANO LETTERS 2021; 21:4021-4028. [PMID: 33899486 DOI: 10.1021/acs.nanolett.1c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale phase control is one of the most powerful approaches to specifically tailor electrical fields in modern nanophotonics. Especially the precise subwavelength assembly of many individual nanobuilding blocks has given rise to exciting new materials as diverse as metamaterials, for miniaturizing optics, or 3D assembled plasmonic structures for biosensing applications. Despite its fundamental importance, the phase response of individual nanostructures is experimentally extremely challenging to visualize. Here, we address this shortcoming and measure the quantitative scattering phase of different nanomaterials such as gold nanorods and spheres as well as dielectric nanoparticles. Beyond reporting spectrally resolved responses, with phase changes close to π when passing the particles' plasmon resonance, we devise a simple method for distinguishing different plasmonic and dielectric particles purely based on their phase behavior. Finally, we integrate this novel approach in a single-shot two-color scheme, capable of directly identifying different types of nanoparticles on one sample, from a single widefield image.
Collapse
Affiliation(s)
- Lisa Saemisch
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Niek F van Hulst
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Matz Liebel
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
44
|
Yoo D, Barik A, de León-Pérez F, Mohr DA, Pelton M, Martín-Moreno L, Oh SH. Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS NANO 2021; 15:6669-6677. [PMID: 33789040 DOI: 10.1021/acsnano.0c10014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers. The split-trench resonator can simultaneously serve as a dielectrophoretic trap and a nanoplasmonic sensor. Trapping is accomplished by applying an RF electrical bias across a 10 nm gap, thereby either attracting or repelling analytes. Trapped analytes are detected in a label-free manner using refractive-index sensing, enabled by interference between surface-plasmon standing waves in the trench and light transmitted through the gap. This active sample concentration mechanism enables detection of nanoparticles and proteins at a concentration as low as 10 pM. We can manufacture centimeter-long split-trench cavity resonators with high throughput via photolithography and atomic layer deposition, toward practical applications in biosensing, spectroscopy, and optoelectronics.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Avijit Barik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fernando de León-Pérez
- Centro Universitario de la Defensa de Zaragoza, E-50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Pelton
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Luis Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Lu YM, Liu XQ, Zhu L, Chen QD, Juodkazis S, Sun HB. Vector scanning subtractive manufacturing technology for laser rapid fabrication. OPTICS LETTERS 2021; 46:1963-1966. [PMID: 33857117 DOI: 10.1364/ol.422455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Herein, a vector scanning subtractive manufacturing technology is proposed to rapidly fabricate smooth micro-optical components, which is based on the vector scanning method and wet etching. Compared with the raster scanning method, the vector scanning method increases processing efficiency by nearly two orders and mitigates a buildup of stress around the laser processed region, avoiding the generation of cracks. The Letter demonstrates the fabrication of three-dimensional (3D) micro-structures with various sizes and morphologies. For example, micro-concave lenses with diameters of 20 µm to 140 µm, heights of 10 µm to 70 µm, and surface roughness of 29 nm are flexibly fabricated on sapphire by vector scanning subtractive manufacturing technology. The results indicate that the technology has broad prospects in the field of monolithic integrated 3D all-solid-state micro-optics.
Collapse
|
46
|
Abstract
The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of light-known as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as "quantum plasmonic sensing", and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.
Collapse
Affiliation(s)
- Changhyoup Lee
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Benjamin Lawrie
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raphael Pooser
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kwang-Geol Lee
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021Karlsruhe, Germany.,Max Planck School of Photonics, 07745 Jena, Germany
| | - Mark Tame
- Department of Physics, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
47
|
Wang Y, Zeng S, Crunteanu A, Xie Z, Humbert G, Ma L, Wei Y, Brunel A, Bessette B, Orlianges JC, Lalloué F, Schmidt OG, Yu N, Ho HP. Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor. NANO-MICRO LETTERS 2021; 13:96. [PMID: 34138312 PMCID: PMC7985234 DOI: 10.1007/s40820-021-00613-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/23/2021] [Indexed: 05/24/2023]
Abstract
A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors. Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 μm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10-15 mol L-1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Shuwen Zeng
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA.
| | - Aurelian Crunteanu
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Georges Humbert
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Libo Ma
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden, Germany
| | - Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Aude Brunel
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Barbara Bessette
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Jean-Christophe Orlianges
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Fabrice Lalloué
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden, Germany
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China.
| |
Collapse
|
48
|
Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 2021; 4:70. [PMID: 33452375 PMCID: PMC7810758 DOI: 10.1038/s42003-020-01615-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The proliferation and transmission of viruses has become a threat to worldwide biosecurity, as exemplified by the current COVID-19 pandemic. Early diagnosis of viral infection and disease control have always been critical. Virus detection can be achieved based on various plasmonic phenomena, including propagating surface plasmon resonance (SPR), localized SPR, surface-enhanced Raman scattering, surface-enhanced fluorescence and surface-enhanced infrared absorption spectroscopy. The present review covers all available information on plasmonic-based virus detection, and collected data on these sensors based on several parameters. These data will assist the audience in advancing research and development of a new generation of versatile virus biosensors.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 30, SI-1000, Ljubljana, Slovenia.
| | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
49
|
Etxebarria-Elezgarai J, Mowat M, Lopez E, Rodríguez C, Olaetxea I, Seifert A. Gaussian Beam Shaping and Multivariate Analysis in Plasmonic Sensing. Anal Chem 2020; 92:16236-16244. [DOI: 10.1021/acs.analchem.0c04105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Miriam Mowat
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Eneko Lopez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Carlos Rodríguez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Ion Olaetxea
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, Bilbao 48009, Spain
| |
Collapse
|
50
|
Fusco Z, Rahmani M, Tran-Phu T, Ricci C, Kiy A, Kluth P, Della Gaspera E, Motta N, Neshev D, Tricoli A. Photonic Fractal Metamaterials: A Metal-Semiconductor Platform with Enhanced Volatile-Compound Sensing Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002471. [PMID: 33089556 DOI: 10.1002/adma.202002471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Advance of photonics media is restrained by the lack of structuring techniques for the 3D fabrication of active materials with long-range periodicity. A methodology is reported for the engineering of tunable resonant photonic media with thickness exceeding the plasmonic near-field enhancement region by more than two orders of magnitude. The media architecture consists of a stochastically ordered distribution of plasmonic nanocrystals in a fractal scaffold of high-index semiconductors. This plasmonic-semiconductor fractal media supports the propagation of surface plasmons with drastically enhanced intensity over multiple length scales, overcoming the 2D limitations of established metasurface technologies. The fractal media are used for the fabrication of plasmonic optical gas sensors, achieving a limit of detection of 0.01 vol% at room temperature and sensitivity up to 1.9 nm vol%-1 , demonstrating almost a fivefold increase with respect to an optimized planar geometry. Beneficially to their implementation, the self-assembly mechanism of this fractal architecture allows fabrication of micrometer-thick media over surfaces of several square centimeters in a few seconds. The designable optical features and intrinsic scalability of these photonic fractal metamaterials provide ample opportunities for applications, bridging across transformation optics, sensing, and light harvesting.
Collapse
Affiliation(s)
- Zelio Fusco
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Thanh Tran-Phu
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Chiara Ricci
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Alexander Kiy
- Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Patrick Kluth
- Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Nunzio Motta
- Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|