1
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Nag M, Fogle JE, Pillay S, Del Prete GQ, De Paris K. Tissue-Specific DNA Methylation Changes in CD8 + T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses 2024; 16:1839. [PMID: 39772149 PMCID: PMC11680437 DOI: 10.3390/v16121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Robust CD8+ T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8+ T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription. Hypermethylated gene promoters are associated with transcriptional silencing and, conversely, hypomethylated promoters indicate gene activation. In this study, we evaluated DNA methylation signatures of CD8+ T cells isolated from several different anatomic compartments during pediatric AIDS-virus infection by utilizing the SIVmac239/251 infected infant rhesus macaque model. We performed a stepwise methylation analysis starting with total cellular DNA, to immunomodulatory cytokine promoters, to specific CpG sites within the cytokine promoters in CD8+ T cells isolated from peripheral blood, lymph nodes, and intestinal tissue during the chronic phase of infection. Tissue-specific methylation patterns were determined for transcriptionally active promoters of key immunomodulatory cytokines: interferon gamma (IFNγ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNFα). In this study, we observed tissue-specific differences in CD8+ T cell modulation by DNA methylation in SIV-infected infant macaques, highlighting the importance of evaluating cells from both blood and tissues to obtain a complete picture of CD8+ T cell regulation during pediatric HIV infection.
Collapse
Affiliation(s)
- Mukta Nag
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | | | - Santhoshan Pillay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| |
Collapse
|
3
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
Zhernov YV, Petrova VO, Simanduyev MY, Shcherbakov DV, Polibin RV, Mitrokhin OV, Basov AA, Zabroda NN, Vysochanskaya SO, Al-khaleefa E, Pashayeva KR, Feyziyeva NY. Microbicides for Topical HIV Immunoprophylaxis: Current Status and Future Prospects. Pharmaceuticals (Basel) 2024; 17:668. [PMID: 38931337 PMCID: PMC11206355 DOI: 10.3390/ph17060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Microbicides, which are classified as topical antiseptic agents, are a revolutionary advancement in HIV prevention aimed to prevent the entry of infectious agents into the human body, thus stopping the sexual transmission of HIV and other sexually transmitted diseases. Microbicides represent the promise of a new age in preventive measures against one of the world's most pressing health challenges. In addition to their direct antiviral effects during HIV transmission, microbicides also influence vaginal mucosal immunity. This article reviews microbicides by presenting different drug classifications and highlighting significant representatives from each group. It also explains their mechanisms of action and presents information about vaginal mucosal immune responses, emphasizing the critical role they play in responding to HIV during sexual transmission. The article discusses the following groups of microbicides: surfactants or membrane disruptors, vaginal milieu protectors, anionic polymers, dendrimers, carbohydrate-binding proteins, HIV replication inhibitors (reverse transcriptase inhibitors), and multi-purpose prevention technologies, which combine protection against HIV, other sexually transmitted diseases, and contraception. For each chemical compound, the article provides a brief overview of relevant preclinical and clinical research, emphasizing their potential as microbicides. The article offers insights into the multifaceted impact of microbicides, which signify a pivotal step forward in the pursuit of effective and accessible pre-exposure prophylaxis (PrEP).
Collapse
Affiliation(s)
- Yury V. Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- A.N. Sysin Research Institute of Human Ecology and Environmental Hygiene, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency, 119435 Moscow, Russia
- Fomin Clinic, 119192 Moscow, Russia
| | - Vladislava O. Petrova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Mark Y. Simanduyev
- The Baku Branch, I.M. Sechenov First Moscow State University (Sechenov University), Baku AZ1141, Azerbaijan
| | - Denis V. Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Public Health and Healthcare, Omsk State Medical University, 644099 Omsk, Russia
| | - Roman V. Polibin
- Department of Epidemiology and Evidence-Based Medicine, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Oleg V. Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Artem A. Basov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Diphtheria and Pertussis Surveillance Laboratory, G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nadezhda N. Zabroda
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Sonya O. Vysochanskaya
- Department of Epidemiology and Evidence-Based Medicine, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Diphtheria and Pertussis Surveillance Laboratory, G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Ezzulddin Al-khaleefa
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Kamilla R. Pashayeva
- The Baku Branch, I.M. Sechenov First Moscow State University (Sechenov University), Baku AZ1141, Azerbaijan
| | - Narmina Yu. Feyziyeva
- The Baku Branch, I.M. Sechenov First Moscow State University (Sechenov University), Baku AZ1141, Azerbaijan
| |
Collapse
|
5
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
6
|
Mvaya L, Khaba T, Lakudzala AE, Nkosi T, Jambo N, Kadwala I, Kankwatira A, Patel PD, Gordon MA, Nyirenda TS, Jambo KC, Ndhlovu ZM. Differential localization and limited cytotoxic potential of duodenal CD8+ T cells. JCI Insight 2022; 7:154195. [PMID: 35132966 PMCID: PMC8855799 DOI: 10.1172/jci.insight.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The duodenum is a major site of HIV persistence during suppressive antiretroviral therapy despite harboring abundant tissue-resident memory (Trm) CD8+ T cells. The role of duodenal Trm CD8+ T cells in viral control is still not well defined. We examined the spatial localization, phenotype, and function of CD8+ T cells in the human duodenal tissue from people living with HIV (PLHIV) and healthy controls. We found that Trm (CD69+CD103hi) cells were the predominant CD8+ T cell population in the duodenum. Immunofluorescence imaging of the duodenal tissue revealed that CD103+CD8+ T cells were localized in the intraepithelial region, while CD103–CD8+ T cells and CD4+ T cells were mostly localized in the lamina propria (LP). Furthermore, HIV-specific CD8+ T cells were enriched in the CD69+CD103–/lo population. However, the duodenal HIV-specific CD8+ Trm cells rarely expressed canonical molecules for potent cytolytic function (perforin and granzyme B) but were more polyfunctional than those from peripheral blood. Taken together, our results show that duodenal CD8+ Trm cells possess limited perforin-mediated cytolytic potential and are spatially separated from HIV-susceptible LP CD4+ T cells. This could contribute to HIV persistence in the duodenum and provides critical information for the design of cure therapies.
Collapse
Affiliation(s)
- Leonard Mvaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Agness E Lakudzala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Ndaru Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Innocent Kadwala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Priyanka D Patel
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tonney S Nyirenda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Zaza M Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Kok L, Masopust D, Schumacher TN. The precursors of CD8 + tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol 2022; 22:283-293. [PMID: 34480118 PMCID: PMC8415193 DOI: 10.1038/s41577-021-00590-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
CD8+ tissue resident memory T cells (TRM cells) are essential for immune defence against pathogens and malignancies, and the molecular processes that lead to TRM cell formation are therefore of substantial biomedical interest. Prior work has demonstrated that signals present in the inflamed tissue micro-environment can promote the differentiation of memory precursor cells into mature TRM cells, and it was therefore long assumed that TRM cell formation adheres to a 'local divergence' model, in which TRM cell lineage decisions are exclusively made within the tissue. However, a growing body of work provides evidence for a 'systemic divergence' model, in which circulating T cells already become preconditioned to preferentially give rise to the TRM cell lineage, resulting in the generation of a pool of TRM cell-poised T cells within the lymphoid compartment. Here, we review the emerging evidence that supports the existence of such a population of circulating TRM cell progenitors, discuss current insights into their formation and highlight open questions in the field.
Collapse
Affiliation(s)
- Lianne Kok
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Masopust
- grid.17635.360000000419368657Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Ton N. Schumacher
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, Wang L, Raymond KA, Starke CE, Mudd JC, Chen W, Smullin C, Matus-Nicodemos R, Hoh R, Krone M, Hecht FM, Pilcher CD, Martin JN, Koup RA, Douek DC, Brenchley JM, Sékaly RP, Pillai SK, Marson A, Deeks SG, McCune JM, Hunt PW. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 2021; 6:136648. [PMID: 33351785 PMCID: PMC7934879 DOI: 10.1172/jci.insight.136648] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.
Collapse
Affiliation(s)
| | - Christian Deo T. Deguit
- Department of Medicine, UCSF, San Francisco, California, USA
- Institute of Human Genetics, University of the Philippines-National Institutes of Health, Manila, Philippines
| | - Joseph Hiatt
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Franziska Blaeschke
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Theodore L. Roth
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Lynn Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | | | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases and
| | - Wenxuan Chen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Carolyn Smullin
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Rodrigo Matus-Nicodemos
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases , NIH, Bethesda, Maryland, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- UCSF Hellen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Peter W. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
10
|
Shen Z, Rodriguez-Garcia M, Patel MV, Wira CR. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity. Sci Rep 2021; 11:1773. [PMID: 33469053 PMCID: PMC7815780 DOI: 10.1038/s41598-021-81380-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Regulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.
Collapse
Affiliation(s)
- Z Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - M Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - M V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - C R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
11
|
Meziane O, Alexandrova Y, Olivenstein R, Dupuy FP, Salahuddin S, Thomson E, Orlova M, Schurr E, Ancuta P, Durand M, Chomont N, Estaquier J, Bernard NF, Costiniuk CT, Jenabian MA. Peculiar Phenotypic and Cytotoxic Features of Pulmonary Mucosal CD8 T Cells in People Living with HIV Receiving Long-Term Antiretroviral Therapy. THE JOURNAL OF IMMUNOLOGY 2020; 206:641-651. [PMID: 33318292 DOI: 10.4049/jimmunol.2000916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
People living with HIV have high burdens of chronic lung disease, lung cancers, and pulmonary infections despite antiretroviral therapy (ART). The rates of tobacco smoking by people living with HIV vastly exceed that of the general population. Furthermore, we showed that HIV can persist within the lung mucosa despite long-term ART. As CD8 T cell cytotoxicity is pivotal for controlling viral infections and eliminating defective cells, we explored the phenotypic and functional features of pulmonary versus peripheral blood CD8 T cells in ART-treated HIV+ and uninfected controls. Bronchoalveolar lavage fluid and matched blood were obtained from asymptomatic ART-treated HIV+ smokers (n = 11) and nonsmokers (n = 15) and uninfected smokers (n = 7) and nonsmokers (n = 10). CD8 T cell subsets and phenotypes were assessed by flow cytometry. Perforin/granzyme B content, degranulation (CD107a expression), and cytotoxicity against autologous Gag peptide-pulsed CD4 T cells (Annexin V+) following in vitro stimulation were assessed. In all groups, pulmonary CD8 T cells were enriched in effector memory subsets compared with blood and displayed higher levels of activation (HLA-DR+) and exhaustion (PD1+) markers. Significant reductions in proportions of senescent pulmonary CD28-CD57+ CD8 T cells were observed only in HIV+ smokers. Pulmonary CD8 T cells showed lower perforin expression ex vivo compared with blood CD8 T cells, with reduced granzyme B expression only in HIV+ nonsmokers. Bronchoalveolar lavage CD8 T cells showed significantly less in vitro degranulation and CD4 killing capacity than blood CD8 T cells. Therefore, pulmonary mucosal CD8 T cells are more differentiated, activated, and exhausted, with reduced killing capacity in vitro than blood CD8 T cells, potentially contributing to a suboptimal anti-HIV immune response within the lungs.
Collapse
Affiliation(s)
- Oussama Meziane
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Syim Salahuddin
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Elaine Thomson
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jérôme Estaquier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nicole F Bernard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada; .,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
12
|
HIV Infection and Persistence in Pulmonary Mucosal Double Negative T Cells In Vivo. J Virol 2020; 94:JVI.01788-20. [PMID: 32967958 PMCID: PMC7925170 DOI: 10.1128/jvi.01788-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022] Open
Abstract
The lungs are relatively unexplored anatomical human immunodeficiency virus (HIV) reservoirs in the antiretroviral therapy (ART) era. Double negative (DN) T cells are a subset of T cells that lack expression of CD4 and CD8 (CD4- CD8-) and may have both regulatory and effector functions during HIV infection. Notably, circulating DN T cells were previously described as cellular HIV reservoirs. Here, we undertook a thorough analysis of pulmonary versus blood DN T cells of people living with HIV (PLWH) under ART. Bronchoalveolar lavage (BAL) fluid and matched peripheral blood were collected from 35 PLWH on ART and 16 uninfected volunteers without respiratory symptoms. Both PLWH and HIV-negative (HIV-) adults displayed higher frequencies of DN T cells in BAL versus blood, and these cells mostly exhibited an effector memory phenotype. In PLWH, pulmonary mucosal DN T cells expressed higher levels of HLA-DR and several cellular markers associated with HIV persistence (CCR6, CXCR3, and PD-1) than blood. We also observed that DN T cells were less senescent (CD28- CD57+) and expressed less immunosuppressive ectonucleotidase (CD73/CD39), granzyme B, and perforin in the BAL fluid than in the blood of PLWH. Importantly, fluorescence-activated cell sorter (FACS)-sorted DN T cells from the BAL fluid of PLWH under suppressive ART harbored HIV DNA. Using the humanized bone marrow-liver-thymus (hu-BLT) mouse model of HIV infection, we observed higher infection frequencies of lung DN T cells than those of the blood and spleen in both early and late HIV infection. Overall, our findings show that HIV is seeded in pulmonary mucosal DN T cells early following infection and persists in these potential cellular HIV reservoirs even during long-term ART.IMPORTANCE Reservoirs of HIV during ART are the primary reasons why HIV/AIDS remains an incurable disease. Indeed, HIV remains latent and unreachable by antiretrovirals in cellular and anatomical sanctuaries, preventing its eradication. The lungs have received very little attention compared to other anatomical reservoirs despite being immunological effector sites exhibiting characteristics ideal for HIV persistence. Furthermore, PLWH suffer from a high burden of pulmonary non-opportunistic infections, suggesting impaired pulmonary immunity despite ART. Meanwhile, various immune cell populations have been proposed to be cellular reservoirs in blood, including CD4- CD8- DN T cells, a subset that may originate from CD4 downregulation by HIV proteins. The present study aims to describe DN T cells in human and humanized mice lungs in relation to intrapulmonary HIV burden. The characterization of DN T cells as cellular HIV reservoirs and the lungs as an anatomical HIV reservoir will contribute to the development of targeted HIV eradication strategies.
Collapse
|
13
|
Migueles SA, Rogan DC, Gavil NV, Kelly EP, Toulmin SA, Wang LT, Lack J, Ward AJ, Pryal PF, Ludwig AK, Medina RG, Apple BJ, Toumanios CN, Poole AL, Rehm CA, Jones SE, Liang CJ, Connors M. Antigenic Restimulation of Virus-Specific Memory CD8 + T Cells Requires Days of Lytic Protein Accumulation for Maximal Cytotoxic Capacity. J Virol 2020; 94:e01595-20. [PMID: 32907983 PMCID: PMC7654275 DOI: 10.1128/jvi.01595-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
In various infections or vaccinations of mice or humans, reports of the persistence and the requirements for restimulation of the cytotoxic mediators granzyme B (GrB) and perforin (PRF) in CD8+ T cells have yielded disparate results. In this study, we examined the kinetics of PRF and GrB mRNA and protein expression after stimulation and associated changes in cytotoxic capacity in virus-specific memory cells in detail. In patients with controlled HIV or cleared respiratory syncytial virus (RSV) or influenza virus infections, all virus-specific CD8+ T cells expressed low PRF levels without restimulation. Following stimulation, they displayed similarly delayed kinetics for lytic protein expression, with significant increases occurring by days 1 to 3 before peaking on days 4 to 6. These increases were strongly correlated with, but were not dependent upon, proliferation. Incremental changes in PRF and GrB percent expression and mean fluorescence intensity (MFI) were highly correlated with increases in HIV-specific cytotoxicity. mRNA levels in HIV-specific CD8+ T-cells exhibited delayed kinetics after stimulation as with protein expression, peaking on day 5. In contrast to GrB, PRF mRNA transcripts were little changed over 5 days of stimulation (94-fold versus 2.8-fold, respectively), consistent with posttranscriptional regulation. Changes in expression of some microRNAs, including miR-17, miR-150, and miR-155, suggested that microRNAs might play a significant role in regulation of PRF expression. Therefore, under conditions of extremely low or absent antigen levels, memory virus-specific CD8+ T cells require prolonged stimulation over days to achieve maximal lytic protein expression and cytotoxic capacity.IMPORTANCE Antigen-specific CD8+ T cells play a major role in controlling most virus infections, primarily by perforin (PRF)- and granzyme B (GrB)-mediated apoptosis. There is considerable controversy regarding whether PRF is constitutively expressed, rapidly increased similarly to a cytokine, or delayed in its expression with more prolonged stimulation in virus-specific memory CD8+ T cells. In this study, the degree of cytotoxic capacity of virus-specific memory CD8+ T cells was directly proportional to the content of lytic molecules, which required antigenic stimulation over several days for maximal levels. This appeared to be modulated by increases in GrB transcription and microRNA-mediated posttranscriptional regulation of PRF expression. Clarifying the requirements for maximal cytotoxic capacity is critical to understanding how viral clearance might be mediated by memory cells and what functions should be induced by vaccines and immunotherapies.
Collapse
Affiliation(s)
- Stephen A Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Rogan
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Noah V Gavil
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth P Kelly
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sushila A Toulmin
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence T Wang
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Addison J Ward
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick F Pryal
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda K Ludwig
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Renata G Medina
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin J Apple
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina N Toumanios
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - April L Poole
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine A Rehm
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara E Jones
- Clinical Research Program Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
15
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential Cytotoxic Function of Resident and Non-resident CD8+ T Cells in the Human Female Reproductive Tract Before and After Menopause. Front Immunol 2020; 11:1096. [PMID: 32582183 PMCID: PMC7287154 DOI: 10.3389/fimmu.2020.01096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
The functional characterization and regulation of tissue resident and non-resident CD8+ T cells in the human female reproductive tract (FRT) as women age remains a gap in our knowledge. Here we characterized the cytotoxic activity and granular contents of CD8+ T cells from the FRT in pre- and postmenopausal women. We found that under steady-state conditions, CD8+ T cells from endometrium (EM), endocervix and ectocervix displayed direct cytotoxic activity, and that cytotoxicity increased in the EM after menopause. Cytotoxic activity was sensitive to suppression by TGFβ exclusively in the EM, and sensitivity to TGFβ was reduced after menopause. Under steady-state conditions, cytotoxic activity (measured as direct killing activity), cytotoxic potential (measured as content of cytotoxic molecules) and proliferation are enhanced in non-resident CD8+ (CD103−) T cells compared to tissue resident (CD103+) T cells. Upon activation, CD103+ T cells displayed greater degranulation compared to CD103− T cells, however the granular content of perforin, granzyme A (GZA) or granzyme B (GZB) was significantly lower. After menopause, degranulation significantly increased, and granular release switched from predominantly GZB in premenopausal to GZA in postmenopausal women. Postmenopausal changes affected both CD103+ and CD103− subpopulations. Finally, CD103+ T cells displayed reduced proliferation compared to CD103− T cells, but after proliferation, cytotoxic molecules were similar in each population. Our results highlight the complexity of regulation of cytotoxic function in the FRT before and after menopause, and are relevant to the development of protective strategies against genital infections and gynecological cancers as women age.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jared M Fortier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
18
|
Shacklett BL, Ferre AL, Kiniry BE. Defining T Cell Tissue Residency in Humans: Implications for HIV Pathogenesis and Vaccine Design. Curr HIV/AIDS Rep 2020; 17:109-117. [PMID: 32052270 PMCID: PMC7072053 DOI: 10.1007/s11904-020-00481-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature defining tissue-resident memory T cells (TRM) and discusses implications for HIV pathogenesis, vaccines, and eradication efforts. RECENT FINDINGS Investigations using animal models and human tissues have identified a TRM transcriptional profile and elucidated signals within the tissue microenvironment leading to TRM development and maintenance. TRM are major contributors to host response in infectious diseases and cancer; in addition, TRM contribute to pathogenic inflammation in a variety of settings. Although TRM are daunting to study in HIV infection, recent work has helped define their molecular signatures and effector functions and tested strategies for their mobilization. Exclusive reliance on blood sampling to gain an understanding of host immunity overlooks the contribution of TRM, which differ in significant ways from their counterparts in circulation. It is hoped that greater understanding of these cells will lead to novel approaches to prevent and/or eradicate HIV infection.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.
- Division of Infectious Disease, Department of Medicine, School of Medicine, University of California, Davis, CA, 95616, USA.
| | - April L Ferre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Brenna E Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
20
|
Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, Martini E, Eidsmo L, Ball TB, Kimani J, Kaul R, Karlsson AC, Wählby C, Broliden K, Tjernlund A. Human Immunodeficiency Virus-Infected Women Have High Numbers of CD103-CD8+ T Cells Residing Close to the Basal Membrane of the Ectocervical Epithelium. J Infect Dis 2019; 218:453-465. [PMID: 29272532 DOI: 10.1093/infdis/jix661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Genital mucosa is the main portal of entry for various incoming pathogens, including human immunodeficiency virus (HIV), hence it is an important site for host immune defenses. Tissue-resident memory T (TRM) cells defend tissue barriers against infections and are characterized by expression of CD103 and CD69. In this study, we describe the composition of CD8+ TRM cells in the ectocervix of healthy and HIV-infected women. Methods Study samples were collected from healthy Swedish and Kenyan HIV-infected and uninfected women. Customized computerized image-based in situ analysis was developed to assess the ectocervical biopsies. Genital mucosa and blood samples were assessed by flow cytometry. Results Although the ectocervical epithelium of healthy women was populated with bona fide CD8+ TRM cells (CD103+CD69+), women infected with HIV displayed a high frequency of CD103-CD8+ cells residing close to their epithelial basal membrane. Accumulation of CD103-CD8+ cells was associated with chemokine expression in the ectocervix and HIV viral load. CD103+CD8+ and CD103-CD8+ T cells expressed cytotoxic effector molecules in the ectocervical epithelium of healthy and HIV-infected women. In addition, women infected with HIV had decreased frequencies of circulating CD103+CD8+ T cells. Conclusions Our data provide insight into the distribution of CD8+ TRM cells in human genital mucosa, a critically important location for immune defense against pathogens, including HIV.
Collapse
Affiliation(s)
- Anna Gibbs
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Petter Ranefall
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Terry B Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg
| | - Joshua Kimani
- Department of Medical Microbiology, Kenyatta National Hospital, University of Nairobi, Kenya
| | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto, Canada
| | - Annika C Karlsson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
21
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
22
|
Abstract
As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
23
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Sui Y, Lewis GK, Wang Y, Berckmueller K, Frey B, Dzutsev A, Vargas-Inchaustegui D, Mohanram V, Musich T, Shen X, DeVico A, Fouts T, Venzon D, Kirk J, Waters RC, Talton J, Klinman D, Clements J, Tomaras GD, Franchini G, Robert-Guroff M, Trinchieri G, Gallo RC, Berzofsky JA. Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. J Clin Invest 2019; 129:1314-1328. [PMID: 30776026 DOI: 10.1172/jci122110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara-SIV (MVA-SIV), and HIV-gp120-CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell-enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - George K Lewis
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Yichuan Wang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Kurt Berckmueller
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Diego Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Venkatramanan Mohanram
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Thomas Musich
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, NCI, Rockville, Maryland, USA
| | - James Kirk
- Nanotherapeutics, Inc., Alachua, Florida, USA
| | | | | | - Dennis Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| |
Collapse
|
25
|
Perdomo-Celis F, Velilla PA, Taborda NA, Rugeles MT. An altered cytotoxic program of CD8+ T-cells in HIV-infected patients despite HAART-induced viral suppression. PLoS One 2019; 14:e0210540. [PMID: 30625227 PMCID: PMC6326488 DOI: 10.1371/journal.pone.0210540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023] Open
Abstract
Despite the suppression of viral replication induced by the highly active anti-retroviral therapy (HAART), an increased immune activation and inflammatory state persists in HIV-infected patients, contributing to lower treatment response and immune reconstitution, and development of non-AIDS conditions. The chronic activation and inflammation affect the functionality and differentiation of CD8+ T-cells, particularly reducing their cytotoxic capacity, which is critical in the control of HIV replication. Although previous studies have shown that HAART induce a partial immune reconstitution, its effect on CD8+ T-cells cytotoxic function, as well as its relationship with the inflammatory state, is yet to be defined. Here, we characterized the functional profile of polyclonal and HIV-specific CD8+ T cells, based on the expression of cell activation and differentiation markers, in individuals chronically infected with HIV, under HAART. Compared with seronegative controls, CD8+ T-cells from patients on HAART exhibited a low degranulation capacity (surface expression of CD107a), with consequent low secreted levels and high intracellular expression of granzyme B and perforin. This degranulation defect was particularly observed in those cells expressing the activation marker HLA-DR, which were further characterized as effector memory cells with high expression of CD57. The expression of CD107a, but not of granzyme B and perforin, in CD8+ T-cells from HIV-infected patients on HAART reached levels similar to those in seronegative controls when the treatment duration was higher than 25 months. In addition, the expression of CD107a was negatively correlated with the expression of exhaustion markers on CD8+ T-cells and the plasma inflammatory molecule sCD14. Thus, despite HAART-induced viral suppression, CD8+ T-cells from HIV-infected patients have an alteration in their cytotoxic program. This defect is associated with the cellular activation, differentiation and exhaustion state, as well as with the inflammation levels, and can be partially recovered with a long and continuous treatment.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Natalia A. Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
- * E-mail:
| |
Collapse
|
26
|
Reuter MA, Del Rio Estrada PM, Buggert M, Petrovas C, Ferrando-Martinez S, Nguyen S, Sada Japp A, Ablanedo-Terrazas Y, Rivero-Arrieta A, Kuri-Cervantes L, Gunzelman HM, Gostick E, Price DA, Koup RA, Naji A, Canaday DH, Reyes-Terán G, Betts MR. HIV-Specific CD8 + T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue. Cell Rep 2018; 21:3458-3470. [PMID: 29262326 PMCID: PMC5764192 DOI: 10.1016/j.celrep.2017.11.075] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Elimination of lymphoid tissue reservoirs is a key component of HIV eradication strategies. CD8+ T cells play a critical role in control of HIV, but their functional attributes in lymph nodes (LNs) remain unclear. Here, we show that memory, follicular CXCR5+, and HIV-specific CD8+ T cells from LNs do not manifest the properties of cytolytic CD8+ T cells. While the frequency of follicular CXCR5+ CD8+ T cells was strongly inversely associated with peripheral viremia, this association was not dependent on cytolytic CXCR5+ CD8+ T cells. Moreover, the poor cytolytic activity of LN CD8+ T cells was linked to a compartmentalized dissociation between effector programming and the transcription factor T-bet. In line with this, activation of LN CD8+ T cells only partially induced the acquisition of cytolytic functions relative to peripheral blood CD8+ T cells. These results suggest that a state of immune privilege against CD8+ T cell-mediated cytolysis exists in lymphoid tissue, potentially facilitating the persistence of HIV.
Collapse
Affiliation(s)
- Morgan A Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi M Gunzelman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Geriatric Research, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, INER, Mexico City, Mexico
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Kiniry BE, Li S, Ganesh A, Hunt PW, Somsouk M, Skinner PJ, Deeks SG, Shacklett BL. Detection of HIV-1-specific gastrointestinal tissue resident CD8 + T-cells in chronic infection. Mucosal Immunol 2018; 11:909-920. [PMID: 29139476 PMCID: PMC5953759 DOI: 10.1038/mi.2017.96] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023]
Abstract
Tissue-resident memory (TRM) CD8+ T-cells are non-recirculating, long-lived cells housed in tissues that can confer protection against mucosal pathogens. Human immunodeficiency virus-1 (HIV-1) is a mucosal pathogen and the gastrointestinal tract is an important site of viral pathogenesis and transmission. Thus, CD8+ TRM cells may be an important effector subset for controlling HIV-1 in mucosal tissues. This study sought to determine the abundance, phenotype, and functionality of CD8+ TRM cells in the context of chronic HIV-1 infection. We found that the majority of rectosigmoid CD8+ T-cells were CD69+CD103+S1PR1- and T-betLowEomesoderminNeg, indicative of a tissue-residency phenotype similar to that described in murine models. HIV-1-specific CD8+ TRM responses appeared strongest in individuals naturally controlling HIV-1 infection. Two CD8+ TRM subsets, distinguished by CD103 expression intensity, were identified. CD103Low CD8+ TRM primarily displayed a transitional memory phenotype and contained HIV-1-specific cells and cells expressing high levels of Eomesodermin, whereas CD103High CD8+ TRM primarily displayed an effector memory phenotype and were EomesoderminNeg. These findings suggest a large fraction of CD8+ T-cells housed in the human rectosigmoid mucosa are tissue-resident and that TRM contribute to the anti-HIV-1 immune response. Further exploration of CD8+ TRM will inform development of anti-HIV-1 immune-based therapies and vaccines targeted to the mucosa.
Collapse
Affiliation(s)
- Brenna E. Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Anupama Ganesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Ma Somsouk
- Division of Gastroenterology, Dept. of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA USA
| |
Collapse
|
29
|
Kiniry BE, Hunt PW, Hecht FM, Somsouk M, Deeks SG, Shacklett BL. Differential Expression of CD8 + T Cell Cytotoxic Effector Molecules in Blood and Gastrointestinal Mucosa in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1876-1888. [PMID: 29352005 DOI: 10.4049/jimmunol.1701532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
We previously reported that CD8+ T cells in human gastrointestinal mucosa exhibit reduced perforin expression and weak or impaired cytotoxic capacity compared with their counterparts in blood. Nevertheless, these cells degranulate and express cytokines and chemokines in response to cognate Ag. In addition to weak expression of perforin, earlier studies suggested differential regulation of perforin and granzymes (Gzms), with GzmA and B expressed by significantly higher percentages of mucosal CD8+ T cells than perforin. However, this topic has not been fully explored. The goal of this study was to elucidate the expression and coexpression patterns of GzmA, B, and K in conjunction with perforin in rectosigmoid CD8+ T cells during HIV-1 infection. We found that expression of both perforin and GzmB, but not GzmA or GzmK, was reduced in mucosa compared with blood. A large fraction of rectosigmoid CD8+ T cells either did not express Gzms or were single-positive for GzmA. Rectosigmoid CD8+ T cells appeared skewed toward cytokine production rather than cytotoxic responses, with cells expressing multiple cytokines and chemokines generally lacking in perforin and Gzm expression. These data support the interpretation that perforin and Gzms are differentially regulated, and display distinct expression patterns in blood and rectosigmoid T cells. These studies may help inform the development of strategies to combat HIV-1 and other mucosal pathogens.
Collapse
Affiliation(s)
- Brenna E Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Frederick M Hecht
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Ma Somsouk
- Division of Gastroenterology, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110; and
| | - Steven G Deeks
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616; .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Davis, CA 95616
| |
Collapse
|