1
|
Courtemanche O, Huppé CA, Blais-Lecours P, Maranda C, Morissette MC, Blanchet MR, Dion G, Marsolais D. Ex Vivo Overactivation of Lymphocyte Subsets in Fibrotic Hypersensitivity Pneumonitis Is Blunted by a Sphingosine-1-Phosphate Receptor Ligand. Int J Mol Sci 2025; 26:3197. [PMID: 40243992 PMCID: PMC11989070 DOI: 10.3390/ijms26073197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Lymphocytes are central to the pathogenesis of hypersensitivity pneumonitis and a strong body of evidence supports that lymphocytes are modulated by sphingosine-1-phosphate receptor-modifying drugs. This exploratory study aimed to determine if a pharmacological sphingosine-1-phosphate receptor ligand interfered with the activation of lymphocytes obtained from fibrotic hypersensitivity pneumonitis patients. Peripheral blood mononuclear cells of 12 patients and 10 control subjects were submitted to CD3/CD28 stimulation, isolated B cells were incubated with a TLR9 ligand; and we tested how these stimulations were impacted by ozanimod, a sphingosine-1-phosphate receptor ligand. T cell and B cell subsets from patients overexpressed CD69 and cytokines such as TNF and IL-4 in response to CD3/CD28 stimulation, compared to controls. In patients with fibrotic hypersensitivity pneumonitis, ozanimod alleviated CD3/CD28 induction of CD69, IL-4, and TNF in CD8, but not CD4 T cells. In isolated B cells stimulated with a TLR9 ligand, ozanimod reduced cell surface expression of CD69, CD86, and CD40, as well as TNF and IL-6 accumulation in supernatant. We conclude that lymphocyte subsets are functionally impacted in patients with fibrotic hypersensitivity pneumonitis and that ozanimod can interfere ex vivo with the overactivation of B cells and CD8 T cells in response to specific stimuli.
Collapse
Affiliation(s)
- Olivier Courtemanche
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Carole-Ann Huppé
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Pascale Blais-Lecours
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Cloé Maranda
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Mathieu C. Morissette
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Geneviève Dion
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - David Marsolais
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Domain G, Blais-Lecours P, Strubé C, Dognin N, Châteauvert N, Savard N, Nguyen T, Rola P, Marsolais D, Lellouche F, Sarrazin JF. Cardiac Safety of Ozanimod Use, a Novel Sphingosine-1-Phosphate Receptor Ligand, in COVID-19 Patients Requiring Oxygen: Secondary Analysis of the COZI Randomized Clinical Trial. CJC Open 2024; 6:1035-1041. [PMID: 39525818 PMCID: PMC11544182 DOI: 10.1016/j.cjco.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 11/16/2024] Open
Abstract
Background Ozanimod is a novel immune modulator that could be useful in viral pulmonary infections by reducing lung inflammation. It is an S1P receptor ligand known to induce bradycardia and more serious adverse cardiac effects, such as atrioventricular block and QT interval prolongation. We present a substudy of the COVID-19 Ozanimod Intervention (COZI) trial in which ozanimod was administered in acute pulmonary infection patients, to assess cardiac safety. Methods In this pilot randomized open-label trial, COVID-19 patients requiring oxygen support were randomized into 2 groups: standard-of-care + ozanimod (OZA) vs standard-of-care alone (SOC). All patients were monitored with a 14-day electrocardiogram monitor (CardioSTAT, Icentia, Quebec, QC) during their hospitalization. We evaluated the cardiac effects of ozanimod on heart rate (HR), PR interval length, and QT interval duration. Results A total of 42 patients were analyzed: 23 in the SOC group and 19 in the OZA group. Mean hourly HR over the first 10 days of treatment decreased in the OZA group, compared with that in the SOC group (P < 0.0001). The maximum decrease in HR occurred on day 3. The maximum decrease in HR occurred on day 3, without a significant difference between groups: 49 beats per minute (interquartile range, 42-59) in the OZA group, and 54 beats per minute (48-60) in the SOC group, P = 0.45. No high-degree atrioventricular block was recorded. QT and PR interval median values were within the normal range in both groups, without a significant difference. Conclusions The maximal reduction in HR occurred 3 days after the onset of ozanimod treatment in patients hospitalized for COVID-19, but it did not remain significant over the 10-day treatment period. No relevant cardiac adverse event was observed.
Collapse
Affiliation(s)
- Guillaume Domain
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| | - Pascale Blais-Lecours
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, Québec, Québec, Canada
| | - Camille Strubé
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| | - Nicolas Dognin
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| | - Nathalie Châteauvert
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| | - Noémie Savard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, Québec, Québec, Canada
| | - Tuyen Nguyen
- Cite-de-la-Santé Hospital, CISSS de Laval, Laval, Québec, Canada
| | - Philippe Rola
- Santa Cabrini Hospital, CIUSSS EMTL, Montréal, Québec, Canada
| | - David Marsolais
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, Québec, Québec, Canada
| | - François Lellouche
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| | - Jean-François Sarrazin
- Institut universitaire de cardiologie et de pneumologie de Québec— Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Pilliol V, Morsli M, Terlier L, Hassani Y, Malat I, Guindo CO, Davoust B, Lamglait B, Drancourt M, Aboudharam G, Grine G, Terrer E. Candidatus Methanosphaera massiliense sp. nov., a methanogenic archaeal species found in a human fecal sample and prevalent in pigs and red kangaroos. Microbiol Spectr 2024; 12:e0514122. [PMID: 38189277 PMCID: PMC10845953 DOI: 10.1128/spectrum.05141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Madjid Morsli
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Laureline Terlier
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ihab Malat
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Cheick Oumar Guindo
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | | | - Elodie Terrer
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Guerra A. Human associated Archaea: a neglected microbiome worth investigating. World J Microbiol Biotechnol 2024; 40:60. [PMID: 38172371 DOI: 10.1007/s11274-023-03842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The majority of research in the field of human microbiota has predominantly focused on bacterial and fungal communities. Conversely, the human archaeome has received scant attention and remains poorly studied, despite its potential role in human diseases. Archaea have the capability to colonize various human body sites, including the gastrointestinal tract, skin, vagina, breast milk, colostrum, urinary tract, lungs, nasal and oral cavities. This colonization can occur through vertical transmission, facilitated by the transfer of breast milk or colostrum from mother to child, as well as through the consumption of dairy products, organic produce, salty foods, and fermented items. The involvement of these microorganisms in diseases, such as periodontitis, might be attributed to their production of toxic compounds and the detoxification of growth inhibitors for pathogens. However, the precise mechanisms through which these contributions occur remain incompletely understood, necessitating further studies to assess their impact on human health.
Collapse
|
5
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
Co-modulation of T cells and B cells enhances the inhibition of inflammation in experimental hypersensitivity pneumonitis. Respir Res 2022; 23:275. [PMID: 36209215 PMCID: PMC9547367 DOI: 10.1186/s12931-022-02200-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP.
Methods Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. Results Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP‑associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. Conclusions Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02200-9.
Collapse
|
7
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
8
|
Gerossier E, Nayar S, Froidevaux S, Smith CG, Runser C, Iannizzotto V, Vezzali E, Pierlot G, Mentzel U, Murphy MJ, Martinic MM, Barone F. Cenerimod, a selective S1P 1 receptor modulator, improves organ-specific disease outcomes in animal models of Sjögren's syndrome. Arthritis Res Ther 2021; 23:289. [PMID: 34839819 PMCID: PMC8628476 DOI: 10.1186/s13075-021-02673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sjögren’s syndrome is a systemic autoimmune disease characterized by immune cells predominantly infiltrating the exocrine glands and frequently forming ectopic lymphoid structures. These structures drive a local functional immune response culminating in autoantibody production and tissue damage, associated with severe dryness of mucosal surfaces and salivary gland hypofunction. Cenerimod, a potent, selective and orally active sphingosine-1-phosphate receptor 1 modulator, inhibits the egress of lymphocytes into the circulation. Based on the mechanism of action of cenerimod, its efficacy was evaluated in two mouse models of Sjögren’s syndrome. Methods Cenerimod was administered in two established models of Sjögren’s syndrome; firstly, in an inducible acute viral sialadenitis model in C57BL/6 mice, and, secondly, in the spontaneous chronic sialadenitis MRL/lpr mouse model. The effects of cenerimod treatment were then evaluated by flow cytometry, immunohistochemistry, histopathology and immunoassays. Comparisons between groups were made using a Mann-Whitney test. Results In the viral sialadenitis model, cenerimod treatment reduced salivary gland immune infiltrates, leading to the disaggregation of ectopic lymphoid structures, reduced salivary gland inflammation and preserved organ function. In the MRL/lpr mouse model, cenerimod treatment decreased salivary gland inflammation and reduced T cells and proliferating plasma cells within salivary gland ectopic lymphoid structures, resulting in diminished disease-relevant autoantibodies within the salivary glands. Conclusions Taken together, these results suggest that cenerimod can reduce the overall autoimmune response and improve clinical parameters in the salivary glands in models of Sjögren’s syndrome and consequently may reduce histological and clinical parameters associated with the disease in patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02673-x.
Collapse
Affiliation(s)
- Estelle Gerossier
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Sylvie Froidevaux
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Celine Runser
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Enrico Vezzali
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Gabin Pierlot
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Ulrich Mentzel
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Mark J Murphy
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Marianne M Martinic
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK.,Rheumatology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
9
|
Zeng Y, Zhang Y, Huang X, Song L, Polsky K, Wu Y, Kheradmand F, Guo Y, Green LK, Corry DB, Knight JM. Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose lipopolysaccharide. Respir Res 2021; 22:263. [PMID: 34629055 PMCID: PMC8503997 DOI: 10.1186/s12931-021-01850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger). METHODS C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 μg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined. RESULTS In comparison to mice challenged only with A. niger, addition of LPS (1 μg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. CONCLUSIONS In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.
Collapse
Affiliation(s)
- Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yun Zhang
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizhen Song
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Katherine Polsky
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yifan Wu
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Linda K Green
- Department of Pathology and Immunology, Michael E. DeBakey VA Center, 2002 Holcombe Boulevard, Houston, TX, 77030, USA
| | - David B Corry
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA.
| | - John M Knight
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Huppé CA, Blais-Lecours P, Bernatchez E, Lauzon-Joset JF, Duchaine C, Rosen H, Dion G, McNagny KM, Blanchet MR, Morissette MC, Marsolais D. S1P 1 Contributes to Endotoxin-enhanced B-Cell Functions Involved in Hypersensitivity Pneumonitis. Am J Respir Cell Mol Biol 2020; 63:209-218. [PMID: 32289229 DOI: 10.1165/rcmb.2019-0339oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a proportion of patients with hypersensitivity pneumonitis, the biological and environmental factors that sustain inflammation are ill defined, resulting in no effective treatment option. Bioaerosols found in occupational settings are complex and often include Toll-like receptor ligands, such as endotoxins. How Toll-like receptor ligands contribute to the persistence of hypersensitivity pneumonitis, however, remains poorly understood. In a previous study, we found that an S1P1 (sphingosine-1-phosphate receptor 1) agonist prevented the reactivation of antigen-driven B-cell responses in the lung. Here, we assessed the impact of endotoxins on B-cell activation in preexisting hypersensitivity pneumonitis and the role of S1P1 in this phenomenon. The impact of endotoxins on pre-established hypersensitivity pneumonitis was studied in vivo. S1P1 levels were tracked on B cells in the course of the disease using S1P1-eGFP knockin mice, and the role of S1P1 on B-cell functions was assessed using pharmacological tools. S1P1 was found on B cells in experimental hypersensitivity pneumonitis. Endotoxin exposure enhanced neutrophil accumulation in the BAL of mice with experimental hypersensitivity pneumonitis. This was associated with enhanced CD69 cell-surface expression on lymphocytes in the BAL. In isolated B cells, endotoxins increased cell-surface levels of costimulatory molecules and CD69, which was prevented by an S1P1 agonist. S1P1 modulators also reduced TNF production by B cells and their capacity to trigger T-cell cooperation ex vivo. An S1P1 ligand directly inhibited endotoxin-induced B-cell activation.
Collapse
Affiliation(s)
- Carole-Ann Huppé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Pascale Blais-Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Emilie Bernatchez
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Jean-François Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, and
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California; and
| | - Geneviève Dion
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Kelly M McNagny
- The Biomedical Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
11
|
RP001 hydrochloride improves neurological outcome after subarachnoid hemorrhage. J Neurol Sci 2019; 399:6-14. [PMID: 30738334 DOI: 10.1016/j.jns.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) results in neurological damage, acute cardiac damage and has a high mortality rate. Immunoresponse in the acute phase after SAH plays a key role in mediating vasospasm, edema, inflammation and neuronal damage. The S1P/S1PR pathway impacts multiple cellular functions, exerts anti-inflammatory and anti-apoptotic effects, promotes remyelination, and improves outcome in several central nervous system (CNS) diseases. RP001 hydrochloride is a novel S1PR agonist, which sequesters lymphocytes within their secondary tissues and prevents infiltration of immune cells into the CNS thereby reducing immune response. In this study, we investigated whether RP001 attenuates neuronal injury after SAH by reducing inflammation. S1PRs, specifically S1PR1, 3 not only exerts anti-inflammatory effects, but also decreases heart rate and induces atrioventricular conduction abnormalities. Therefore, we also tested whether RP001 treatment of SAH regulates cardiac functional outcome. Male adult C57BL/6 mice were subjected to SAH, and neurological function tests, echocardiography, and immunohistochemical analysis were performed. SAH induces neurological deficits and acute cardiac dysfunction compared to sham control mice. Treatment of SAH with a low-dose of RP001 induces better neurological outcome and cardiac function compared to a high-dose of RP001. Low-dose-RP001 treatment significantly decreases apoptosis, white matter damage, blood brain barrier permeability, microglial/astrocyte activation, macrophage chemokine protein-1, matrix metalloproteinase-9 and NADPH oxidase-2 expression in the brain compared to SAH control mice. Our findings indicate that low-dose of RP001 alleviates neurological damage after SAH, in part by decreasing neuroinflammation.
Collapse
|