1
|
McConnell AM, Chassé MH, Noonan HR, Mito JK, Barbano J, Weiskopf E, Gosselink IF, Prasad M, Yang S, Abarzua P, Lian CG, Murphy GF, Trapnell C, Zon LI. An attractor state zone precedes neural crest fate in melanoma initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.618007. [PMID: 39484503 PMCID: PMC11526944 DOI: 10.1101/2024.10.22.618007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The field cancerization theory suggests that a group of cells containing oncogenic mutations are predisposed to transformation1, 2. We previously identified single cells in BRAF V600E ;p53 -/- zebrafish that reactivate an embryonic neural crest state before initiating melanoma3-5. Here we show that single cells reactivate the neural crest fate from within large fields of adjacent abnormal melanocytes, which we term the "cancer precursor zone." These cancer precursor zone melanocytes have an aberrant morphology, dysplastic nuclei, and altered gene expression. Using single cell RNA-seq and ATAC-seq, we defined a distinct transcriptional cell attractor state for cancer precursor zones and validated the stage-specific gene expression initiation signatures in human melanoma. We identify the cancer precursor zone driver, ID1, which binds to TCF12 and inhibits downstream targets important for the maintenance of melanocyte morphology and cell cycle control. Examination of patient samples revealed precursor melanocytes expressing ID1, often surrounding invasive melanoma, indicating a role for ID1 in early melanomagenesis. This work reveals a surprising field effect of melanoma initiation in vivo in which tumors arise from within a zone of morphologically distinct, but clinically covert, precursors with altered transcriptional fate. Our studies identify novel targets that could improve early diagnosis and prevention of melanoma.
Collapse
Affiliation(s)
- Alicia M. McConnell
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maggie H. Chassé
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Haley R. Noonan
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey K. Mito
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Julia Barbano
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Erika Weiskopf
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Irene F. Gosselink
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Meera Prasad
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Phammela Abarzua
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Christine G. Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - George F. Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kodali N, Bhattaru A, Blanchard I, Sharma Y, Lipner SR. Assessing melanoma prognosis: the interplay between patient profiles, survival, and BRAF, NRAS, KIT, and TWT mutations in a retrospective multi-study analysis. Melanoma Res 2024; 34:419-428. [PMID: 38564430 DOI: 10.1097/cmr.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The incidence and prevalence of melanoma are increasing globally, presenting a significant public health concern. The main genetic drivers of melanoma include BRAF, NRAS, KIT and triple wild-type (TWT) mutations. Little is known about the effects of these mutations on outcomes in terms of demographics and patient characteristics. We examined differences in melanoma mortality risk and mutation count across mutation type and patient disease profile. We extrapolated primary melanoma patient data from 14 studies via the cBioportal database. Patients were divided into demographic groups and classified according to BRAF, NRAS, KIT and TWT mutation status. Analyses included two-sample Student t -test and two-way analysis of variance tests analysis with Tukey's post hoc test. Survival outcomes were compared via Kaplan-Meier curve and Cox regression. NRAS-mutated patients exhibited decreased overall survival compared to BRAF-mutated patients. Male patients had higher mutation counts across all gene groups than females, with the fewest TWT mutations in comparison to BRAF, NRAS and KIT mutations. Males also exhibited increased mortality risk for NRAS, KIT and TWT mutations compared to BRAF mutations. An unknown primary melanoma was associated with increased mortality risk across all gene groups. NRAS-mutated acral melanoma patients had an increased mortality risk compared to NRAS-mutated cutaneous melanoma patients. Older patients had a higher mortality risk than younger patients. Patients with heavier versus lower weights had lower mortality risk, which was more pronounced for BRAF-mutated patients. These relationships highlight the importance of demographic and pathologic relationships to aid in risk assessment and personalize treatment plans.
Collapse
Affiliation(s)
- Nilesh Kodali
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Abhijit Bhattaru
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Isabella Blanchard
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Yash Sharma
- Derpartment of Education, UT Southwestern Medical School, Dallas, Texas
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Townley R, Deniaud A, Stacy KS, Torres CSR, Cheraghi F, Wicker NB, de la Cova CC. The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in Caenorhabditis elegans. Sci Signal 2023; 16:eabq4355. [PMID: 37643243 PMCID: PMC10656100 DOI: 10.1126/scisignal.abq4355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Signaling by the kinase cascade composed of Raf, MEK, and ERK is critical for animal development and is often inappropriately activated in human malignancies. We sought to identify factors that control signaling mediated by the Caenorhabditis elegans Raf ortholog LIN-45. A genetic screen showed that the degradation of LIN-45 required the E3/E4 ubiquitin ligase UFD-2. Both UFD-2 and its partner, the ATP-dependent segregase CDC-48, were required for the developmental regulation of LIN-45 protein abundance. We showed that UFD-2 acted in the same pathway as the E3 ubiquitin ligase SCFSEL-10 to decrease LIN-45 abundance in cells in which Raf-MEK-ERK signaling was most highly active. UFD-2 also reduced the protein abundance of activated LIN-45 carrying a mutation equivalent to the cancer-associated BRAF(V600E) variant. Our structure-function studies showed that the disruption of LIN-45 domains that mediate protein-protein interactions, including the conserved cysteine-rich domain and 14-3-3 binding motifs, were required for UFD-2-independent degradation of LIN-45. We propose a model in which UFD-2 and CDC-48 act downstream of SCFSEL-10 to remove LIN-45 from its protein interaction partners and facilitate proteasomal targeting and degradation. These findings imply that UFD-2 and CDC-48 may be important for Raf degradation during normal and oncogenic Ras and MAPK signaling in mammalian cells.
Collapse
Affiliation(s)
- Robert Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Augustin Deniaud
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Kennedy S. Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | | | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Nicole B. Wicker
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Claire C. de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| |
Collapse
|
4
|
Oh KY, Kim JH, Cho SD, Yoon HJ, Lee JI, Hong SD. BRAF V600E and previously unidentified KRAS G12C mutations in odontogenic tumors may affect MAPK activation differently depending on tumor type. Genes Chromosomes Cancer 2022; 61:481-490. [PMID: 35353428 DOI: 10.1002/gcc.23040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Although several types of odontogenic tumors share the same mutations in MAPK pathway genes, their effects on MAPK activation remain unclarified. This study aimed to evaluate the associations between these mutations and ERK phosphorylation in ameloblastoma and mixed odontogenic tumors (MOTs) and to analyze the expression pattern of phosphorylated ERK (p-ERK) for determining the involvement of MAPK activation in the development and progression of odontogenic tumors. Forty-three odontogenic tumors consisting of 18 ameloblastomas and 25 MOTs were analyzed for BRAF, KRAS, and NRAS mutations by Sanger sequencing. The expressions of BRAFV600E protein and p-ERK were detected by immunohistochemistry. The associations of mutation status and p-ERK expression were statistically analyzed. In ameloblastoma cells, the effect of BRAFV600E inhibition on MAPK activation was investigated. In benign MOTs, BRAFV600E mutations were neither expressed at the protein level nor associated with p-ERK expression. In contrast, BRAFV600E -mutant ameloblastic fibrosarcoma showed co-expression of BRAF V600E protein and p-ERK, especially in the sarcomatous component. In ameloblastoma, p-ERK was predominantly expressed in the tumor periphery showing a significant correlation with BRAFV600E mutations, and in vitro BRAFV600E inhibition decreased ERK phosphorylation. KRASG12C mutations, previously unidentified in odontogenic tumors, were detected in one case each of benign MOT and ameloblastoma; only the latter was high-p-ERK. In conclusion, unlike in benign MOTs, BRAFV600E and KRASG12C mutations lead to MAPK activation in ameloblastoma, suggesting their role as therapeutic targets. p-ERK intratumoral heterogeneity indicates that MAPK pathway activation may be associated with sarcomatous proliferation of ameloblastic fibrosarcoma and infiltrative behavior of ameloblastoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyu-Young Oh
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Scatolini M, Patel A, Grosso E, Mello-Grand M, Ostano P, Coppo R, Vitiello M, Venesio T, Zaccagna A, Pisacane A, Sarotto I, Taverna D, Poliseno L, Bergamaschi D, Chiorino G. GJB5 association with BRAF mutation and survival in cutaneous malignant melanoma. Br J Dermatol 2021; 186:117-128. [PMID: 34240406 DOI: 10.1111/bjd.20629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gap junctional intercellular communication is crucial for epidermal cellular homeostasis. Inability to establish melanocyte-keratinocytes contacts and loss of intercellular junction's integrity may contribute to melanoma development. Connexins, laminins and desmocollins have been implicated in the control of melanoma growth, where their reduced expression has been reported in metastatic lesions. OBJECTIVES The aim of this study was to investigate Connexin 31.1 (GJB5) expression and identify any association with BRAF mutational status, melanoma patient prognosis and MAPK inhibitors (MAPKi) treatment. MATERIAL AND METHODS GJB5 expression was measured at RNA and protein level in melanoma clinical samples and established cell lines treated or not with BRAF and MEK inhibitors, as well as in cell lines which developed MAPK inhibitors resistance. Findings were further validated and confirmed by analysis of independent datasets. RESULTS Our analysis reveals significant downregulation of GJB5 expression in metastatic melanoma lesions compared to primary ones and in BRAF mutated versus BRAF wild-type melanomas. Likewise, GJB5 expression is significantly lower in BRAFV600E compared with BRAFWT cell lines and increases upon MAPKi treatment. MAPKi-resistant melanoma cells display a similar expression pattern compared to BRAFWT cells, with increased GJB5 expression associated with morphological changes. Enhancement of BRAFV600E expression in BRAFWT melanoma cells significantly upregulates miR-335-5p expression with consequent downregulation of GJB5, one of its targets. Furthermore, overexpression of miR-335-5p in two BRAFWT cell lines confirms specific GJB5 protein downregulation. RT-qPCR analysis also revealed upregulation of miR-335 in BRAFV600E melanoma cells, which is significantly downregulated in cells resistant to MEK inhibitors. Our data were further validated using the TCGA-SKCM dataset, where BRAF mutations associate with increased miR-335 expression and inversely correlate with GJB5 expression. In clinical samples, GJB5 underexpression is also associated with patient overall worse survival, especially at early stages. CONCLUSION We identified a significant association between metastases / BRAF mutation and low GJB5 expression in melanoma. Our results identify a novel mechanism of Gap-junctional protein regulation, suggesting a prognostic role for GJB5 in cutaneous melanoma.
Collapse
Affiliation(s)
- M Scatolini
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - A Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - E Grosso
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - M Mello-Grand
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - P Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - R Coppo
- Molecular Biotechnology Centre, 10126, Torino, Italy.,Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - T Venesio
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Zaccagna
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Pisacane
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - I Sarotto
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - D Taverna
- Molecular Biotechnology Centre, 10126, Torino, Italy
| | - L Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - D Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - G Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| |
Collapse
|
6
|
Berrino E, Balsamo A, Pisacane A, Gallo S, Becco P, Miglio U, Caravelli D, Poletto S, Paruzzo L, Debernardi C, Piccinelli C, Zaccagna A, Rescigno P, Aglietta M, Sapino A, Carnevale-Schianca F, Venesio T. High BRAF variant allele frequencies are associated with distinct pathological features and responsiveness to target therapy in melanoma patients. ESMO Open 2021; 6:100133. [PMID: 33984673 PMCID: PMC8134716 DOI: 10.1016/j.esmoop.2021.100133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background BRAF mutant melanoma patients are commonly treated with anti-BRAF therapeutic strategies. However, many factors, including the percentage of BRAF-mutated cells, may contribute to the great variability in patient outcomes. Patients and methods The BRAF variant allele frequency (VAF; defined as the percentage of mutated alleles) of primary and secondary melanoma lesions, obtained from 327 patients with different disease stages, was assessed by pyrosequencing. The BRAF mutation rate and VAF were then correlated with melanoma pathological features and patients’ clinical characteristics. Kaplan–Meier curves were used to study the correlations between BRAF VAF, overall survival (OS), and progression-free survival (PFS) in a subset of 62 patients treated by anti-BRAF/anti-MEK therapy after metastatic progression. Results A highly heterogeneous BRAF VAF was identified (3%-90%). Besides being correlated with age, a higher BRAF VAF level was related to moderate lymphocytic infiltration (P = 0.017), to melanoma thickness according to Clark levels, (level V versus III, P = 0.004; level V versus IV, P = 0.04), to lymph node metastases rather than cutaneous (P = 0.04) or visceral (P = 0.03) secondary lesions. In particular, a BRAF VAF >25% was significantly associated with a favorable outcome in patients treated with the combination of anti-BRAF/anti-MEK drug (OS P = 0.04; PFS P = 0.019), retaining a significant value as an independent factor for the OS and the PFS in the multivariate analysis (P = 0.014 and P = 0.003, respectively). Conclusion These results definitively support the role of the BRAF VAF as a potential prognostic and predictive biomarker in melanoma patients in the context of BRAF inhibition. In melanoma the response to anti-BRAF targeted therapies is heterogeneous and influenced by several features. The role of the BRAF VAF as provider of sensitivity to target therapies is debated. We found that high BRAF VAFs are associated with patient age, melanoma thickness, non-brisk TILs and lymph node metastases. We proved the independent prognostic value of high BRAF VAFs in melanoma patients treated with targeted therapies. The quantitative evaluation of BRAF mutations allows stratifying melanoma patients to the BRAF/MEK targeted treatment.
Collapse
Affiliation(s)
- E Berrino
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - A Balsamo
- Clinical Research Office, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - A Pisacane
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - S Gallo
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - P Becco
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - U Miglio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - D Caravelli
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - S Poletto
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - L Paruzzo
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - C Debernardi
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - C Piccinelli
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - A Zaccagna
- Dermosurgery, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - P Rescigno
- Interdisciplinary Group for Research and Clinical Trials, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy
| | - M Aglietta
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - A Sapino
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy.
| | | | - T Venesio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCs, Turin, Italy.
| |
Collapse
|
7
|
Koelsch B, Theurer S, Staniszewska M, Heupel J, Koch A, Mergener S, Walk F, Fischer C, Kutritz A, Schmid KW, Kindler-Röhrborn A. An Animal Model Further Uncovers the Role of Mutant Braf V600E during Papillary Thyroid Cancer Development. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:702-710. [PMID: 31953036 DOI: 10.1016/j.ajpath.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
Papillary thyroid carcinomas (PTCs) account for 90% of human thyroid cancer cases, which represent 1% of all cancer cases. They are likely to develop from papillary thyroid microcarcinomas (PTMCs), found in up to 36% of healthy individuals, due to rare progression events (0.01%). Although the prognosis of PTCs is excellent, 5% to 10% of tumors display an unfavorable outcome. About 45% of PTCs exhibit activating BRAFV600E mutations. Rats of the inbred BD strains postnatally exposed to the carcinogen N-ethyl-N-nitrosourea developed PTMCs, which closely resembled their human counterparts judging from their histology, size, and marginal tendency to progress. DNA sequencing revealed mutations in exon 15 of the Braf gene identical to the human BRAFV600E mutation in 82% of the cases. Predominantly a 50:50 ratio of wild-type to mutant Braf alleles was seen regardless of tumor size or animal age, indicating that the Braf mutation is an early, if not the initial, event in rat PTMC development. Surprisingly, most PTMCs carrying a confirmed BrafV600E mutation did not display BrafV600E protein expression. As the BrafV600Egene is supposed to be the driver in PTC development, down-regulation of expression should contribute to the low risk for progression of PTMC. This model system will enable further insights into the molecular mechanisms of PTMC initiation and progression to PTC, further translating into targeted tumor prevention strategies/therapies.
Collapse
Affiliation(s)
- Bernd Koelsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Magdalena Staniszewska
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jacqueline Heupel
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Amelie Koch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Svenja Mergener
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Franziska Walk
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christine Fischer
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Andrea Kutritz
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt W Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Kindler-Röhrborn
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Mutational Status of NRAS and BRAF Genes and Protein Expression Analysis in a Series of Primary Oral Mucosal Melanoma. Am J Dermatopathol 2017; 39:104-110. [DOI: 10.1097/dad.0000000000000605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Abstract
The etiology and pathogenesis of lentiginous acral melanomas are poorly understood. Recent studies have postulated that DNA repair mechanisms and cell growth pathways are involved in the development of melanoma, particularly changes in the MAPK pathways (RAS, BRAF, MEK 1/2, and ERK 1/2). The aim of this study is to assess the status of the MAP kinase pathways in the pathogenesis of acral melanomas. The authors examined the components of the RAS–RAF–MEK–ERK cascades by immunohistochemistry in a series of 16 primary acral melanomas by tissue microarray. The expression of MAP kinase cascade proteins changed in most cases. The authors observed that 57.14% of cases were BRAF positive and that 61.53%, 71.42%, and 71.42% of cases were positive for MEK2, ERK1, and ERK2, respectively; RAS was not expressed in 92.31%, and all cases were negative for MEK1. The absence of RAS and positivity for MEK2, ERK1, and ERK2 were most seen in invasive cases with high thickness. These aspects of the MAPK pathway require further examination in acral melanomas between different populations. Nevertheless, the results highlight significant alterations in the MAP kinase cascades that are related to histological indicators of prognosis in primary acral melanomas.
Collapse
|
10
|
Roh MR, Eliades P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2016; 28:661-72. [PMID: 26300491 DOI: 10.1111/pcmr.12412] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023]
Abstract
Melanocytic nevi are a benign clonal proliferation of cells expressing the melanocytic phenotype, with heterogeneous clinical and molecular characteristics. In this review, we discuss the genetics of nevi by salient nevi subtypes: congenital melanocytic nevi, acquired melanocytic nevi, blue nevi, and Spitz nevi. While the molecular etiology of nevi has been less thoroughly studied than melanoma, it is clear that nevi and melanoma share common driver mutations. Acquired melanocytic nevi harbor oncogenic mutations in BRAF, which is the predominant oncogene associated with melanoma. Congenital melanocytic nevi and blue nevi frequently harbor NRAS mutations and GNAQ mutations, respectively, while Spitz and atypical Spitz tumors often exhibit HRAS and kinase rearrangements. These initial 'driver' mutations are thought to trigger the establishment of benign nevi. After this initial phase of the cell proliferation, a senescence program is executed, causing termination of nevi growth. Only upon the emergence of additional tumorigenic alterations, which may provide an escape from oncogene-induced senescence, can malignant progression occur. Here, we review the current literature on the pathobiology and genetics of nevi in the hope that additional studies of nevi promise to inform our understanding of the transition from benign neoplasm to malignancy.
Collapse
Affiliation(s)
- Mi Ryung Roh
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Philip Eliades
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Sameer Gupta
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Kato S, Lippman SM, Flaherty KT, Kurzrock R. The Conundrum of Genetic "Drivers" in Benign Conditions. J Natl Cancer Inst 2016; 108:djw036. [PMID: 27059373 PMCID: PMC5017937 DOI: 10.1093/jnci/djw036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/28/2016] [Indexed: 12/15/2022] Open
Abstract
Advances in deep genomic sequencing have identified a spectrum of cancer-specific passenger and driver aberrations. Clones with driver anomalies are believed to be positively selected during carcinogenesis. Accumulating evidence, however, shows that genomic alterations, such as those in BRAF, RAS, EGFR, HER2, FGFR3, PIK3CA, TP53, CDKN2A, and NF1/2, all of which are considered hallmark drivers of specific cancers, can also be identified in benign and premalignant conditions, occasionally at frequencies higher than in their malignant counterparts. Targeting these genomic drivers can produce dramatic responses in advanced cancer, but the effects on their benign counterparts are less clear. This benign-malignant phenomenon is well illustrated in studies of BRAF V600E mutations, which are paradoxically more frequent in benign nevi (∼80%) than in dysplastic nevi (∼60%) or melanoma (∼40%-45%). Similarly, human epidermal growth factor receptor 2 is more commonly overexpressed in ductal carcinoma in situ (∼27%-56%) when compared with invasive breast cancer (∼11%-20%). FGFR3 mutations in bladder cancer also decrease with tumor grade (low-grade tumors, ∼61%; high-grade, ∼11%). “Driver” mutations also occur in nonmalignant settings: TP53 mutations in synovial tissue from rheumatoid arthritis and FGFR3 mutations in seborrheic keratosis. The latter observations suggest that the oncogenicity of these alterations may be tissue context–dependent. The conversion of benign conditions to premalignant disease may involve other genetic events and/or epigenetic reprogramming. Putative driver mutations can also be germline and associated with increased cancer risk (eg, germline RAS or TP53 alterations), but germline FGFR3 or NF2 abnormalities do not predispose to malignancy. We discuss the enigma of genetic “drivers” in benign and premalignant conditions and the implications for prevention strategies and theories of tumorigenesis.
Collapse
Affiliation(s)
- Shumei Kato
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX (SK); Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA (SML, RK); Henri and Belinda Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA (KTF)
| | - Scott M Lippman
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX (SK); Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA (SML, RK); Henri and Belinda Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA (KTF)
| | - Keith T Flaherty
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX (SK); Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA (SML, RK); Henri and Belinda Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA (KTF)
| | - Razelle Kurzrock
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX (SK); Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA (SML, RK); Henri and Belinda Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA (KTF)
| |
Collapse
|
12
|
Tan J. Perianal melanoma with a BRAF gene mutation in a young Portuguese Roma native. BMJ Case Rep 2016; 2016:bcr-2015-212772. [PMID: 26880821 DOI: 10.1136/bcr-2015-212772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A case of a young man diagnosed with perianal nodular melanoma with a gene mutation, accompanied by regional and pulmonary metastases on initial presentation, and later on with hepatic and bone involvement, is presented. The patient underwent wide local excision but was unresponsive to dacarbazine. Targeted therapy with vemurafenib had shown clinical improvement for a 5-month duration until he showed signs of disease progression. Just after the shift of adjuvant therapy to ipilimumab, he was diagnosed with multiple cerebral metastases that eventually led to his demise 6 months after initiation of vemurafenib, having had a 12-month survival period from the time of initial melanoma diagnosis.
Collapse
|
13
|
Clinicopathological characteristics and mutation profiling in primary cutaneous melanoma. Am J Dermatopathol 2016; 37:389-97. [PMID: 25357015 DOI: 10.1097/dad.0000000000000241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The incidence of mutations in malignant melanoma varies remarkably according to the subtype of melanoma, and this in itself is affected by racial and geographical factors. Studies screening melanoma case series for different types of mutations are relatively rare. METHOD The authors analyzed the frequency of various somatic point mutations of 10 genes in 106 primary cutaneous melanoma cases. The mutations (BRAF, NRAS, KIT, CDKN2A, KRAS, HRAS, PIK3CA, STK11, GNAQ, CTNNB1) were evaluated with real-time PCR-based PCR-Array through allele-specific amplification, and the results were correlated with various clinicopathological characteristics. RESULTS Mutations were found in 64.2% of the melanomas overall. BRAF (42.5%), NRAS (15.1%), and CDKN2A (13.2%) were the 3 most common mutations. BRAF and NRAS mutations were more frequent in nodular and superficial spreading melanomas (P < 0.001). Associations with BRAF mutation were as follows: male gender [odds ratio (OR) = 2.4], younger age (OR = 2.7), superficial spreading (OR = 15.6) and nodular melanoma (OR = 9.5), trunk localization (OR = 6.3), and intermittent sun exposure (OR = 4.6). A considerable percentage of V600K (44.4%) mutations were found among the BRAF mutations, whereas KIT mutations (3.8%) were less frequent. Multiple mutations were detected in 13.2% of the melanomas. The most common co-occurrences were in the BRAF, NRAS, and CDKN2A genes. CONCLUSIONS The authors analyzed 10 somatic mutations in the main subtypes of primary cutaneous melanomas from the western region of Turkey. Mutations were found in 64.2% of the melanomas overall. The most common mutations were in the BRAF and NRAS genes. In addition to other less common mutations, a notable number of multiple mutations were encountered. The multiplicity and concurrence of mutations in this study may provide further study areas for personalized targeted therapy.
Collapse
|
14
|
López F, Rodrigo JP, Cardesa A, Triantafyllou A, Devaney KO, Mendenhall WM, Haigentz M, Strojan P, Pellitteri PK, Bradford CR, Shaha AR, Hunt JL, de Bree R, Takes RP, Rinaldo A, Ferlito A. Update on primary head and neck mucosal melanoma. Head Neck 2015; 38:147-55. [PMID: 25242350 DOI: 10.1002/hed.23872] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
Primary mucosal melanomas (PMMs) of the head and neck are uncommon malignancies that arise mainly in the nasal cavity and paranasal sinuses, followed by the oral cavity. The mainstay of treatment is radical surgical resection followed by adjuvant radiotherapy in selected patients with high-risk features. Multimodality therapy has not been well studied and is not standardized. Adjuvant radiotherapy seems to improve locoregional control but does not improve overall survival (OS). Elective neck dissection is advocated in patients with oral PMM. Systemic therapy should be considered only for patients with metastatic or unresectable locoregional disease. Despite improvements in the field of surgery, radiotherapy, and systemic therapy, patients with PMM still face a very unfavorable prognosis (5-year disease-free survival [DFS] <20%) with high rates of locoregional recurrence and distant metastasis. The present review aims to summarize the current state of knowledge on the molecular biology, pathological diagnosis, and management of this disease.
Collapse
Affiliation(s)
- Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Antonio Cardesa
- Department of Anatomic Pathology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Asterios Triantafyllou
- Department of Oral Pathology, School of Dentistry, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Missak Haigentz
- Department of Medicine, Division of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Phillip K Pellitteri
- Department of Otolaryngology-Head and Neck Surgery, Guthrie Health System, Sayre, Pennsylvania
| | - Carol R Bradford
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ashok R Shaha
- Head and Neck Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jennifer L Hunt
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Remco de Bree
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alfio Ferlito
- University of Udine School of Medicine, Udine, Italy
| |
Collapse
|
15
|
Wu S, Kuo H, Li WQ, Canales AL, Han J, Qureshi AA. Association between BRAFV600E and NRASQ61R mutations and clinicopathologic characteristics, risk factors and clinical outcome of primary invasive cutaneous melanoma. Cancer Causes Control 2014; 25:1379-86. [PMID: 25048604 PMCID: PMC4220546 DOI: 10.1007/s10552-014-0443-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Previous studies suggest that solar UV exposure in early life is predictive of cutaneous melanoma risk in adulthood, whereas the relation of BRAF mutation with sun exposure and disease prognosis has been less certain. We investigated the associations between BRAF(V600E) and NRAS(Q61R) mutations and known risk factors, clinicopathologic characteristics and clinical outcomes of melanoma in a case series of primary invasive cutaneous melanoma from the Nurses' Health Study (NHS). METHODS Somatic BRAF(V600E) and NRAS(Q61R) mutations of 127 primary invasive melanomas from the NHS cohort were determined by pyrosequencing using formalin-fixed, paraffin-embedded block tissues. Logistic regression analyses were performed to detect the associations of mutations with melanoma risk factors, and Kaplan-Meier method was used to examine associations between mutations and survival. RESULTS The odds ratios for harboring BRAF(V600E) mutations were 5.54 (95% CI 1.19-25.8, p(trend) = 0.02) for women residing in states with UV index ≥ 7 versus those residing in states with UV index ≤5 at 30 years of age. Patients with BRAF(V600E) mutations tended to have shorter melanoma-specific survival when compared to patients with wild type at both loci (median survival time 110 vs. 159 months) (p = 0.03). No association was found between NRASQ61R mutation and melanoma risk factors or melanoma-specific survival. CONCLUSIONS BRAF(V600E) mutations in primary cutaneous melanomas were associated with residence in locations with medium and high UV indices in mid-life. BRAF(V600E) mutation may be associated with an unfavorable prognosis among melanoma patients.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Helen Kuo
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alvaro Laga Canales
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
RUSSO ANGELA, FICILI BARTOLOMEA, CANDIDO SAVERIO, PEZZINO FRANCAMARIA, GUARNERI CLAUDIO, BIONDI ANTONIO, TRAVALI SALVATORE, McCUBREY JAMESA, SPANDIDOS DEMETRIOSA, LIBRA MASSIMO. Emerging targeted therapies for melanoma treatment (review). Int J Oncol 2014; 45:516-24. [PMID: 24899250 PMCID: PMC4091965 DOI: 10.3892/ijo.2014.2481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive cancer with a poor prognosis for patients with advanced disease. The identification of several key molecular pathways implicated in the pathogenesis of melanoma has led to the development of novel therapies for this devastating disease. In melanoma, both the Ras/Raf/MEK/ERK (MAPK) and the PI3K/AKT (AKT) signalling pathways are constitutively activated through multiple mechanisms. Targeting various effectors of these pathways with pharmacologic inhibitors may inhibit melanoma cell growth and angiogenesis. Ongoing clinical trials provide hope to improve progression-free survival of patients with advanced melanoma. This review summarizes the most relevant studies focused on the specific action of these new molecular targeted agents. Mechanisms of resistance to therapy are also discussed.
Collapse
Affiliation(s)
- ANGELA RUSSO
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| | - BARTOLOMEA FICILI
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| | - SAVERIO CANDIDO
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| | - FRANCA MARIA PEZZINO
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| | - CLAUDIO GUARNERI
- Department of Social Territorial Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - ANTONIO BIONDI
- Department of Surgery, University of Catania, I-95124 Catania, Italy
| | - SALVATORE TRAVALI
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| | - JAMES A. McCUBREY
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - DEMETRIOS A. SPANDIDOS
- Department of Virology, Medical School, University of Crete, Heraklion 71003, Crete, Greece
| | - MASSIMO LIBRA
- Laboratory of Translational Oncology and Functional Genomics, Section of General Pathology and Oncology, Department of Biomedical Sciences, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
17
|
|
18
|
Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, Saldanha G, Osborne J, Hutchinson P, Tse G, Lachuer J, Puisieux A, Pringle JH, Ansieau S, Tulchinsky E. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24:466-80. [PMID: 24075834 DOI: 10.1016/j.ccr.2013.08.018] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/30/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023]
Abstract
Aberrant expression of embryonic epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) in epithelial cells triggers EMT, neoplastic transformation, stemness, and metastatic dissemination. We found that regulation and functions of EMT-TFs are different in malignant melanoma. SNAIL2 and ZEB2 transcription factors are expressed in normal melanocytes and behave as tumor-suppressor proteins by activating an MITF-dependent melanocyte differentiation program. In response to NRAS/BRAF activation, EMT-TF network undergoes a profound reorganization in favor of TWIST1 and ZEB1. This reversible switch cooperates with BRAF in promoting dedifferentiation and neoplastic transformation of melanocytes. We detected EMT-TF reprogramming in late-stage melanoma in association with enhanced phospho-ERK levels. This switch results in E-cadherin loss, enhanced invasion, and constitutes an independent factor of poor prognosis in melanoma patients.
Collapse
Affiliation(s)
- Julie Caramel
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; LabEX DEVweCAN, 69008 Lyon, France; University Lyon I, 69008 Lyon, France; Université de Lyon, 69000 Lyon, France; Centre Léon Bérard, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Venesio T, Balsamo A, Errichiello E, Ranzani GN, Risio M. Oxidative DNA damage drives carcinogenesis in MUTYH-associated-polyposis by specific mutations of mitochondrial and MAPK genes. Mod Pathol 2013; 26:1371-81. [PMID: 23599153 DOI: 10.1038/modpathol.2013.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/29/2022]
Abstract
MUTYH is a DNA-base-excision-repair gene implicated in the activation of nuclear and mitochondrial cell-death pathways. MUTYH germline mutations cause an inherited polyposis, MUTYH-associated-polyposis, characterized by multiple adenomas and increased susceptibility to colorectal cancer. Since this carcinogenesis remains partially unknown, we searched for nuclear and mitochondrial gene alterations that may drive the tumorigenic process. Ninety-six adenomas and 7 carcinomas from 12 MUTYH-associated-polyposis and 13 classical/attenuated adenomatous polyposis patients were investigated by sequencing and pyrosequencing for the presence of mutations in KRAS, BRAF, MT-CO1/MT-CO2 and MT-TD genes. KRAS mutations were identified in 24% MUTYH-associated-polyposis vs 15% classical/attenuated familial polyposis adenomas; mutated MUTYH-associated-polyposis adenomas exhibited only c.34G>T transversions in codon 12, an alteration typically associated with oxidative DNA damage, or mutations in codon 13; neither of these mutations was found in classical/attenuated familial polyposis adenomas (P<0.001). Mutated MUTYH-associated-polyposis carcinomas showed KRAS c.34G>T transversions, prevalently occurring with BRAFV600E; none of the classical/attenuated familial polyposis carcinomas displayed these alterations. Comparing mitochondrial DNA from lymphocytes and adenomas of the same individuals, we detected variants in 82% MUTYH-associated-polyposis vs 38% classical/attenuated familial polyposis patients (P=0.040). MT-CO1/MT-CO2 missense mutations, which cause aminoacid changes, were only found in MUTYH-associated-polyposis lesions and were significantly associated with KRAS mutations (P=0.0085). We provide evidence that MUTYH-associated-polyposis carcinogenesis is characterized by the occurrence of specific mutations in both KRAS and phylogenetically conserved genes of mitochondrial DNA which are involved in controlling oxidative phosphorylation; this implies the existence of a colorectal tumorigenesis in which changes in mitochondrial functions cooperate with RAS-induced malignant transformation.
Collapse
Affiliation(s)
- Tiziana Venesio
- Unit of Pathology, Institute for Cancer Research and Treatment, Candiolo, (Torino), Italy
| | | | | | | | | |
Collapse
|
20
|
Penna E, Orso F, Cimino D, Vercellino I, Grassi E, Quaglino E, Turco E, Taverna D. miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res 2013; 73:4098-111. [PMID: 23667173 DOI: 10.1158/0008-5472.can-12-3686] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is one of the most aggressive human cancers, but the mechanisms governing its metastatic dissemination are not fully understood. Upregulation of miR-214 and ALCAM and the loss of TFAP2 expression have been implicated in this process, with TFAP2 a direct target of miR-214. Here, we link miR-214 and ALCAM as well as identify a core role for miR-214 in organizing melanoma metastasis. miR-214 upregulated ALCAM, acting transcriptionally through TFAP2 and also posttranscriptionally through miR-148b (itself controlled by TFAP2), both negative regulators of ALCAM. We also identified several miR-214-mediated prometastatic functions directly promoted by ALCAM. Silencing ALCAM in miR-214-overexpressing melanoma cells reduced cell migration and invasion without affecting growth or anoikis in vitro, and it also impaired extravasation and metastasis formation in vivo. Conversely, cell migration and extravasation was reduced in miR-214-overexpressing cells by upregulation of either miR-148b or TFAP2. These findings were consistent with patterns of expression of miR-214, ALCAM, and miR-148b in human melanoma specimens. Overall, our results define a pathway involving miR-214, miR-148b, TFAP2, and ALCAM that is critical for establishing distant metastases in melanoma.
Collapse
Affiliation(s)
- Elisa Penna
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Low Incidence of Minor BRAF V600 Mutation-Positive Subclones in Primary and Metastatic Melanoma Determined by Sensitive and Quantitative Real-Time PCR. J Mol Diagn 2013; 15:355-61. [DOI: 10.1016/j.jmoldx.2012.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/27/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022] Open
|
22
|
|
23
|
Schlaak M, Bajah A, Podewski T, Kreuzberg N, von Bartenwerffer W, Wardelmann E, Merkelbach-Bruse S, Büttner R, Mauch C, Kurschat P. Assessment of clinical parameters associated with mutational status in metastatic malignant melanoma: a single-centre investigation of 141 patients. Br J Dermatol 2013; 168:708-16. [DOI: 10.1111/bjd.12140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Mehnert JM, Kluger HM. Driver mutations in melanoma: lessons learned from bench-to-bedside studies. Curr Oncol Rep 2013; 14:449-57. [PMID: 22723080 DOI: 10.1007/s11912-012-0249-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The identification of somatic driver mutations in human samples has allowed for the development of a molecular classification for melanoma. Recent breakthroughs in the treatment of metastatic melanoma have arisen as a result of these significant new insights into the molecular biology of the disease, particularly the development of inhibitors of activating BRAF(V600E) mutations. In this article the roles of several mutations known to be involved in the malignant transformation of melanocytes are reviewed including BRAF, PTEN, NRAS, ckit, and p16 as well as some of the emerging mutations in cutaneous and uveal melanoma. The bench to bedside collaborations that resulted in these discoveries are summarized, and potential therapeutic strategies to target driver mutations in specific patient subsets are discussed.
Collapse
Affiliation(s)
- Janice M Mehnert
- The Cancer Institute of New Jersey, 195 Little Albany Street Rm 5543, New Brunswick, NJ 08903, USA.
| | | |
Collapse
|
25
|
Zimmer L, Hillen U, Livingstone E, Lacouture ME, Busam K, Carvajal RD, Egberts F, Hauschild A, Kashani-Sabet M, Goldinger SM, Dummer R, Long GV, McArthur G, Scherag A, Sucker A, Schadendorf D. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol 2012; 30:2375-83. [PMID: 22614973 DOI: 10.1200/jco.2011.41.1660] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Selective inhibition of mutant BRAF by using class I RAF inhibitors in patients with metastatic melanoma has resulted in impressive clinical activity. However, there is also evidence that RAF inhibitors might induce carcinogenesis or promote tumor progression via stimulation of MAPK signaling in RAF wild-type cells. We analyzed melanocytic lesions arising under class I RAF inhibitor treatment for dignity, specific genetic mutations, or expression of signal transduction molecules. PATIENTS AND METHODS In all, 22 cutaneous melanocytic lesions that had either developed or considerably changed in morphology in 19 patients undergoing treatment with selective BRAF inhibitors for BRAF-mutant metastatic melanoma at seven international melanoma centers within clinical trials in 2010 and 2011 were analyzed for mutations in BRAF and NRAS genes and immunohistologically assessed for expression of various signal transduction molecules in comparison with 22 common nevi of 21 patients with no history of BRAF inhibitor treatment. RESULTS Twelve newly detected primary melanomas were confirmed in 11 patients within 27 weeks of selective BRAF blockade. In addition, 10 nevi developed of which nine were dysplastic. All melanocytic lesions were BRAF wild type. Explorations revealed that expression of cyclin D1 and pAKT was increased in newly developed primary melanomas compared with nevi (P = .01 and P = .03, respectively). There was no NRAS mutation in common nevi, but BRAF mutations were frequent. CONCLUSION Malignant melanocytic tumors might develop with increased frequency in patients treated with selective BRAF inhibitors supporting a mechanism of BRAF therapy-induced growth and tumorigenesis. Careful surveillance of melanocytic lesions in patients receiving class I RAF inhibitors seems warranted.
Collapse
Affiliation(s)
- Lisa Zimmer
- University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chiu KW, Nakano T, Hu TH, Tseng HP, Cheng YF, Jawan B, Eng HL, Goto S, Chen CL. Homogenous phenomenon of graft liver CYP2C19 genotypes after living donor liver transplantation. Eur J Clin Invest 2012; 42:352-356. [PMID: 21913914 DOI: 10.1111/j.1365-2362.2011.02589.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The donor liver grafts with different allelic patterns do not affect CYP2C19 genotypes in the peripheral blood of living donor liver transplantation (LDLT) recipients. AIM This study investigated the influence of graft liver CYP2C19 genotypes on recipients who received the same or different CYP2C19 genotypes from donors after LDLT. METHODS There were 30 donors and 30 recipients with the same CYP2C19 genotypes and 47 donors and 47 recipients with different CYP2C19 genotypes. Genomic DNA was isolated from the liver tissue of recipients. The CYP2C19 haplotypes were determined by polymerase chain reaction. RESULTS A homogenous phenomenon in the sequences of graft liver CYP2C19 genotypes was indicated because the recipients showed mixed patterns that were similar to that of the original donor after LDLT. A significant decrease in homozygous extensive metabolizer (HomEM) and an increase in poor metabolizer (PM) distribution were observed in recipients with different CYP2C19 genotypes from their donors compared with recipients with the same CYP2C19 genotype as their donors (P < 0·05). CONCLUSIONS Homogenous phenomenon of sequence changes in graft liver CYP2C19 from the different genotypes between the donors and the recipients may play a role in graft stability by causing decreased HomEM and increased PM after LDLT.
Collapse
Affiliation(s)
- King-Wah Chiu
- Liver Transplant Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ross AL, Sanchez MI, Grichnik JM. Nevus senescence. ISRN DERMATOLOGY 2011; 2011:642157. [PMID: 22363855 PMCID: PMC3262546 DOI: 10.5402/2011/642157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/30/2011] [Indexed: 11/23/2022]
Abstract
Melanomas and nevi share many of the same growth-promoting mutations. However, melanomas grow relentlessly while benign nevi eventually undergo growth arrest and stabilize. The difference in their long-term growth potential may be attributed to activation of cellular senescence pathways. The primary mediator of senescence in nevi appears to be p16. Redundant, secondary senescence systems are also present and include the p14-p53-p21 pathway, the IGFBP7 pathway, the FBXO31 pathway, and the PI3K mediated stress induced endoplasmic reticulum unfolded protein response. It is evident that these senescence pathways result in an irreversible arrest in most instances; however, they can clearly be overcome in melanoma. Circumvention of these pathways is most frequently associated with gene deletion or transcriptional repression. Reactivation of senescence mechanisms could serve to inhibit melanoma tumor progression.
Collapse
Affiliation(s)
- Andrew L. Ross
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Margaret I. Sanchez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James M. Grichnik
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Melanoma Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Stability of BRAF V600E mutation in metastatic melanoma: new insights for therapeutic success? Br J Cancer 2011; 105:327-8. [PMID: 21694724 PMCID: PMC3142814 DOI: 10.1038/bjc.2011.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Abstract
Despite recent advances, the biology underlying nevogenesis remains unclear. Activating mutations in NRAS, HRAS, BRAF, and GNAQ have been identified in benign nevi. Their presence roughly correlates with congenital, Spitz, acquired, and blue nevi, respectively. These mutations are likely to play a critical role in driving nevogenesis. While each mutation is able to activate the MAP kinase pathway, they also interact with a host of different proteins in other pathways. The different melanocytic developmental pathways activated by each mutation cause the cells to migrate, proliferate, and differentiate to different extents within the skin. This causes each mutation to give rise to a characteristic growth pattern. The exact location and differentiation state of the cell of origin for benign moles remains to be discovered. Further research is necessary to fully understand nevus development given that most of the same developmental pathways are also present in melanoma.
Collapse
|
30
|
Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 2011; 164:776-84. [PMID: 21166657 DOI: 10.1111/j.1365-2133.2010.10185.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND There have been conflicting data regarding the prevalence and clinicopathological characteristics of BRAF and NRAS mutations in primary cutaneous melanoma. OBJECTIVES To solve this controversy, this study used a meta-analysis to evaluate the frequencies of BRAF and NRAS mutations, and the relationship between these mutations and clinicopathological parameters of cutaneous melanoma. METHODS Data from studies published between 1989 and 2010 were combined. The BRAF and NRAS mutations were reported in 36 and 31 studies involving 2521 and 1972 patients, respectively. The effect sizes of outcome parameters were calculated by odds ratios (OR). RESULTS BRAF and NRAS mutations were reported in 41% and 18% of cutaneous melanomas, respectively. The mutations were associated with histological subtype and tumour site, but not with age and sex. The BRAF mutation was frequently detected in patients with superficial spreading melanoma (OR=2·021; P<0·001) and in melanomas arising in nonchronic sun-damaged skin (OR=2·043; P=0·001). In contrast, the NRAS mutation was frequently evident in patients with nodular melanoma (OR=1·894; P<0·001) and in melanomas arising in chronic sun-damaged skin (OR=1·887; P=0·018). CONCLUSIONS This pooled analysis shows that the incidences of BRAF and NRAS mutations in cutaneous melanomas differ according to histological type and tumour location based on the degree of sun exposure.
Collapse
Affiliation(s)
- J-H Lee
- Department of Pathology, Korea University Ansan Hospital, 516, Gojan-1 Dong, Danwon-Gu, Ansan-Si, Gyeonggi-Do 425-707, Korea
| | | | | |
Collapse
|
31
|
Puzanov I, Burnett P, Flaherty KT. Biological challenges of BRAF inhibitor therapy. Mol Oncol 2011; 5:116-23. [PMID: 21393075 DOI: 10.1016/j.molonc.2011.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/27/2011] [Indexed: 12/19/2022] Open
Abstract
Activating mutations in BRAF, a constituent of the map kinase pathway, were first discovered as being most prevalent in melanoma in 2002. Only recently have potent and selective, orally available inhibitors of BRAF emerged for clinical testing and demonstrated clear evidence of tumor regression in the majority of patients whose tumors harbor a BRAF mutation. While these early observations suggest that the BRAF targeted therapy will become part of the standard treatment paradigm for patients with advanced melanoma, it is also clear that a majority of these responses are incomplete and temporary. Therefore, the focus of the melanoma field has shifted to understanding the limits of the first generation of selective BRAF inhibitors with regard to safety and efficacy, the context of somatic genetic changes that accompany BRAF, and the combination regimens that target distinct elements of melanoma pathophysiology.
Collapse
Affiliation(s)
- Igor Puzanov
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
32
|
Abstract
Dysplastic naevi are clinically atypical and histologically are characterized by architectural disorder and cytological atypia. Their diagnosis is reproducible if criteria and thresholds are agreed upon. They are significant only in relation to melanoma, as simulants of melanoma, as markers of individuals at increased risk of developing melanoma, and as potential and occasional actual precursors of melanoma. Morphologically and biologically, they are intermediate between common naevi and melanoma. Individuals with dysplastic naevi may have deficient DNA repair, and dysplastic naevi lesions are associated with overexpression of pheomelanin, which may lead to increased oxidative damage and increased potential for DNA damage and tumour progression.
Collapse
Affiliation(s)
- David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Scatolini M, Grand MM, Grosso E, Venesio T, Pisacane A, Balsamo A, Sirovich R, Risio M, Chiorino G. Altered molecular pathways in melanocytic lesions. Int J Cancer 2010; 126:1869-1881. [PMID: 19795447 DOI: 10.1002/ijc.24899] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To identify gene expression changes in melanocytic lesions, biopsies from 18 common nevi (CMN), 11 dysplastic nevi (DN), 8 radial and 15 vertical growth phase melanomas (RGPM, VGPM), and 5 melanoma metastases (MTS) were analyzed using whole genome microarrays. The comparison between CMN and RGPM showed an enrichment of Gene Ontology terms related to inter and intracellular junctions, whereas the transition from RGPM to VGPM underlined the alteration of apoptosis. Upregulation of genes involved in dsDNA break repair and downregulation of cellular adhesion genes were observed in MTS with respect to VGPM. DN exhibited rather heterogeneous molecular profiles, with some proliferation genes expressed at higher levels than in CMN, altered regulation of transcription compared to RGPM and a subset of processes, such as mismatch repair, equally expressed as in VGPM. Furthermore, the expression profile of genes involved into cellular detoxification and antigen presentation split them into two classes, with different proliferation potential. Finally, molecular profiling of individual lesions identified altered biological processes, such as regulation of apoptosis, regulation of transcription and T-cell activation, not associated with specific histological classes but rather with subgroups of samples without apparent relationship. This holds true for dysplastic nevi in particular. Our data indicate that generally the intersection between stage specific and sample specific molecular alterations may lead to a more precise determination of the individual progression risk of melanocytic lesions.
Collapse
Affiliation(s)
| | | | - Enrico Grosso
- Cancer Genomics Lab, Fondo Edo Tempia, Biella, Italy
| | - Tiziana Venesio
- Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Torino, Italy
| | - Alberto Pisacane
- Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Torino, Italy
| | - Antonella Balsamo
- Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Torino, Italy
| | | | - Mauro Risio
- Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Torino, Italy
| | | |
Collapse
|
34
|
Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, Bringuier PP, Scoazec JY, Coindre JM. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol 2010; 133:141-8. [PMID: 20023270 DOI: 10.1309/ajcppckga2qgbj1r] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors characterized by mutations of KIT or PDGFRA. The objectives of this study were to evaluate BRAF mutations in GISTs and then to correlate BRAF mutational status in the tumor with clinical parameters, with B-raf expression, and with activation of some cellular pathways. BRAF mutation was screened in 321 GISTs with 70 wild-type GISTs. BRAF V600E was detected in 9 (13%) of 70 wild-type GISTs. No mutations were detected in GISTs bearing KIT or PDGFRA mutations. BRAF V600E detection in the tumor does not induce a higher expression of the B-raf protein or the preferential activation of the p42/44 mitogen-activated protein kinase (MAPK) signaling pathway compared with GISTs without the BRAF mutation. In comparison with the GIST group with KIT or PDGFRA mutation or the wild-type GIST group without BRAF mutation, the wild-type GIST group with a BRAF mutation is not different in terms of B-raf expression or the p44/42 MAPK- or AKT-activated signaling pathway.
Collapse
|
35
|
Aalborg J, Morelli JG, Mokrohisky ST, Asdigian NL, Byers TE, Dellavalle RP, Box NF, Crane LA. Tanning and increased nevus development in very-light-skinned children without red hair. ACTA ACUST UNITED AC 2009; 145:989-96. [PMID: 19770437 DOI: 10.1001/archdermatol.2009.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To examine the relationship between tanning and nevus development in very-light-skinned children. DESIGN Prospective cohort nested within a randomized controlled trial. Skin examinations in 3 consecutive years (2004, 2005, and 2006) included full-body counts of nevi, skin color and tanning measurement using colorimetry, and hair and eye color evaluation by comparison with charts. Telephone interviews of parents provided sun exposure, sun protection, and sunburn history. SETTING Large managed-care organization and private pediatric offices in the Denver, Colorado, metropolitan area. PARTICIPANTS A total of 131 very-light-skinned white children without red hair and 444 darker-skinned white children without red hair born in Colorado in 1998. MAIN OUTCOME MEASURES Full-body nevus counts at ages 6 to 8 years. RESULTS Among very-light-skinned white children, geometric mean numbers of nevi for minimally tanned children were 14.8 at age 6 years; 18.8 at age 7 years; and 22.3 at age 8 years. Mean numbers of nevi for tanned children were 21.2 at age 6 years; 27.9 at age 7 years; and 31.9 at age 8 years. Differences in nevus counts between untanned and tanned children were statistically significant at all ages (P < .05 for all comparisons). The relationship between tanning and number of nevi was independent of the child's hair and eye color, parent-reported sun exposure, and skin phototype. Among darker-skinned white children, there was no relationship between tanning and nevi. CONCLUSIONS Very-light-skinned children who tan (based on objective measurement) develop more nevi than children who do not tan. These results suggest that light-skinned children who develop tans may be increasing their risk for developing melanoma later in life.
Collapse
Affiliation(s)
- Jenny Aalborg
- University of Colorado Denver, 13001 E 17th Pl, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jilaveanu L, Zito C, Lee SJ, Nathanson KL, Camp RL, Rimm DL, Flaherty KT, Kluger HM. Expression of sorafenib targets in melanoma patients treated with carboplatin, paclitaxel and sorafenib. Clin Cancer Res 2009; 15:1076-85. [PMID: 19188183 DOI: 10.1158/1078-0432.ccr-08-2280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Sorafenib, a multitarget kinase inhibitor, inhibits members of the mitogen-activated protein kinase (MAPK) pathway and receptor tyrosine kinases, including vascular endothelial growth factor receptor 2 (VEGF-R2). Sorafenib, carboplatin, and paclitaxel (SCP) has antitumor activity in melanoma patients, but no association was found between response and activating B-Raf V600E mutations. We assessed the expression of sorafenib targets in SCP-treated patient specimens and evaluated the association with response and progression-free survival. EXPERIMENTAL DESIGN Using automated quantitative analysis, we quantified the expression of VEGF-R1, VEGF-R2, VEGF-R3, fibroblast growth factor receptor 1, platelet-derived growth factor receptor beta, c-Kit, B-Raf, C-Raf, meiosis-specific serine/threonine protein kinase 1, and extracellular regulated kinase 1/2 (ERK1/2) in pretreatment specimens from 46 patients. Furthermore, we assessed ERK1/2 expression in 429 archival melanomas. RESULTS VEGF-R2 expression was significantly higher in patients with a complete or partial response (P = 0.0435), whereas ERK1/2 was higher in patients who did not respond (P = 0.0417). High ERK1/2 was an independent predictor of poor survival. High ERK1/2 was associated with decreased survival in the archival melanoma cohort, suggesting that high ERK1/2-expressing tumors are biologically more aggressive. All of the six patients with both high VEGF-R2 and low ERK1/2 responded to SCP. CONCLUSIONS High VEGF-R2 expression is associated with response to SCP in melanoma, whereas high ERK1/2 is associated with resistance. Collection of specimens from SCP-treated melanoma patients in a cooperative group phase III trial comparing this regimen with the chemotherapy alone is ongoing, and confirmation of these findings is necessary. These markers might be useful for predicting response to sorafenib when given with other chemotherapies and in other diseases, resulting in the possible elimination of unnecessary treatment of patients unlikely to respond.
Collapse
Affiliation(s)
- Lucia Jilaveanu
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|