1
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19:315. [PMID: 34711249 PMCID: PMC8555221 DOI: 10.1186/s12957-021-02423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell cancer (HNSCC) is the most common cancer associated with chewing tobacco, in the world. As this is divided in to sites and subsites, it does not make it to top 10 cancers. The most common subsite is the oral cancer. At the time of diagnosis, more than 50% of patients with oral squamous cell cancers (OSCC) had advanced disease, indicating the lack of availability of early detection and risk assessment biomarkers. The new protein biomarker development and discovery will aid in early diagnosis and treatment which lead to targeted treatment and ultimately a good prognosis. METHODS This systematic review was performed as per PRISMA guidelines. All relevant studies assessing characteristics of oral cancer and proteomics were considered for analysis. Only human studies published in English were included, and abstracts, incomplete articles, and cell line or animal studies were excluded. RESULTS A total of 308 articles were found, of which 112 were found to be relevant after exclusion. The present review focuses on techniques of cancer proteomics and discovery of biomarkers using these techniques. The signature of protein expression may be used to predict drug response and clinical course of disease and could be used to individualize therapy with such knowledge. CONCLUSIONS Prospective use of these markers in the clinical setting will enable early detection, prediction of response to treatment, improvement in treatment selection, and early detection of tumor recurrence for disease monitoring. However, most of these markers for OSCC are yet to be validated.
Collapse
Affiliation(s)
| | | | - Ruhi Dixit
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
3
|
Gao J, Ma F, Wang X, Li G. Combination of dihydroartemisinin and resveratrol effectively inhibits cancer cell migrationviaregulation of the DLC1/TCTP/Cdc42 pathway. Food Funct 2020; 11:9573-9584. [DOI: 10.1039/d0fo00996b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mechanism of DHA combined with RES in inhibition of cancer cell migration by DLC1/TCTP/Cdc42 signaling.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Fengqiu Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| |
Collapse
|
4
|
Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J, Yano H. SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol 2017; 51:102-110. [PMID: 29280012 DOI: 10.1007/s00795-017-0177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck region. The aim of this study was to identify the key molecules and to elucidate the molecular mechanisms of OSCC carcinogenesis through a microarray analysis of RNA extracted from normal epithelium, dysplasia, and squamous cell carcinoma components. Out of molecules that showed changes in gene expression in the microarray analysis, we focused on Sulfite oxidase (SUOX), which correlated significantly with carcinogenic process and exhibited a stepwise decrease in expression. The expression of SUOX was evaluated in detail at the protein level using samples from 58 patients with cancer of the tongue, and correlating clinicopathological factors were also comprehensively examined. SUOX expression declined significantly from normal epithelium to dysplasia to squamous cell carcinoma components in line with carcinogenic process. With regard to squamous cell carcinoma, SUOX expression was significantly lower when T classification was high. Our findings indicated that SUOX is negatively associated with the progression and proliferation of tongue cancer, and suggest that SUOX may be a key molecule in tongue tumors.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan.
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan.
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| | - Yushi Abe
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| |
Collapse
|
5
|
Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF. Prognostic biomarkers in oral squamous cell carcinoma: A systematic review. Oral Oncol 2017; 72:38-47. [DOI: 10.1016/j.oraloncology.2017.07.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|
6
|
Su Y, Lin L, Zhang J, Jiang Y, Pan C, Sun L, Duan J, Liao W. Low expression of DLC1 is predictive of poor therapeutic efficiency of fluoropyrimidine and oxaliplatin as adjuvant chemotherapy in gastric cancer. Mol Med Rep 2015; 12:5771-9. [PMID: 26239822 PMCID: PMC4581752 DOI: 10.3892/mmr.2015.4173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
The Rho-GTPase-activating protein, deleted in liver cancer-1 (DLC1), has been reported to be a tumor suppressor. However, the prognostic value of DLC1 in gastric cancer (GC) remains to be fully elucidated. Fluoropyrimidine-oxaliplatin (FP-LOHP) combination therapy has been widely used for the adjuvant chemotherapy of GC, however, no reliable marker has been identified to determine its efficiency. Thus, the present study performed a retrospective investigation involving 251 patients with stage IB-III GC, who received adjuvant chemotherapy following radical resection and 37 patients with stage IV GC, who underwent palliative resection. The expression of DLC1 was found to be reduced in the majority of GC samples (212/288 pairs of samples), compared with normal mucosa, in immunohistochemical analyses. Lower expression levels of DLC1 indicated a more advanced tumor-node-metastasis stage, increased lymph node metastasis, deeper tumor invasion, increased tumor size and a higher rate of distant metastasis. By contrast, relatively increased expression levels of DLC1 indicated a longer time to recurrence (TTR) [hazard ratio (HR), 2.232; P=0.004] and overall survival (OS) rate (HR, 2.910; P=0.001). Patients receiving FP-LOHP adjuvant chemotherapy were significantly less likely to suffer GC recurrence (P=0.001) and succumb to mortality (P=0.004), compared with those who received alternative chemotherapies. However, only the patients with DLC1-positive GC receiving FP-LOHP [DLC1 (+)/FP-LOHP (+)] exhibited a more favorable TTR and OS, compared with the patients with DLC1 (+)/FP-LOHP (−) (TTR, P=0.001; OS, P=0.020). No significant improvement in clinical outcome was observed in GC patients with low DLC1 receiving FP-LOHP treatment (TTR, P=0.270; OS, P=0.197). In conclusion, low expression of DLC1 correlated with GC progression and is predictive of higher rates of recurrence and mortality. Only patients with DLC1-positive GC may have an improved treatment outcome from the use of FP-LOHP as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yuqi Su
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yaqi Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiangman Duan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
7
|
He D, Zhang YW, Zhang NN, Zhou L, Chen JN, Jiang Y, Shao CK. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein–Barr virus-associated gastric carcinomas. Med Oncol 2015; 32:92. [DOI: 10.1007/s12032-015-0525-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
|
8
|
Sjoestroem C, Khosravi S, Cheng Y, Safaee Ardekani G, Martinka M, Li G. DLC1 expression is reduced in human cutaneous melanoma and correlates with patient survival. Mod Pathol 2014; 27:1203-11. [PMID: 24557030 DOI: 10.1038/modpathol.2013.223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/17/2023]
Abstract
Deleted in Liver Cancer-1 (DLC1) is a Rho-GTPase-activating protein known to be downregulated and function as a tumor suppressor in numerous solid and hematological cancers. Its expression status in melanoma is currently unknown however, prompting us to examine this. Using immunohistochemistry and tissue microarrays containing a large set of melanocytic lesions (n=539), we examined the expression profile of DLC1 in melanoma progression, as well as the association between DLC1 and patient survival. We detected both cytoplasmic and nuclear DLC1 expression, and found that whereas cytoplasmic DLC1 was significantly downregulated in metastatic melanoma compared with nevi and primary melanoma, nuclear DLC1 expression was significantly down in primary melanoma compared with nevi, and then further down in metastatic melanoma. Loss of cytoplasmic DLC1 was significantly associated with poorer overall and disease-specific 5-year survival rates of all melanoma (P<0.001 and P=0.001, respectively) and metastatic melanoma patients (P=0.020 and 0.008, respectively), and similar results were seen for nuclear DLC1 (P<0.001 for both overall and disease-specific survival for all melanoma patients, and P=0.004 for metastatic melanoma patients). Next, we examined the correlation between cytoplasmic and nuclear DLC1 and found that concomitant loss of both forms was associated with the worst outcome for metastatic melanoma patients (P=0.013 and P=0.008 for overall and disease-specific 5-year survival, respectively). Finally, multivariate Cox regression analysis determined that strong cytoplasmic and nuclear DLC1 expression was a favorable independent prognostic factor for all melanoma (HR, 0.61; 95% CI, 0.42-0.88; P=0.008) and metastatic melanoma patients (HR, 0.42; 95% CI, 0.23-0.77; P=0.005). Although more research still needs to be done on the topic, these preliminary results support the hypothesis that DLC1 is a tumor suppressor in melanoma.
Collapse
Affiliation(s)
- Cecilia Sjoestroem
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shahram Khosravi
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yabin Cheng
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gholamreza Safaee Ardekani
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Magdalena Martinka
- Department of Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Prognostic significance of epithelial-mesenchymal transition-related markers in extrahepatic cholangiocarcinoma: comprehensive immunohistochemical study using a tissue microarray. Br J Cancer 2014; 111:1363-72. [PMID: 25077440 PMCID: PMC4183847 DOI: 10.1038/bjc.2014.415] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Epithelial–mesenchymal transition (EMT) is characterised by the loss of cell-to-cell adhesion and gaining of mesenchymal phenotypes. Epithelial–mesenchymal transition is proposed to occur in various developmental processes and cancer progression. ‘Cadherin switch', a process in which cells shift to express different isoforms of the cadherin transmembrane protein and usually refers to a switch from the expression of E-cadherin to N-cadherin, is one aspect of EMT and can have a profound effect on tumour invasion/metastasis. The aim of this study was to investigate the clinicopathological significance of EMT-related proteins and cadherin switch in extrahepatic cholangiocarcinoma (EHCC). Methods: We investigated the association between altered expression of 12 EMT-related proteins and clinical outcomes in patients with EHCC (n=117) using immunohistochemistry on tissue microarrays. Results: Univariate and multivariate analyses revealed that, in addition to N classification (P=0.0420), the expression of E-cadherin (P=0.0208), N-cadherin (P=0.0038) and S100A4 (P=0.0157) was each an independent and a significant prognostic factor. We also demonstrated that cadherin switch was independently associated with poor prognosis (P=0.0143) in patients with EHCC. Conclusions: These results may provide novel information for selection of patients with EHCC who require adjuvant therapy and strict surveillance.
Collapse
|
10
|
DLC1 as a regulator of proliferation, invasion, cell cycle, and apoptosis in cutaneous squamous cell carcinoma. Tumour Biol 2013; 34:2633-43. [PMID: 23625658 DOI: 10.1007/s13277-013-0813-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/17/2013] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has demonstrated that the tumor suppressor gene deleted in liver cancer-1 (DLC1) is tightly implicated in the development and progression of tumors and is verified to be downregulated in a variety of tumors. However, the roles and precise molecular mechanisms of DLC1 in cutaneous squamous cell carcinoma (cutaneous SCC) remain to be elucidated. In the present study, we confirmed the reduced level in cutaneous SCC tissues and cells, and DLC1 mRNA relative level in cutaneous SCC tissues with lymph node metastasis (0.801 ± 0.079) was markedly lower than those without lymph node metastasis (1.245 ± 0.071) (P < 0.0001). Importantly, the survival rates of patients with low DLC1 level were lower than those with high DLC1 level (P = 0.0051). Further investigation revealed that DLC1 overexpression inhibited proliferation and arrested cell cycle at G0/G1 phase in A431 cells, which may be tightly associated with upregulation of p21 protein and downregulation of cyclin D1 and cdk2 proteins. Moreover, the decreases of FAK and p-FAK as well as the increase of E-cadherin level mediated by elevated DLC1 level suppressed invasion in A431 cells. Additionally, DLC1 overexpression induced apoptosis coupled with elevations of Bax level and caspase-3 activity and decrease of Bcl-2 level in A431 cells. Taken altogether, our data presented herein suggest that DLC1 plays a pivotal role in the development and progression of cutaneous SCC, which may be in part achieved by regulating the signaling pathway related to proliferation, invasion, cell cycle, and apoptosis in cutaneous SCC cells.
Collapse
|
11
|
Qian X, Durkin ME, Wang D, Tripathi BK, Olson L, Yang XY, Vass WC, Popescu NC, Lowy DR. Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. Cancer Res 2012; 72:5900-11. [PMID: 23010077 DOI: 10.1158/0008-5472.can-12-2368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tumor suppressor gene deleted in liver cancer-1 (DLC1), which encodes a protein with strong RhoGAP (GTPase activating protein) activity and weak Cdc42GAP activity, is inactivated in various human malignancies. Following Dlc1 inactivation, mouse embryo fibroblasts (MEF) with a conditional Dlc1 knockout allele reproducibly underwent neoplastic transformation. In addition to inactivation of Dlc1 and increased activity of Rho and Cdc42, transformation depended on the subsequent decreased expression of the Cdk4/6 inhibitors p15(Ink4b) and p16(Ink4a) together with increased expression and activation of Cdk4/6. The level of expression of these cell-cycle regulatory genes was relevant to human tumors with low DLC1 expression. Analysis of publicly available annotated datasets of lung and colon cancer with gene expression microarray profiles indicated that, in pairwise comparisons, low DLC1 expression occurred frequently together (P < 0.01) with downregulation of p15(Ink4b) or p16(Ink4a) or upregulation of CDK4 or CDK6. In addition, an unfavorable prognosis (P < 0.05) was associated with low DLC1 and low p15(Ink4b) in lung cancer and colon cancer, low DLC1 and low p16(Ink4a) in lung cancer, low DLC1 and high CDK4 in lung cancer, and low DLC1 and high CDK6 in colon cancer. Thus, several genes and biochemical activities collaborate with the inactivation of DLC1 to give rise to cell transformation in MEFs, and the identified genes are relevant to human tumors with low DLC1 expression.
Collapse
Affiliation(s)
- Xiaolan Qian
- Laboratories of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Du X, Qian X, Papageorge A, Schetter AJ, Vass WC, Liu X, Braverman R, Robles AI, Lowy DR. Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Res 2012; 72:4405-16. [PMID: 22693251 DOI: 10.1158/0008-5472.can-12-0777] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer 1 (DLC1), a tumor suppressor gene frequently inactivated in non-small cell lung cancer (NSCLC) and other malignancies, encodes a multidomain protein with a RhoGTPase-activating (RhoGAP) domain and a StAR-related lipid transfer (START) domain. However, no interacting macromolecule has been mapped to the DLC1 START domain. Caveolin-1 (CAV-1) functions as a tumor suppressor in most contexts and forms a complex with DLC1. Here, we have mapped the region of DLC1 required for interaction with CAV-1 to the DLC1 START domain. Mutation of the DLC1 START domain disrupted the interaction and colocalization with CAV-1. Moreover, DLC1 with a START domain mutation failed to suppress neoplastic growth, although it negatively regulated active Rho. CAV-1 and DLC1 expression levels were correlated in two public datasets of NSCLC lines and in two independent publicly available mRNA expression datasets of NSCLC tumors. Clinically, low DLC1 expression predicted a poor clinical outcome in patients with lung cancer. Together, our findings indicate that complex formation between the DLC1 START domain and CAV-1 contributes to DLC1 tumor suppression via a RhoGAP-independent mechanism, and suggest that DLC1 inactivation probably contributes to cancer progression.
Collapse
Affiliation(s)
- Xiaoli Du
- Laboratory of Cellular Oncology, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|