1
|
Malhotra P, Fyfe J, Emmanouilidi A, Casari I, Mellett NA, Huynh K, Pajic M, Greening DW, Meikle PJ, Falasca M. Oncogenic small extracellular vesicles enriched in sphingosine-1-phosphate play a crucial role in pancreatic cancer progression. Cell Signal 2025; 132:111775. [PMID: 40158707 DOI: 10.1016/j.cellsig.2025.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Small extracellular vesicles (sEVs) from tumour cells mediate intercellular communication and signalling to regulate the progression of pancreatic ductal adenocarcinoma (PDAC). While we and others have shown that PDAC-derived sEVs comprise oncogenic protein and nucleic acid cargo, understanding the lipid landscape of these sEVs remains unknown. Lipids influence both the composition of sEVs and their roles in lipid metabolism and signalling pathways within the tumour microenvironment and tumorigenesis. We hypothesised that specific lipids in oncogenic sEVs might provide insights into PDAC. Comprehensive mass spectrometry-based lipidomic analysis was performed using liquid chromatography-electrospray ionisation-tandem mass spectrometry on sEVs isolated from PDAC and non-malignant pancreatic cell lines, patient-derived xenograft cell lines and plasma from the PDAC transgenic mouse model KPC (KRASWT/G12D/ TP53WT/R172H/Pdx1-Cre+/+). The sEV lipidomic analyses identified over 700 lipid species from 25 lipid classes and subclasses. Our results showed that, compared to non-malignant cells, PDAC-derived sEVs were enriched in specific lysophospholipids, particularly sphingosine-1-phosphate (S1P), a lipid known for its pivotal role in cancer pathogenesis. S1P enrichment was validated in plasma-derived sEVs from KPC mice compared to WT. To explore the functional implications of S1P enrichment, we conducted assays demonstrating that S1P in sEVs facilitated tubule formation in human microvascular endothelial cells and promoted cancer-associated fibroblast cell migration. We show that PDAC-derived sEVs are differentially enriched in specific lipids associated with cancer phenotype. Our findings highlight that PDAC-derived sEVs are enriched in specific lipids, particularly S1P, which plays a crucial role in promoting cancer progression.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Jordan Fyfe
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Aikaterini Emmanouilidi
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ilaria Casari
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Marina Pajic
- Translational Oncology Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David W Greening
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
2
|
Li Z, Li X, Yang M, Pei X, Que T, Xian J, Jin H. DDX24 inhibits clear cell renal cell carcinoma progression by directly regulating AKR1B10. Cell Signal 2025; 132:111804. [PMID: 40216172 DOI: 10.1016/j.cellsig.2025.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies worldwide, but only a few markers have been used to diagnose ccRCC. Here, we report the critical roles of DEAD-box helicase 24 (DDX24), a member of the DEAD-box RNA helicase family, in ccRCC. The DDX24 expression level and its prognostic value were initially detected in public data and then verified in a ccRCC tissue microarray. Subsequent in vitro and in vivo experiments were conducted on representative ccRCC cell lines. RNA sequencing and experimental studies were performed to explore the underlying mechanisms, and the associations between DDX24 expression and immune characteristics were evaluated. DDX24 levels were significantly lower in ccRCC tissues and negatively correlated with advanced clinical stage and overall survival. Functional analyses showed that DDX24 overexpression inhibited ccRCC cell proliferation, migration, and invasion, while DDX24 knockdown enhanced these phenotypes. Mechanistic studies revealed that DDX24 regulated the expression of aldo-keto reductase family 1 member B10 (AKR1B10) and epithelial-mesenchymal transition (EMT)-related transcription factors. Given the low expression of DDX24, ccRCC patients may benefit more from immunotherapies. In conclusion, these findings demonstrate that DDX24 suppresses ccRCC progression through direct regulation of AKR1B10, potentially mediated by EMT-related pathways, which provides potential therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, China
| | - Xinglin Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province 518000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Taotao Que
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, China
| | - Jianzhong Xian
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
3
|
Liu S, Zhou M, Huang X, Chen P, Li Q, Wang Y, Ge X, Wang F, Xu J, Gu J, Miao L, Deng X. A Mechanistic Study of the Feasibility of Ursodeoxycholic Acid in the Treatment of Colon Adenocarcinoma. Drug Des Devel Ther 2025; 19:1839-1852. [PMID: 40093647 PMCID: PMC11910939 DOI: 10.2147/dddt.s500721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Bile acids promote the progression of colon adenocarcinoma (COAD), and ursodeoxycholic acid (UDCA) is a key drug in promoting bile acid excretion, but its role in COAD unclear. Our study aims to investigate the relationship between COAD and bile acid metabolism and to assess the feasibility of UDCA for the treatment of COAD. Methods Firstly, biological targets closely related to COAD were identified: Based on the cancer genome atlas (TCGA) database, the core genes of COAD were obtained by differential expression analysis and weighted gene-coexpression network analysis (WGCNA), and subjected to gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Secondly, finding a drug by target, after identifying UDCA as a candidate drug, the feasibility of UDCA in treating COAD was verified in reverse: Using databases to collect potential targets for COAD and UDCA, and the intersecting genes were the potential targets for UDCA to exert anti-tumor effects. Then Autodock was used for molecular docking to analyze the interaction between UDCA and core target proteins. Finally, experimental validation was performed: MTT assay, wound healing, transwell migration, and angiogenesis assays were used to detect the effects of UDCA on cell proliferation, migration, invasion, and neovascularization. Results 2064 differential genes were screened from TCGA. WGCNA obtained the module most relevant to CRC, containing 493 genes. KEGG analysis found that overlapping genes were mainly concentrated in bile acid metabolic pathways. A total of 26 UDCA anti-tumor targets were obtained in database, and 5 core targets were selected by STRING database and Cytoscape software: TNF, CYP27B1, MDM2, MMP2, CASP3. Molecular docking results showed that UDCA had good binding activity with the core targets. In vitro experiment showed UDCA effectively inhibited the proliferation, migration, invasion and neovascularization in colon cancer cells. Conclusion The antitumor activity of ursodeoxycholic acid may be related to cell apoptosis, proliferation, migration and vascular neogenesis.
Collapse
Affiliation(s)
- Shuyu Liu
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mengyue Zhou
- Department of Gastroenterology, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaoli Huang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Peng Chen
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuting Wang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Fei Wang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianing Xu
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Miao
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xueting Deng
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Maccari R, Ottanà R. In Search for Inhibitors of Human Aldo-Keto Reductase 1B10 (AKR1B10) as Novel Agents to Fight Cancer and Chemoresistance: Current State-of-the-Art and Prospects. J Med Chem 2025; 68:860-885. [PMID: 39757466 DOI: 10.1021/acs.jmedchem.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is a human enzyme that catalyzes the NADPH-dependent reduction of several different carbonyl compounds to the corresponding alcohols. Under physiological conditions, AKR1B10 is expressed mainly in the gastrointestinal tract, where it can detoxify reactive carbonyl compounds derived from dietary sources and xenobiotics. AKR1B10 is highly expressed in several cancers and precancerous conditions, proving to be crucially implicated in carcinogenesis and to function as a prognostic indicator of tumor development. Moreover, AKR1B10 up-regulation is strictly related to acquired resistance to known anticancer drugs. High levels of this enzyme are also correlated to the pathogenesis of noncancerous diseases, such as skin pathologies and COVID-19 complications. Therefore, in the last two decades, AKR1B10 has attracted interest as a novel target for agents able to fight both cancer and chemoresistance, and here, it is explored from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31-98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
5
|
Ko HH, Chou HYE, Hou HH, Kuo WT, Liu WW, Yen-Ping Kuo M, Cheng SJ. Oleanolic acid inhibits aldo-keto reductase family 1 member B10-induced cancer stemness and avoids cisplatin-based chemotherapy resistance via the Snail signaling pathway in oral squamous cell carcinoma cell lines. J Dent Sci 2025; 20:100-108. [PMID: 39873100 PMCID: PMC11762581 DOI: 10.1016/j.jds.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy. Materials and methods Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells. Stemness, epithelial mesenchymal transition (EMT) markers, and CDDP drug resistance in overexpressed AKR1B10 were also identified. Results Upregulated AKR1B10 in OSCC significantly increased cell motility and aggregation. The results also showed that the canonical TGF-β1-Smad3 pathway was involved in arecoline-induced AKR1B10 expression, further increasing cancer stemness with CDDP resistance via the Snail-dependent EMT pathway. Moreover, oleanolic acid (OA) and ROS/RNS (reactive oxygen/nitrogen species) inhibitors effectively reversed AKR1B10-induced CDDP-resistance. Conclusion Arecoline-induced ROS/RNS to hyper-activate AKR1B10 in tumor sphere cells via the TGF-β1-Smad3 pathway. Furthermore, AKR1B10 enhanced CDDP resistance in OSCC cells via EMT-inducing markers. Finally, Finally, OA may efficiently target CDDP resistance, reverse stemness in OSCC cells, and have the potential as a novel anticancer drug.
Collapse
Affiliation(s)
- Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Han-Yi E. Chou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Kuo
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Shen Y, Qiu A, Huang X, Wen X, Shehzadi S, He Y, Hu Q, Zhang J, Luo D, Yang S. AKR1B10 and digestive tumors development: a review. Front Immunol 2024; 15:1462174. [PMID: 39737179 PMCID: PMC11682995 DOI: 10.3389/fimmu.2024.1462174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases. Here, we review recent research progress on AKR1B10 in digestive system tumors such as hepatocellular carcinoma, gastric carcinoma, colorectal carcinoma, pancreatic carcinoma, oral squamous cell carcinoma, laryngeal squamous cell carcinoma, cholangiocarcinoma, and nasopharyngeal carcinoma, over the last 5 years. We also discuss the current trends and future research directions for AKR1B10 in both oncological and non-oncological diseases to provide a scientific reference for further exploration of this gene.
Collapse
Affiliation(s)
- Yao Shen
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Huang
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaosha Wen
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Sundar Shehzadi
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jian Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dixian Luo
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Shenghui Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Preventive Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Wu A, Li H, Gao M, Liang J, Huang J, Farrés J, Cao D, Li G. The pan-cancer landscape of aldo-keto reductase1B10 reveals that its expression is diminished in gastric cancer. Front Immunol 2024; 15:1488042. [PMID: 39712017 PMCID: PMC11659136 DOI: 10.3389/fimmu.2024.1488042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Aldo-keto reductase 1B10 (AKR1B10) is a multifunctional enzyme, which is important in cancer development and progression, but the landscape of AKR1B10 in pan-cancers and in tumor microenvironment is unclear. Method This study integrated the sequencing data of 33 cancer types, including gastric cancer, from TCGA project to explored the expression pattern and genetic and epigenetic alterations of AKR1B10. The association of AKR1B10 expression with clinical progression of cancers was evaluated by Kaplan-Meier analysis; the potential role of AKR1B10 in tumor microenvironment (TME) and immune-related gene expression were analyzed by PURITY, ESTIMATE, TIMER and CIBERSORT algorithms. The expression of AKR1B10 and immune cell markers in gastric cancer were evaluated with multiplex immunofluorescence staining. Result Results indicated that AKR1B10 was highly expressed in the gastrointestinal tract in health donors, but the expression of AKR1B10 was significantly changed in most of cancer types, which may be ascribed to DNA methylation in its promoter. The AKR1B10 expression in cancers and its value in disease progression was bidirectional and functionally enriched in metabolism in pan-cancers. In tumor microenvironment, AKR1B10 was significantly correlated with immune cell infiltrations and immune gene expression. In the stomach, along with the diminishing of AKR1B10 expression, CD68+ macrophage increased and CD19+ B cell decreased in gastric cancer. Discussion These data indicates that AKR1B10 may be an important factor in the development and progression and a potential therapeutic target for multiple cancers, but plays as a protector in the gastric tissues.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Li
- Department of Pathology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengnan Gao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Liang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiaqi Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deliang Cao
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, China
| | - Guoqing Li
- Hunan Province Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Guo M, Wang T, Ge W, Ren C, Ko BCB, Zeng X, Cao D. Role of AKR1B10 in inflammatory diseases. Scand J Immunol 2024; 100:e13390. [PMID: 38769661 DOI: 10.1111/sji.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Inflammation is an important pathophysiological process in many diseases; it has beneficial and harmful effects. When exposed to various stimuli, the body triggers an inflammatory response to eliminate invaded pathogens and damaged tissues to maintain homeostasis. However, uncontrollable persistent or excessive inflammatory responses may damage tissues and induce various diseases, such as metabolic diseases (e.g. diabetes), autoimmune diseases, nervous system-related diseases, digestive system-related diseases, and even tumours. Aldo-keto reductase 1B10 (AKR1B10) is an important player in the development and progression of multiple diseases, such as tumours and inflammatory diseases. AKR1B10 is upregulated in solid tumours, such as hepatocellular carcinoma (HCC), non-small cell lung carcinoma, and breast cancer, and is a reliable serum marker. However, information on the role of AKR1B10 in inflammation is limited. In this study, we summarized the role of AKR1B10 in inflammatory diseases, including its expression, functional contribution to inflammatory responses, and regulation of signalling pathways related to inflammation. We also discussed the role of AKR1B10 in glucose and lipid metabolism and oxidative stress. This study provides novel information and increases the understanding of clinical inflammatory diseases.
Collapse
Affiliation(s)
- Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ben Chi-Bun Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
10
|
Jang TH, Lin SC, Yang YY, Lay JD, Chang CL, Yao CJ, Huang JS, Chuang SE. The Role of AKR1B10 in Lung Cancer Malignancy Induced by Sublethal Doses of Chemotherapeutic Drugs. Cancers (Basel) 2024; 16:2428. [PMID: 39001490 PMCID: PMC11240762 DOI: 10.3390/cancers16132428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan
| | - Chih-Ling Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jhy-Shrian Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
11
|
Yoshioka H, Ueta M, Fukuoka H, Yokoi N, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Alteration of Gene Expression in Pathological Keratinization of the Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 38935029 PMCID: PMC11216254 DOI: 10.1167/iovs.65.6.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.
Collapse
Affiliation(s)
- Hokoru Yoshioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Ma LN, Ma Y, Luo X, Ma ZM, Ma LN, Ding XC. AKR1B10 expression characteristics in hepatocellular carcinoma and its correlation with clinicopathological features and immune microenvironment. Sci Rep 2024; 14:12149. [PMID: 38802416 PMCID: PMC11130141 DOI: 10.1038/s41598-024-62323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health threat with diverse and complex pathogenesis. Aldo-keto reductase family 1 member B10 (AKR1B10), a tumor-associated enzyme, exhibits abnormal expression in various cancers. However, a comprehensive understanding of AKR1B10's role in HCC is lacking. This study aims to explore the expression characteristics of AKR1B10 in HCC and its correlation with clinicopathological features, survival prognosis, and tumor immune microenvironment, further investigating its role and potential regulatory mechanisms in HCC. This study conducted comprehensive analyses using various bioinformatics tools and databases. Initially, differentially expressed genes related to HCC were identified from the GEO database, and the expression of AKR1B10 in HCC and other cancers was compared using TIMER and GEPIA databases, with validation of its specificity in HCC tissue samples using the HPA database. Furthermore, the relationship of AKR1B10 expression with clinicopathological features (age, gender, tumor size, staging, etc.) of HCC patients was analyzed using the TCGA database's LIHC dataset. The impact of AKR1B10 expression levels on patient prognosis was evaluated using Kaplan-Meier survival analysis and the Cox proportional hazards model. Additionally, the correlation of AKR1B10 expression with tumor biology-related signaling pathways and tumor immune microenvironment was studied using databases like GSEA, Targetscan, and others, identifying microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that regulate AKR1B10 expression to explore potential regulatory mechanisms. Elevated AKR1B10 expression was significantly associated with gender, primary tumor size, and fibrosis stage in HCC tissues. High AKR1B10 expression indicated poor prognosis and served as an independent predictor for patient outcomes. Detailed mechanism analysis revealed a positive correlation between high AKR1B10 expression, immune cell infiltration, and pro-inflammatory cytokines, suggesting a potential DANCR-miR-216a-5p-AKR1B10 axis regulating the tumor microenvironment and impacting HCC development and prognosis. The heightened expression of AKR1B10 in HCC is not only related to significant clinical-pathological traits but may also influence HCC progression and prognosis by activating key signaling pathways and altering the tumor immune microenvironment. These findings provide new insights into the role of AKR1B10 in HCC pathogenesis and highlight its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Li-Na Ma
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan Ma
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Zi-Min Ma
- Xinasheng Biotech of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
13
|
Shen Y, Huang J, Jia L, Zhang C, Xu J. Bioinformatics and machine learning driven key genes screening for hepatocellular carcinoma. Biochem Biophys Rep 2024; 37:101587. [PMID: 38107663 PMCID: PMC10724547 DOI: 10.1016/j.bbrep.2023.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Liver cancer, a global menace, ranked as the sixth most prevalent and third deadliest cancer in 2020. The challenge of early diagnosis and treatment, especially for hepatocellular carcinoma (HCC), persists due to late-stage detections. Understanding HCC's complex pathogenesis is vital for advancing diagnostics and therapies. This study combines bioinformatics and machine learning, examining HCC comprehensively. Three datasets underwent meticulous scrutiny, employing various analytical tools such as Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein interaction assessment, and survival analysis. These rigorous investigations uncovered twelve pivotal genes intricately linked with HCC's pathophysiological intricacies. Among them, CYP2C8, CYP2C9, EPHX2, and ESR1 were significantly positively correlated with overall patient survival, while AKR1B10 and NQO1 displayed a negative correlation. Moreover, the Adaboost prediction model yielded an 86.8 % accuracy, showcasing machine learning's potential in deciphering complex dataset patterns for clinically relevant predictions. These findings promise to contribute valuable insights into the elusive mechanisms driving liver cancer (HCC). They hold the potential to guide the development of more precise diagnostic methods and treatment strategies in the future. In the fight against this global health challenge, unraveling HCC's intricacies is of paramount importance.
Collapse
Affiliation(s)
- Ye Shen
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, China
| | - Juanjie Huang
- Department of General Surgery, Dongguan Qingxi Hospital, Dongguan, 523660, China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, ShenZhen, 518060, China
| | - Chi Zhang
- Huaxia Eye Hospital of Foshan, Huaxia Eye Hospital Group, Foshan, Guangdong, 528000, China
| | - Jianxing Xu
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, China
- Department of Radiology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213002, China
| |
Collapse
|
14
|
Ye X, Wang T, Zhong L, Farrés J, Xia J, Zeng X, Cao D. Aldo-keto reductase 1B10 as a Carcinogenic but Not a Prognostic Factor in Colorectal Cancer. J Cancer 2024; 15:1657-1667. [PMID: 38370384 PMCID: PMC10869966 DOI: 10.7150/jca.91064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death, but little is known about its etiopathology. Aldo-keto reductase 1B10 (AKR1B10) protein is primarily expressed in intestinal epithelial cells, but lost in colorectal cancer tissues. This study revealed that AKR1B10 may not be a prognostic but an etiological factor in colorectal tumorigenesis. Using a tissue microarray, we investigated the expression of AKR1B10 in tumor tissues of 592 colorectal cancer patients with a mean follow-up of 25 years. Results exhibited that AKR1B10 protein was undetectable in 374 (63.13%), weakly positive in 146 (24.66%), and positive 72 (12.16%) of 592 tumor tissues. Kaplan-Meier analysis showed that AKR1B10 expression was not correlated with overall survival or disease-free survival. Similar results were obtained in various survival analyses stratified by clinicopathological parameters. AKR1B10 was not correlated with tumor T-pathology, N-pathology, TNM stages, cell differentiation and lymph node/regional/distant metastasis either. However, AKR1B10 silencing in culture cells enhanced carbonyl induced protein and DNA damage; and in ulcerative colitis tissues, AKR1B10 deficiency was associated acrolein-protein lesions. Together this study suggests that AKR1B10 downregulation may not be a prognostic but a carcinogenic factor of colorectal cancer.
Collapse
Affiliation(s)
- Xu Ye
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan 410031, China
| | - Tao Wang
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China Hengyang Medical College. 28 W Changsheng Road, Hengyang, Hunan 421009, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China Hengyang Medical College. 28 W Changsheng Road, Hengyang, Hunan 421009, China
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China Hengyang Medical College. 28 W Changsheng Road, Hengyang, Hunan 421009, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China Hengyang Medical College. 28 W Changsheng Road, Hengyang, Hunan 421009, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China Hengyang Medical College. 28 W Changsheng Road, Hengyang, Hunan 421009, China
| |
Collapse
|
15
|
Xin S, Li R, Su J, Cao Q, Wang H, Wei Z, Li G, Qin W, Zhang Z, Wang C, Zhang C, Zhang J. A novel model based on disulfidptosis-related genes to predict prognosis and therapy of bladder urothelial carcinoma. J Cancer Res Clin Oncol 2023; 149:13925-13942. [PMID: 37541976 DOI: 10.1007/s00432-023-05235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China.
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Luoyang Central Hospital, Zhengzhou University, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Guanyu Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Wang Qin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Zheng Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 465300, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Jianguo Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| |
Collapse
|
16
|
Lu J, Kang T, Zhang Z. Diagnostic value of aldo‑keto reductase family 1 member B10 in human nasopharyngeal carcinoma. Mol Clin Oncol 2023; 19:89. [PMID: 37854325 PMCID: PMC10580245 DOI: 10.3892/mco.2023.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023] Open
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10) is a potential marker of several types of cancer; however, the role of AKR1B10 in nasopharyngeal carcinoma (NPC) remains unclear. In the present study, AKR1B10 RNA-seq data and clinical information were obtained from The Cancer Genome Atlas head and neck squamous cell carcinoma (HNSCC) database to evaluate the role of AKR1B10 in HNSCC. There was no statistically significant difference in the expression of AKR1B10 between HNSCC tissues and adjacent normal tissues, and high AKR1B10 expression was not associated with poor overall survival according to the public database. The present study further examined the role of AKR1B10 in patients with NPC using data obtained from the Gene Expression Omnibus database. Analysis of the GSE53819 and GSE61218 datasets showed that the there were no significant differences in the expression levels of AKR1B10 between NPC tissues and normal tissues. However, analysis of the GSE103611 dataset indicated that AKR1B10 may be associated with distance metastasis following radical treatment in NPC. Finally, serum samples from patients with NPC and healthy controls were collected and analyzed. The results revealed that AKR1B10 levels were significantly increased in samples from patients with NPC compared with those from healthy controls, and the area under the receiver operating characteristic curve was 0.909. In conclusion, unlike tissue AKR1B10 expression, serum AKR1B10 levels may be a promising biomarker for the diagnosis of NPC.
Collapse
Affiliation(s)
- Jinping Lu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| | - Ting Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 516060, P.R. China
| | - Zhenlin Zhang
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
17
|
Zhu D, Nie Y, Zhao Y, Chen X, Yang Z, Yang Y. RNF152 Suppresses Fatty Acid Oxidation and Metastasis of Lung Adenocarcinoma by Inhibiting IRAK1-Mediated AKR1B10 Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1603-1617. [PMID: 37717980 DOI: 10.1016/j.ajpath.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/19/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common subtype of primary lung cancer. Fatty acid oxidation plays a key role in LUAD development by providing energy for tumor cells. This study aimed to identify the role of ring finger protein 152 (RNF152) in LUAD. RNF152 was down-regulated in LUAD, and low RNF152 expression correlated with a poor prognosis in LUAD patients. RNF152 overexpression inhibited the proliferation and malignant phenotype of LUAD cells, whereas RNF152 knockdown exerted an opposite effect. Tumor cells overexpressing RNF152 showed less fatty acid oxidation compared with control cells, whereas RNF152 knockdown induced fatty acid uptake and oxidation. Further analysis revealed the binding reaction between RNF152 and interleukin-1 receptor-associated kinase 1 (IRAK1). RNF152 reduced the stability of IRAK1 in LUAD cells by promoting its ubiquitination. RNF152-overexpressed tumor cells exhibited a significantly lower level of Aldo-Keto reductase family 1 member 10 (AKR1B10), whereas up-regulation of IRAK1 restored the expression of AKR1B10 in RNF152-overexpressed cells. Furthermore, up-regulation of IRAK1 eliminated the antitumor effect of RNF152 in LUAD cells. Mouse xenograft models confirmed the inhibitory effect of RNF152 on the tumorigenesis and metastasis of LUAD. Taken together, RNF152 played a tumor suppressive role in LUAD by promoting IRAK1 ubiquitination and IRAK1-mediated down-regulation of AKR1B10, thereby reversing the malignant phenotype of LUAD.
Collapse
Affiliation(s)
- Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunfei Nie
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Xie C, Ye X, Zeng L, Zeng X, Cao D. Serum AKR1B10 as an indicator of unfavorable survival of hepatocellular carcinoma. J Gastroenterol 2023; 58:1030-1042. [PMID: 37500927 DOI: 10.1007/s00535-023-02011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS A large-scale multicenter study validated aldo-keto reductase 1B10 (AKR1B10) as a new serum marker of hepatocellular carcinoma (HCC). This study aimed to evaluate the prognostic value of serum AKR1B10 in HCC. METHODS 273 naïve HCC patients enrolled for serum AKR1B10 tests were followed up for 2 years. Survival and clinical data were collected. Kaplan-Meier survival analysis and log-rank tests were used to estimate correlation of patient survival with serum AKR1B10. Univariate and multivariate COX regression analyses were used to evaluate the prognostic value of serum AKR1B10 level independently or in combination with other clinicopathological factors. α-fetoprotein (AFP) was analyzed in parallel for comparison. RESULTS Serum AKR1B10 associated with tumor stage (p = 0.012), size (p = 0.004), primary tumor number (p = 0.019), and Child-Pugh classification (p = 0.003). HCC patients with a high level of serum AKR1B10 (≥ 267.9 pg/ml) had median survival (MS) of 25 months (95% confidence interval [CI] 20.788-29.212) vs. MS of 34 months (CI 28.911-39.089) in patients with normal serum AKR1B10 (p < 0.001). Univariate and multivariate COX regression analyses showed that serum AKR1B10 level was an unfavorable prognostic marker of HCC independently (HR 1.830, 95% CI 1.312-2.552; p < 0.001) or in combination with other clinical factors (HR 1.883, 95% CI 1.264-2.806; p = 0.002), such as TNM stage, tumor size and portal invasion. In the same cohort of HCC patients, AFP exhibited prognostic value at a cut-off of 400 ng/ml, but not at 20 ng/ml and 200 ng/ml. CONCLUSIONS Serum AKR1B10 is a new prognostic marker of HCC, better than AFP.
Collapse
Affiliation(s)
- Chenglin Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- The Affiliated Hospital of Hunan Research Institute of Traditional Chinese Medicine, 58 Lushan Road, Changsha, 410006, Hunan, China
| | - Xu Ye
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Li Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, 28W Changsheng Road, Hengyang, 421001, Hunan, China.
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, 28W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Lin P, Niu Y. Inhibitory selectivity to the AKR1B10 and aldose reductase (AR): insight from molecular dynamics simulations and free energy calculations. RSC Adv 2023; 13:26709-26718. [PMID: 37681045 PMCID: PMC10480703 DOI: 10.1039/d3ra02215c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 09/09/2023] Open
Abstract
AKR1B10 is over-expressed in many cancer types and is related to chemotherapy resistance, which makes AKR1B10 a potential anti-cancer target. The high similarity of the protein structure between AKR1B10 and AR makes it difficult to develop highly selective inhibitors against AKR1B10. Understanding the interaction between AKR1B10 and inhibitors is very important for designing selective inhibitors of AKR1B10. In this study, Fidarestat, Zopolrestat, MK184 and MK204 bound to AKR1B10 and AR were used to investigate the selectivity mechanism. The results of MM/PBSA calculations show that van der Waals and electrostatic interaction provide the main contributions of the binding free energy. The hydrogen bonding between residues Y49 and H111 and inhibitors plays a pivotal role in contributing to the high inhibitory activity of AKR1B10 inhibitors. The π-π stacking interaction between residue W112 and inhibitor also plays a key role in the stability of inhibitors and AKR1B10, but W112 should keep its natural conformation to stabilize the inhibitor-AKR1B10 complex. Highly selective AKR1B10 inhibitors should have a bulky moiety like a phenyl group, which can change its binding with ABP in binding with AR and cannot change its binding with AKR1B10. The free energy decomposition shows that residues W21, V48, Y49, K78, W80, H111, R298 and V302 are beneficial to the stability of the inhibitor-AKR1B10. Our work will provide an important in silico basis for researchers to develop highly selective inhibitors of AKR1B10.
Collapse
Affiliation(s)
- Ping Lin
- Weifang University of Science and Technology Weifang 262700 China
- Institute of Modern Physics, Chinese Academy of Science Lanzhou 730000 China
| | - Yuzhen Niu
- Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology Weifang 262700 China
| |
Collapse
|
20
|
Hitefield NL, Mackay S, Hays LE, Chen S, Oduor IO, Troyer DA, Nyalwidhe JO. Differential Activation of NRF2 Signaling Pathway in Renal-Cell Carcinoma Caki Cell Lines. Biomedicines 2023; 11:biomedicines11041010. [PMID: 37189628 DOI: 10.3390/biomedicines11041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Renal-cell carcinoma (RCC) is a heterogeneous disease consisting of several subtypes based on specific genomic profiles and histological and clinical characteristics. The subtype with the highest prevalence is clear-cell RCC (ccRCC), next is papillary RCC (pRCC), and then chromophobe RCC (chRCC). The ccRCC cell lines are further subdivided into prognostic expression-based subtypes ccA or ccB. This heterogeneity necessitates the development, availability, and utilization of cell line models with the correct disease phenotypic characteristics for RCC research. In this study, we focused on characterizing proteomic differences between the Caki-1 and Caki-2 cell lines that are commonly used in ccRCC research. Both cells are primarily defined as human ccRCC cell lines. Caki-1 cell lines are metastatic, harboring wild-type VHL, whereas Caki-2 are considered as the primary ccRCC cell lines expressing wild-type von Hippel–Lindau protein (pVHL). Here, we performed a comprehensive comparative proteomic analysis of Caki-1 and Caki-2 cells using tandem mass-tag reagents together with liquid chromatography mass spectrometry (LC/MS) for the identification and quantitation of proteins in the two cell lines. Differential regulation of a subset of the proteins identified was validated using orthogonal methods including western blot, q-PCR, and immunofluorescence assays. Integrative bioinformatic analysis identifies the activation/inhibition of specific molecular pathways, upstream regulators, and causal networks that are uniquely regulated and associated with the two cell lines and RCC subtypes, and potentially the disease stage. Altogether, we have identified multiple molecular pathways, including NRF2 signaling, which is the most significantly activated pathway in Caki-2 versus Caki-1 cells. Some of the differentially regulated molecules and signaling pathways could serve as potential diagnostic and prognostic biomarkers and therapeutic targets amongst ccRCC subtypes.
Collapse
|
21
|
Wang H, Zhang J, Liu J, Jiang Y, Fu L, Peng S. Identification of AKR1B10 as a key gene in primary biliary cholangitis by integrated bioinformatics analysis and experimental validation. Front Mol Biosci 2023; 10:1124956. [PMID: 36845547 PMCID: PMC9947156 DOI: 10.3389/fmolb.2023.1124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease that eventually progresses to cirrhosis and hepatocellular carcinoma (HCC) in the absence of proper treatment. However, Gene expression and molecular mechanisms involved in the pathogenesis of PBC have not been completely elucidated. Methods: Microarray expression profiling dataset GSE61260 was downloaded from the Gene Expression Omnibus (GEO) database. Data were normalized to screen differentially expressed genes (DEGs) using the limma package in R. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed. A protein-protein interaction (PPI) network was constructed to identify hub genes and an integrative regulatory network of transcriptional factor-DEG-microRNA was established. Gene Set Enrichment Analysis (GSEA) was used to analyze differences in biological states for groups with different expressions of aldo-keto reductase family 1 member B10 (AKR1B10). Immunohistochemistry (IHC) analysis was performed to validate the expression of hepatic AKR1B10 in patients with PBC. The association of hepatic AKR1B10 levels with clinical parameters was evaluated using one-way analysis of variance (ANOVA) and Pearson's correlation analysis. Results: This study identified 22 upregulated and 12 downregulated DEGs between patients with PBC and healthy controls. GO and KEGG analysis revealed that DEGs were mainly enriched in immune reactions. AKR1B10 was identified as a key gene and was further analyzed by screening out hub genes from the PPI network. GSEA analysis indicated that high expression of AKR1B10 might promote PBC to develop into HCC. Immunohistochemistry results verified the increased expression of hepatic AKR1B10 in patients with PBC and demonstrated its positive correlation with the severity of PBC. Conclusion: AKR1B10 was identified as a hub gene in PBC by integrated bioinformatics analysis and clinical validation. The increase of AKR1B10 expression in patients with PBC was associated with disease severity and might promote the progression of PBC to HCC.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
22
|
Gao B, Wang Y, Li C, Lu S. Estrogen-related genes influence immune cell infiltration and immunotherapy response in Hepatocellular Carcinoma. Front Immunol 2023; 14:1114717. [PMID: 36814910 PMCID: PMC9939443 DOI: 10.3389/fimmu.2023.1114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Background Immunotherapy has been the first-line treatment option in advanced Hepatocellular Carcinoma(HCC); but now, there are no established molecular markers that can predict immunotherapy response. Estrogen has a crucial role in the development of a variety of liver illnesses, including liver fibrosis, Nonalcoholic fatty liver disease (NAFLD), and HCC. Nonetheless, the significance of estrogen-related genes in HCC immunotherapy and the underlying molecular mechanisms are not yet fully understood. Method In this study, we constructed a novel estrogen-related gene prognostic signature (ERGPS) by analyzing bulk RNA sequencing data from 365 HCC patients. Based on the median risk score, we divided 365 HCC patients into low- and high-risk groups. Tumor mutation burden (TMB), Microsatellite instability (MSI), T cell receptor (TCR) richness, B cell receptor (BCR) richness, single-nucleotide variants (SNV) Neoantigens, Cancer Testicular Antigens (CTA) scores, and Tumour Immune Dysfunction and Exclusion (TIDE) scores were used to evaluate the magnitude of immunotherapy response. Multiple external datasets validate the validity and robustness of the prognostic signature. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate estrogen-related gene overexpression in HCC tissue samples. Results ERGPS is an independent risk factor affecting the prognosis of HCC patients and is superior to other clinical variables in predicting patient survival and immunotherapy response. Multiple independent external datasets confirmed the superior predictive efficacy of the prognostic signature. The prognostic signature was positively correlated with TMB score, MSI score, TCR richness, BCR richness, SNV Neoantigens score, CTA score, expression levels of immune checkpoint-related genes, and TIDE score. Patients with HCC in the high-risk group identified by the prognostic signature were likely to be more responsive to immunotherapy and more suitable for immunotherapy. qRT-PCR confirmed that estrogen-related genes of the construct signature were highly expressed in HCC tumor tissues. Conclusion Estrogen-related genes are overexpressed in HCC tissues. Our novel prognostic signature can accurately predict not only the prognosis but also the immunotherapy response of HCC patients. In the future, prognostic signatures will be a useful tool for clinicians to screen patients with HCC who are suitable for immunotherapy.
Collapse
Affiliation(s)
- Biao Gao
- Nankai University School of Medicine, Nankai University, Tianjin, China,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yafei Wang
- Nankai University School of Medicine, Nankai University, Tianjin, China,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China,Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China,*Correspondence: Chonghui Li, ; Shichun Lu,
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China,Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China,*Correspondence: Chonghui Li, ; Shichun Lu,
| |
Collapse
|
23
|
Liu C, Li C, Liu Y. The role of metabolic reprogramming in pancreatic cancer chemoresistance. Front Pharmacol 2023; 13:1108776. [PMID: 36699061 PMCID: PMC9868425 DOI: 10.3389/fphar.2022.1108776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is characterized by hidden onset, high malignancy, and early metastasis. Although a few cases meet the surgical indications, chemotherapy remains the primary treatment, and the resulting chemoresistance has become an urgent clinical problem that needs to be solved. In recent years, the importance of metabolic reprogramming as one of the hallmarks of cancers in tumorigenesis has been validated. Metabolic reprogramming involves glucose, lipid, and amino acid metabolism and interacts with oncogenes to affect the expression of key enzymes and signaling pathways, modifying the tumor microenvironment and contributing to the occurrence of drug tolerance. Meanwhile, the mitochondria are hubs of the three major nutrients and energy metabolisms, which are also involved in the development of drug resistance. In this review, we summarized the characteristic changes in metabolism during the progression of pancreatic cancer and their impact on chemoresistance, outlined the role of the mitochondria, and summarized current studies on metabolic inhibitors.
Collapse
|
24
|
Tatsuta T. [Basic Research on Bullfrog Egg-derived Sialic Acid-binding Lectin for Cancer Treatment]. YAKUGAKU ZASSHI 2022; 142:1045-1053. [PMID: 36184438 DOI: 10.1248/yakushi.22-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sialic acid-binding lectin from Rana catesbeiana (cSBL) is a multifunctional protein with both lectin and ribonuclease activity and is, therefore, called a leczyme. It exerts cancer cell-selective antitumor effects on a variety of cancer cells in vitro and in vivo under conditions where no undesired side effects are observed. cSBL elicits antitumor effects by degrading cellular RNA and subsequently inducing apoptosis via a pathway mediated by mitochondria and endoplasmic reticulum stress. Further, it exerts synergistic antitumor effects with other molecules such as tumor necrosis factor-related apoptosis-inducing ligand and pemetrexed. Recent studies have revealed that long-term treatment of cancer cells with cSBL causes significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways. Furthermore, cSBL reduces the expression of some cancer-related molecules such as human epidermal growth factor receptors, aldo-keto reductase 1B10, and ATP-binding cassette transporter C2. The information described above is expected to lead to useful applications, such as effective regimens comprising cSBL and other drugs. These findings reveal favorable properties of cSBL as an anticancer drug, which may contribute to the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
25
|
Liu C, Shi L, Li W, Huang Z, Wang S, Xu P, Li T, Li Z, Luo F, Li W, Yan J, Wu T. AKR1B10 accelerates the production of proinflammatory cytokines via the NF-κB signaling pathway in colon cancer. J Mol Histol 2022; 53:781-791. [PMID: 35920984 DOI: 10.1007/s10735-022-10093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Aldo-keto reductase family one, member B10 (AKR1B10) has been reported to be involved in the tumorigenesis of various cancers. It has been reported that colorectal cancer is closely associated with chronic inflammation, but the underlying molecular mechanisms are still elusive. In our study, we evaluated the relationship between AKR1B10 expression and clinicopathological characteristics of colon cancer and showed that AKR1B10 expression was significantly correlated with the T stage and clinical stage of colon cancer. Knockdown of AKR1B10 significantly decreased the expression of the inflammatory cytokines IL1α and IL6 induced by lipopolysaccharide by inhibiting the NF-κB signaling pathway. Furthermore, AKR1B10 depends on its reductase activity to affect the NF-κB signaling pathway and subsequently affect the production of inflammatory cytokines. In addition, knockdown of AKR1B10 effectively reduced cell proliferation and clonogenic growth, indicating the biological role of AKR1B10 in colon cancer. Together, our findings provide important insights into a previously unrecognized role of AKR1B10 in colon cancer.
Collapse
Affiliation(s)
- Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Lei Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Wanyun Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Zilan Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Peilan Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Zhenyu Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China.
| | - Wengang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China.
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China.
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China.
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361000, China.
| |
Collapse
|
26
|
Cao Z, Delfino K, Tiwari V, Wang X, Hannan A, Zaidi F, McClintock A, Robinson K, Zhu Y, Gao J, Cao D, Rao K. AKR1B10 as a Potential Novel Serum Biomarker for Breast Cancer: A Pilot Study. Front Oncol 2022; 12:727505. [PMID: 35280770 PMCID: PMC8908957 DOI: 10.3389/fonc.2022.727505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Aldo-keto reductase 1B10 (AKR1B10) is a secretory protein that is upregulated in breast cancer. Objective This case-controlled pilot study evaluated the serum level of AKR1B10 in healthy women and patients with a localized or metastatic breast cancer. Methods AKR1B10 levels were measured by ELISA and IHC in several patient cohorts. Results Our data showed that serum AKR1B10 was significantly elevated in patients with localized (6.72 ± 0.92 ng/ml) or metastatic (7.79 ± 1.13 ng/ml) disease compared to cancer-free healthy women (1.69 ± 0.17 ng/ml) (p<0.001); the serum AKR1B10 was correlated with its expression in tumor tissues, but not with the tumor burden, molecular subtypes or histological stages. After surgical removal of primary tumors, the serum AKR1B10 was rapidly decreased within 3 days and plateaued at a level similar to that of healthy controls in most patients. ROC curve analysis suggested the optimal diagnostic cut-off value of serum AKR1B10 at 3.456 ng/ml with AUC 0.9045 ± 0.0337 (95% CI 0.8384 - 0.9706), sensitivity 84.75% (95% CI 73.01% to 92.78%), and specificity 93.88% (95% CI 83.13% to 98.72%). Conclusions These data indicate the potential value of serum AKR1B10 as a biomarker of breast cancer.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kristin Delfino
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vivek Tiwari
- Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Xin Wang
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Abdul Hannan
- Division of Hematology/Medical Oncology, Department of Internal Medicine and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Fawwad Zaidi
- Division of Hematology/Medical Oncology, Department of Internal Medicine and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrew McClintock
- Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kathy Robinson
- Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Yun Zhu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - John Gao
- Department of Pathology, Memorial Medical Center, Springfield, IL, United States
| | - Deliang Cao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Krishna Rao
- Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
27
|
Westermann M, Adomako-Bonsu AG, Thiele S, Çiçek SS, Martin HJ, Maser E. Inhibition of human carbonyl reducing enzymes by plant anthrone and anthraquinone derivatives. Chem Biol Interact 2022; 354:109823. [PMID: 35065925 DOI: 10.1016/j.cbi.2022.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Members of the aldo-keto reductase and short-chain dehydrogenase/reductase enzyme superfamilies catalyze the conversion of a wide range of substrates, including carbohydrates, lipids, and steroids. These enzymes also participate in the transformation of xenobiotics, inactivation of the cytostatics doxo- and daunorubicin, and play a role in the development of cancer. Therefore, inhibitors of such enzymes may improve therapeutic outcomes. Plant-derived compounds such as anthraquinones have been used for medicinal purposes for several centuries. In the current study, the inhibitory potential of selected anthrone and anthraquinone derivatives (from plants) was tested on six recombinant human carbonyl reducing enzymes (AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1) isolated from an Escherichia coli expression system. Overall, the least inhibition was observed with the anthrone derivative aloin, while IC50 values obtained with the anthraquinone derivatives (frangula emodin, aloe emodin, frangulin A, and frangulin B) and the aldo-keto reductase AKR1B10 were in the low micromolar range (3.5-16.6 μM). AKR1B1 inhibition was significantly weaker in comparison with AKR1B10 inhibition (IC50 values > 50 μM). The strongest inhibition was observed with the short-chain dehydrogenase/reductase CBR1. AKR7A2, AKR7A3, and AKR1C3 were not, or less inhibited by inhibitor concentrations of up to 50 μM. Analysis of the kinetic data suggests noncompetitive or uncompetitive inhibition mechanisms. The new inhibitors described here may serve as lead structures for the development of future drugs.
Collapse
Affiliation(s)
- Magdalena Westermann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Solveig Thiele
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Serhat Sezai Çiçek
- Institute of Pharmacy, Kiel University, Gutenbergstr. 76, 24118, Kiel, Germany.
| | - Hans-Jörg Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
28
|
Wu T, Ke Y, Tang H, Liao C, Li J, Wang L. Fidarestat induces glycolysis of NK cells through decreasing AKR1B10 expression to inhibit hepatocellular carcinoma. Mol Ther Oncolytics 2021; 23:420-431. [PMID: 34853813 PMCID: PMC8605295 DOI: 10.1016/j.omto.2021.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aldose reductase inhibitor Fidarestat has been noted to have efficacy in treating a variety of tumors. To define its role in hepatocellular carcinoma (HCC), we induced a HCC xenograft model in mice, which were treated with different doses of Fidarestat. The amounts of natural killer (NK) cells and related inflammatory factors were detected in the serum of the mice. Fidarestat inhibited HCC tumor growth and lung metastasis in vivo and increased NK cell number as well as levels of NK cell-related inflammatory factors in mouse serum. NK cells were then co-cultured with the HCC cell line in vitro to detect effects on HCC cell progression after Fidarestat administration. The glycolysis activity of the NK cells was evaluated by extracellular acidification rate, while aldo-keto reductase family 1 member B10 (AKR1B10) expression was detected by western blot analysis. Administration of Fidarestat downregulated the expression of AKR1B10 in NK cells and promoted NK cell glycolysis to enhance their killing activity against HCC cells. However, depletion of NK cells or upregulation of AKR1B10 attenuated the anticancer activity of Fidarestat. Taken together, Fidarestat downregulated AKR1B10 expression in NK cells to promote NK cell glycolysis, thereby alleviating HCC progression.
Collapse
Affiliation(s)
- Tiangen Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Haoran Tang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chen Liao
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jinze Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Kunming 650101, China
| |
Collapse
|
29
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
30
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. METHOD In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. RESULTS PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19-9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19-9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. CONCLUSION Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs.
Collapse
MESH Headings
- Animals
- CA-19-9 Antigen/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Disease-Free Survival
- Gene Silencing
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Small Interfering
- Secretome
- Sensitivity and Specificity
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
31
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
32
|
The expression and significance of AKR1B10 in laryngeal squamous cell carcinoma. Sci Rep 2021; 11:18228. [PMID: 34521883 PMCID: PMC8440551 DOI: 10.1038/s41598-021-97648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Aldosterone reductase family 1 member B10 (AKR1B10) is a nicotinamide adenine dinucleotide phosphate (reduced coenzyme II)-dependent oxidoreductase, and its biological functions include carbonyl detoxification, hormone metabolism, osmotic adjustment, and lipid synthesis. Studies suggested that AKR1B10 is a new biomarker for cancer based on its overexpression in epithelial tumors, such as breast cancer, cervical cancer, and lung cancer. At present, studies on the expression of AKR1B10 in laryngeal cancer have not been reported. However, we found that AKR1B10 is upregulated in laryngeal carcinoma, and its expression was negatively correlated with the degree of differentiation. In addition, AKR1B10 expression was positively correlated with tumor size; lymph node metastasis; alcohol use; and Ki-67, mutant p53, and matrix metalloproteinase 2 expression. AKR1B10 was overexpressed in Hep-2 laryngeal carcinoma cells. Oleanolic acid inhibited AKR1B10 activity and expression in Hep-2 cells and suppressed Hep-2 cell proliferation, migration, and invasion. Therefore, AKR1B10 may be related to the development of laryngeal carcinoma, suggesting its use as a prognostic indicator for laryngeal cancer.
Collapse
|
33
|
Inhibition of AKR1B10-mediated metabolism of daunorubicin as a novel off-target effect for the Bcr-Abl tyrosine kinase inhibitor dasatinib. Biochem Pharmacol 2021; 192:114710. [PMID: 34339712 DOI: 10.1016/j.bcp.2021.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Bcr-Abl tyrosine kinase inhibitors significantly improved Philadelphia chromosome-positive leukaemia therapy. Apart from Bcr-Abl kinase, imatinib, dasatinib, nilotinib, bosutinib and ponatinib are known to have additional off-target effects that might contribute to their antitumoural activities. In our study, we identified aldo-keto reductase 1B10 (AKR1B10) as a novel target for dasatinib. The enzyme AKR1B10 is upregulated in several cancers and influences the metabolism of chemotherapy drugs, including anthracyclines. AKR1B10 reduces anthracyclines to alcohol metabolites that show less antineoplastic properties and tend to accumulate in cardiac tissue. In our experiments, clinically achievable concentrations of dasatinib selectively inhibited AKR1B10 both in experiments with recombinant enzyme (Ki = 0.6 µM) and in a cellular model (IC50 = 0.5 µM). Subsequently, the ability of dasatinib to attenuate AKR1B10-mediated daunorubicin (Daun) resistance was determined in AKR1B10-overexpressing cells. We have demonstrated that dasatinib can synergize with Daun in human cancer cells and enhance its therapeutic effectiveness. Taken together, our results provide new information on how dasatinib may act beyond targeting Bcr-Abl kinase, which may help to design new chemotherapy regimens, including those with anthracyclines.
Collapse
|
34
|
Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic Implication of a Novel Metabolism-Related Gene Signature in Hepatocellular Carcinoma. Front Oncol 2021; 11:666199. [PMID: 34150630 PMCID: PMC8213025 DOI: 10.3389/fonc.2021.666199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the main causes of cancer-associated deaths globally, accounts for 90% of primary liver cancers. However, further studies are needed to confirm the metabolism-related gene signature related to the prognosis of patients with HCC. Methods Using the “limma” R package and univariate Cox analysis, combined with LASSO regression analysis, a metabolism-related gene signature was established. The relationship between the gene signature and overall survival (OS) of HCC patients was analyzed. RT-qPCR was used to evaluate the expression of metabolism-related genes in clinical samples. GSEA and ssGSEA algorithms were used to evaluate differences in metabolism and immune status, respectively. Simultaneously, data downloaded from ICGC were used as an external verification set. Results From a total of 1,382 metabolism-related genes, a novel six-gene signature (G6PD, AKR1B15, HMMR, CSPG5, ELOVL3, FABP6) was constructed based on data from TCGA. Patients were divided into two risk groups based on risk scores calculated for these six genes. Survival analysis showed a significant correlation between high-risk patients and poor prognosis. ROC analysis demonstrated that the gene signature had good predictive capability, and the mRNA expression levels of the six genes were upregulated in HCC tissues than those in adjacent normal liver tissues. Independent prognosis analysis confirmed that the risk score and tumor grade were independent risk factors for HCC. Furthermore, a nomogram of the risk score combined with tumor stage was constructed. The calibration graph results demonstrated that the OS probability predicted by the nomogram had almost no deviation from the actual OS probability, especially for 3-year OS. Both the C-index and DCA curve indicated that the nomogram provides higher reliability than the tumor stage and risk scores. Moreover, the metabolic and immune infiltration statuses of the two risk groups were significantly different. In the high-risk group, the expression levels of immune checkpoints, TGF-β, and C-ECM genes, whose functions are related to immune escape and immunotherapy failure, were also upregulated. Conclusions In summary, we developed a novel metabolism-related gene signature to provide more powerful prognostic evaluation information with potential ability to predict the immunotherapy efficiency and guide early treatment for HCC.
Collapse
Affiliation(s)
- Chaoyan Yuan
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingqian Chen
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinhua Ouyang
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Intensive Care Unit, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Demirkol Canlı S, Seza EG, Sheraj I, Gömçeli I, Turhan N, Carberry S, Prehn JHM, Güre AO, Banerjee S. Evaluation of an aldo-keto reductase gene signature with prognostic significance in colon cancer via activation of epithelial to mesenchymal transition and the p70S6K pathway. Carcinogenesis 2021; 41:1219-1228. [PMID: 32628753 DOI: 10.1093/carcin/bgaa072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.
Collapse
Affiliation(s)
- Seçil Demirkol Canlı
- Molecular Pathology Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Esin Gülce Seza
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ismail Gömçeli
- Department of Gastroenterological Surgery, Antalya Education and Research Hospital, Antalya, Turkey
| | - Nesrin Turhan
- Department of Pathology, Ankara City Hospital, University of Health Science, Ankara, Turkey
| | - Steven Carberry
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ali Osmay Güre
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.,Cancer Systems Biology Laboratory (CanSyl) Orta Dogu Teknik Universitesi, Ankara, Turkey
| |
Collapse
|
36
|
CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10-ERK signaling. Cell Death Dis 2021; 12:537. [PMID: 34035231 PMCID: PMC8149849 DOI: 10.1038/s41419-021-03819-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
The chromobox (CBX) proteins mediate epigenetic gene silencing and have been implicated in the cancer development. By analyzing eight CBX family members in TCGA dataset, we found that chromobox 7 (CBX7) was the most strikingly downregulated CBX family member in urinary bladder cancer (UBC), as compared to normal tissues. Though dysregulation of CBX7 has been reported in multiple cancers, its specific role and clinical relevance in UBC remain unclear. Herein, we found that frequent downregulation of CBX7 in UBC specimens, which was due to its promoter hypermethylation, was correlated with poor prognosis. The ectopic expression of CBX7 suppressed UBC cell proliferation, migration, invasion, and cancer stemness, whereas CBX7 depletion promoted cancer cell aggressiveness. Importantly, CBX7 overexpression in UBC cells inhibited tumorigenicity, whereas CBX7 depletion promoted the tumor development, indicating its tumor-suppressive role in UBC. Using RNA-seq and chromosome immunoprecipitation (ChIP) assays, we identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of CBX7, which was negatively modulated by CBX7 in a PRC1-dependent manner and involved in stimulating ERK signaling. Consistently, AKR1B10 overexpression induced cancer cell aggressiveness, whereas suppression of AKR1B10 by siRNA or its small molecular inhibitor, oleanolic acid, reversed the CBX7 deficiency-induced cellular effects. AKR1B10 overexpression was negatively associated with CBX7 downregulation and predicted poor clinical outcomes in UBC patients. Taken together, our results indicate that CBX7 functions as a tumor suppressor to downregulate AKR1B10 and further inactivates ERK signaling. This CBX7/AKR1B10/ERK signaling axis may provide a new therapeutic strategy against UBC.
Collapse
|
37
|
Zeng Y, Li J, Guo W, Luo W, Liu X, He R, Hu Z, Duan L, Xia C, Luo D. AKR1B10 protects against UVC-induced DNA damage in breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:726-738. [PMID: 33913495 DOI: 10.1093/abbs/gmab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The cellular response to DNA damage is crucial for maintaining the integrity and stability of molecular structure. To maintain genome stability, DNA-damaged cells should be arrested so that mutations can be repaired before replication. Although several key components required for this arrest have been discovered, the majority of the pathways are still unclear. Through a number of assays, including cell viability, colony formation, and apotheosis assay, we found that AKR1B10 protected cells from UVC-induced DNA damage. Surprisingly, UVC-induced γH2AX foci and DNA double-strand breaks in the AKR1B10-overexpressing cells were ∼4-5 folds lower than those in the control group. The expression levels of AKR1B10, p53, chk1, chk2, nuclear factor (NF)-κB, and p65 showed dynamic changes in response to UVC irradiation. Our results suggested that AKR1B10 is involved in the pathway of cell cycle checkpoint and NF-κB in DNA damage. Taken together, our results suggest that AKR1B10 is involved in the repair of the DNA double-strand break, which provides a new insight into the role of AKR1B10 in DNA damage repair and indicates a new trail in tumorigenesis and cancer drug resistance.
Collapse
Affiliation(s)
- Yuanqing Zeng
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
- Department of Clinical Laboratory, Zhuhai Hospital, Guangdong Hospital of Traditional Chinese Medicine, Zhuhai 519015, China
| | - Jia Li
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Wangyuan Guo
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Weihao Luo
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Xiangting Liu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Rongzhang He
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Zheng Hu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Lili Duan
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 520150, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
- Center for Laboratory and Pathology, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People’s Hospital of Chenzhou, Southern Medical University, Chenzhou 423000, China
| |
Collapse
|
38
|
Endo S, Matsunaga T, Nishinaka T. The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites 2021; 11:332. [PMID: 34063865 PMCID: PMC8224097 DOI: 10.3390/metabo11060332] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
AKR1B10 is a human nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase belonging to the aldo-keto reductase (AKR) 1B subfamily. It catalyzes the reduction of aldehydes, some ketones and quinones, and interacts with acetyl-CoA carboxylase and heat shock protein 90α. The enzyme is highly expressed in epithelial cells of the stomach and intestine, but down-regulated in gastrointestinal cancers and inflammatory bowel diseases. In contrast, AKR1B10 expression is low in other tissues, where the enzyme is upregulated in cancers, as well as in non-alcoholic fatty liver disease and several skin diseases. In addition, the enzyme's expression is elevated in cancer cells resistant to clinical anti-cancer drugs. Thus, growing evidence supports AKR1B10 as a potential target for diagnosing and treating these diseases. Herein, we reviewed the literature on the roles of AKR1B10 in a healthy gastrointestinal tract, the development and progression of cancers and acquired chemoresistance, in addition to its gene regulation, functions, and inhibitors.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| |
Collapse
|
39
|
Li W, Liu C, Huang Z, Shi L, Zhong C, Zhou W, Meng P, Li Z, Wang S, Luo F, Yan J, Wu T. AKR1B10 negatively regulates autophagy through reducing GAPDH upon glucose starvation in colon cancer. J Cell Sci 2021; 134:237788. [PMID: 33758077 DOI: 10.1242/jcs.255273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is considered to be an important switch for facilitating normal to malignant cell transformation during colorectal cancer development. Consistent with other reports, we found that the membrane receptor Neuropilin1 (NRP1) is greatly upregulated in colon cancer cells that underwent autophagy upon glucose deprivation. However, the mechanism underlying NRP1 regulation of autophagy is unknown. We found that knockdown of NRP1 inhibits autophagy and largely upregulates the expression of aldo-keto reductase family 1 B10 (AKR1B10). Moreover, we demonstrated that AKR1B10 interacts with and inhibits the nuclear importation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and then subsequently represses autophagy. Interestingly, we also found that an NADPH-dependent reduction reaction could be induced when AKR1B10 interacts with GAPDH, and the reductase activity of AKR1B10 is important for its repression of autophagy. Together, our findings unravel a novel mechanism of NRP1 in regulating autophagy through AKR1B10.
Collapse
Affiliation(s)
- Wanyun Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zilan Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Lei Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, China
| | - Wenwen Zhou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Peipei Meng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zhenyu Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361000, China.,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361000, China.,Xiamen University Research Center of Retroperitoneal Tumor Committee of Oncology Society of Chinese Medical Association, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Joint Laboratory of Xiamen University School of Medicine and Shanghai Jiangxia Blood Technology Co., Ltd., Xiamen 361000, China
| |
Collapse
|
40
|
Tatsuta T, Nakasato A, Sugawara S, Hosono M. Transcriptomic alterations in malignant pleural mesothelioma cells in response to long‑term treatment with bullfrog sialic acid‑binding lectin. Mol Med Rep 2021; 23:467. [PMID: 33880588 PMCID: PMC8097763 DOI: 10.3892/mmr.2021.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a universally lethal type of cancer that is increasing in incidence worldwide; therefore, the development of new drugs for MPM is an urgent task. Bullfrog sialic acid-binding lectin (cSBL) is a multifunctional protein that has carbohydrate-binding and ribonuclease activities. cSBL exerts marked antitumor activity against numerous types of cancer cells, with low toxicity to normal cells. Although in vitro and in vivo studies revealed that cSBL was effective against MPM, the mechanism by which cSBL exerts antitumor effects is not fully understood. To further understand the mechanism of action of cSBL, the present study aimed to identify the key molecules whose expression was affected by cSBL. The present study established cSBL-resistant MPM cells. Microarray analyses revealed that there were significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways in cSBL-resistant cells. Furthermore, the expression of some members of the aldo-keto reductase family was revealed to be markedly downregulated in these cells. Among these, it was particularly interesting that cSBL action reduced the level of AKR1B10, which has been reported as a biomarker candidate for MPM prognosis. These findings revealed novel aspects of the effect of cSBL, which may contribute to the development of new therapeutic strategies for MPM.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Arisu Nakasato
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Shigeki Sugawara
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Masahiro Hosono
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
41
|
Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:65-82. [PMID: 33945128 DOI: 10.1007/5584_2021_634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deregulation of metabolic pathways has increasingly been appreciated as a major driver of cancer in recent years. The principal cancer-associated alterations in metabolism include abnormal uptake of glucose and amino acids and the preferential use of metabolic pathways for the production of biomass and nicotinamide adenine dinucleotide phosphate (NADPH). Aldo-keto reductases (AKRs) are NADPH dependent cytosolic enzymes that can catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Aldose reductase, also known as AKR1B1, catalyzes the conversion of excess glucose to sorbitol and has been studied extensively for its role in a number of diabetic pathologies. In recent years, however, high expression of the AKR1B and AKR1C family of enzymes has been strongly associated with worse outcomes in different cancer types. This review provides an overview of the catalysis-dependent and independent data emerging on the molecular mechanisms of the functions of AKRBs in different tumor models with an emphasis of the role of these enzymes in chemoresistance, inflammation, oxidative stress and epithelial-to-mesenchymal transition.
Collapse
|
42
|
Elebo N, Fru P, Omoshoro-Jones J, Candy GP, Nweke EE. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 2020; 22:4981-4991. [PMID: 33174057 PMCID: PMC7646946 DOI: 10.3892/mmr.2020.11622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer‑related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Pascaline Fru
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Geoffrey Patrick Candy
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|
43
|
Flerin NC, Cappellesso F, Pretto S, Mazzone M. Metabolic traits ruling the specificity of the immune response in different cancer types. Curr Opin Biotechnol 2020; 68:124-143. [PMID: 33248423 DOI: 10.1016/j.copbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy aims to augment the response of the patient's own immune system against cancer cells. Despite effective for some patients and some cancer types, the therapeutic efficacy of this treatment is limited by the composition of the tumor microenvironment (TME), which is not well-suited for the fitness of anti-tumoral immune cells. However, the TME differs between cancer types and tissues, thus complicating the possibility of the development of therapies that would be effective in a large range of patients. A possible scenario is that each type of cancer cell, granted by its own mutations and reminiscent of the functions of the tissue of origin, has a specific metabolism that will impinge on the metabolic composition of the TME, which in turn specifically affects T cell fitness. Therefore, targeting cancer or T cell metabolism could increase the efficacy and specificity of existing immunotherapies, improving disease outcome and minimizing adverse reactions.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium.
| |
Collapse
|
44
|
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2020; 17:469-497. [PMID: 32859627 PMCID: PMC7472444 DOI: 10.21873/cgp.20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Nzinga Mack
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
| | - Masa Zdralevic
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Karam F A Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
45
|
Yao Y, Wang X, Zhou D, Li H, Qian H, Zhang J, Jiang L, Wang B, Lin Q, Zhu X. Loss of AKR1B10 promotes colorectal cancer cells proliferation and migration via regulating FGF1-dependent pathway. Aging (Albany NY) 2020; 12:13059-13075. [PMID: 32615540 PMCID: PMC7377871 DOI: 10.18632/aging.103393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide with poor prognosis and survival rates. The aldo-keto reductase family 1 member B10 (AKR1B10) plays an important role in metabolism, cell proliferation and mobility, and is downregulated in CRC. We hypothesized that AKR1B10 would promote CRC genesis via a noncanonical oncogenic pathway and is a novel therapeutic target. In this study, AKR1B10 expression levels in 135 pairs of CRC and para-tumor tissues were examined, and its oncogenic role was determined using in vitro and in vivo functional assays following genetic manipulation of CRC cells. AKR1B10 was downregulated in CRC tissues compared to the adjacent normal colorectal tissues, and associated with the clinicopathological status of the patients. AKR1B10 depletion promoted the proliferation and migration of CRC cells in vitro, while its ectopic expression had the opposite effect. AKR1B10 was also significantly correlated with FGF1 gene and protein levels. Knockdown of AKR1B10 promoted tumor growth in vivo, and increased the expression of FGF1. Finally, AKR1B10 inhibited FGF1, and suppressed the proliferation and migration ability of CRC cells in an FGF1-dependent manner. In conclusion, AKR1B10 acts as a tumor suppressor in CRC by inactivating FGF1, and is a novel target for combination therapy of CRC.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiawen Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Lin
- Suzhou Emergency Center, Suzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020; 19:50. [PMID: 32122374 PMCID: PMC7053123 DOI: 10.1186/s12943-020-01169-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| |
Collapse
|
47
|
Cubillos-Angulo JM, Fukutani ER, Cruz LAB, Arriaga MB, Lima JV, Andrade BB, Queiroz ATL, Fukutani KF. Systems biology analysis of publicly available transcriptomic data reveals a critical link between AKR1B10 gene expression, smoking and occurrence of lung cancer. PLoS One 2020; 15:e0222552. [PMID: 32097409 PMCID: PMC7041805 DOI: 10.1371/journal.pone.0222552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cigarette smoking is associated with an increased risk of developing respiratory diseases and various types of cancer. Early identification of such unfavorable outcomes in patients who smoke is critical for optimizing personalized medical care. Methods Here, we perform a comprehensive analysis using Systems Biology tools of publicly available data from a total of 6 transcriptomic studies, which examined different specimens of lung tissue and/or cells of smokers and nonsmokers to identify potential markers associated with lung cancer. Results Expression level of 22 genes was capable of classifying smokers from non-smokers. A machine learning algorithm revealed that AKR1B10 was the most informative gene among the 22 differentially expressed genes (DEGs) accounting for the classification of the clinical groups. AKR1B10 expression was higher in smokers compared to non-smokers in datasets examining small and large airway epithelia, but not in the data from a study of sorted alveolar macrophages. Moreover, AKR1B10 expression was relatively higher in lung cancer specimens compared to matched healthy tissue obtained from nonsmoking individuals. Although the overall accuracy of AKR1B10 expression level in distinction between cancer and healthy lung tissue was 76%, with a specificity of 98%, our results indicated that such marker exhibited low sensitivity, hampering its use for cancer screening such specific setting. Conclusion The systematic analysis of transcriptomic studies performed here revealed a potential critical link between AKR1B10 expression, smoking and occurrence of lung cancer.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | | | - Luís A. B. Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | - João Victor Lima
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
48
|
Liu Y, Zhang J, Liu H, Guan G, Zhang T, Wang L, Qi X, Zheng H, Chen CC, Liu J, Cao D, Lu F, Chen X. Compensatory upregulation of aldo-keto reductase 1B10 to protect hepatocytes against oxidative stress during hepatocarcinogenesis. Am J Cancer Res 2019; 9:2730-2748. [PMID: 31911858 PMCID: PMC6943354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023] Open
Abstract
Aldo-keto reductase 1B10 (AKR1B10), a member of aldo-keto reductase superfamily, contributes to detoxification of xenobiotics and metabolization of physiological substrates. Although increased expression of AKR1B10 was found in hepatocellular carcinoma (HCC), the role of AKR1B10 in the development of HCC remains unclear. This study aims to illustrate the role of AKR1B10 in hepatocarcinogenesis based on its intrinsic oxidoreduction abilities. HCC cell lines with AKR1B10 overexpression or knockdown were treated with doxorubicin or hydrogen peroxide to determinate the influence of aberrant AKR1B10 expression on cells' response to oxidative stress. Using Akr1b8 (the ortholog of human AKR1B10) knockout mice, diethylnitrosamine (DEN) induced liver injury, chronic inflammation and hepatocarcinogenesis were explored. Clinically, the pattern of serum AKR1B10 relevant to disease progression was investigated in a patient cohort with chronic hepatitis B (n=30), liver cirrhosis (n=30) and HCC (n=40). AKR1B10 expression in HCC tissues was analyzed using both the TCGA database (n=371) and our collected HCC samples (n=67). AKR1B10 overexpression reduced hepatocyte injury while AKR1B10 knockdown augmented reactive oxygen species (ROS) accumulation and apoptotic cell death. Consistently, Akr1b8 deficiency in mice promoted DEN-induced hepatocyte damage and liver inflammation characterized by increased phospho-H2AX, serum alanine aminotransferase, interleukin-6 and tumor necrosis factor alpha level, myeloid cell infiltration and led to more severe hepatocarcinogenesis and metastasis compared with wild type mice due to significant alteration on detoxification and oxidoreduction. AKR1B10 was compensatory expressed and gradually upregulated in the process of liver disease progression in HCC and increased oxidative stress upregulated AKR1B10 through NRF2. Our results here suggested that through oxidoreduction and detoxification, AKR1B10 played an important role in protecting hepatocytes from damage induced by ROS. Deficiency of AKR1B10 might accelerate hepatotoxin and inflammation-associated hepatocarcinogenesis. AKR1B10 expression elevation in HCC could be a result of compensatory upregulation, rather than a driver of malignant transformation during the development of HCC.
Collapse
Affiliation(s)
- Yongzhen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Jing Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Hui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Guiwen Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Leijie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Xuewei Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Huiling Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Chia-Chen Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Jia Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute at Southern Illinois University School of Medicine913 N, Rutledge Street, Springfield, IL 62794, USA
| | - Fengmin Lu
- Peking University People’s Hospital, Peking University Hepatology InstituteBeijing 100044, P. R. China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing 100191, P. R. China
| |
Collapse
|
49
|
Zhu R, Xiao J, Luo D, Dong M, Sun T, Jin J. Serum AKR1B10 predicts the risk of hepatocellular carcinoma - A retrospective single-center study. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:614-621. [PMID: 31495535 DOI: 10.1016/j.gastrohep.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES AKR1B10, first cloned from liver cancer tissues, has recently been reported to be up-regulated significantly in hepatocellular carcinoma (HCC) tissues, but the relationship between serum level of AKR1B10 and the risk of HCC is not understood. METHODS 170 HCC patients and 120 health donors from October 2014 to March 2017 were recruited in the affiliated hospital of Guilin Medical University. Serum AKR1B10 in all cases were detected and in 30 HCC patients were analyzed preoperatively and postoperatively by Time-resolved fluoroimmunoassay. RESULTS The level of serum AKR1B10 was significantly higher in HCC patients (1800.24±2793.79) than in health donors (129.34±194.129), and downregulation of serum AKR1B10 in HCC patients was observed after hepatectomy. When samples were grouped according to the serum level of AKR1B10 (≥232.7pg/ml), serum AKR1B10 positively correlated to serum AFP (χ2=6.295, P=0.012), ALT (χ2=18.803, P=0.000), AST (χ2=33.421, P=0.000), tumor nodule number (χ2=6.777, P=0.009), cirrhosis (χ2=43.458, P=0.000), and tumor size (χ2=6.042, P=0.014) in the Chi-square test. CONCLUSIONS Diagnosis of HCC could be improved using the both predictors of serum AKR1B10 and AFP. AKR1B10 was thus considered to be a new serological biomarker for HCC.
Collapse
Affiliation(s)
- Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China; Emergency Traumatic Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou 341000, Jiangxi, People's Republic of China
| | - Juan Xiao
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China; China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China
| | - Diteng Luo
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China
| | - Mingjun Dong
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China
| | - Tian Sun
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China; China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
50
|
Shi J, Chen L, Chen Y, Lu Y, Chen X, Yang Z. Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) overexpression in tumors predicts worse overall survival in hepatocellular carcinoma. J Cancer 2019; 10:4892-4901. [PMID: 31598161 PMCID: PMC6775506 DOI: 10.7150/jca.32768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
Overexpression of AKR1B10 correlated with tumorigenesis of many human malignancies; however, the prognostic value of AKR1B10 expression in patients with hepatocellular carcinoma (HCC) still remains controversial. In this analysis, AKR1B10 expression in HCC tumors were evaluated in GEO, TCGA and Oncomine databases, and a survival analysis of AKR1B10 based on TCGA profile was performed. We found that AKR1B10 was significantly overexpressed in tumors compared with nontumors in 7 GEO series (GSE14520, GSE25097, GSE33006, GSE45436, GSE55092, GSE60502, GSE77314) and TCGA profile (all P < 0.05). Meta-analysis in Oncomine database revealed that AKR1B10 was significantly upregulated in cirrhosis, liver cell dysplasia and HCC compared with normal tissues (all P < 0.05). Kaplan-Meier analysis demonstrated that high AKR1B10 in tumors were significantly associated with worse overall survival (OS) in HCC patients (P < 0.05). Subgroup analysis showed that AKR1B10 overexpression were associated with poor 1-year, 3-year and 5-year OS (all P < 0.05). In addition, prognostic values of AKR1B10 upregulation for OS were more significant in HCC with hepatitis-virus-free (P = 0.00055), White race (P = 0.0029) and alcohol-free (P = 0.013), and both in male and female (P = 0.014 and P = 0.034, respectively). In conclusion: AKR1B10 was upregulated in tumors and correlated with worse OS in HCC patients.
Collapse
Affiliation(s)
- Jia Shi
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lixiang Chen
- Department of Laboratory Animal, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi Chen
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|