1
|
Boyraz B, Robinson B, Lindeman N, Hoda SA, Solomon JP. Subareolar sclerosing ductal hyperplasia shows PI3K pathway alterations. Histopathology 2025; 86:824-827. [PMID: 39888091 DOI: 10.1111/his.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
AIMS Subareolar sclerosing ductal hyperplasia (SSDH) is a distinct type of complex sclerosing hyperplastic lesion first described by Rosen in 1987. There have been rare studies investigating SSDH; however, no genetic study has been performed to date. METHODS AND RESULTS Seven SSDH cases, diagnosed between 2013 and 2024, were identified. All were subjected to next-generation sequencing (523 genes). Patient ages ranged from 40 to 74 years (median = 46). All lesions were located in the subareolar region. Each showed the characteristic appearance of the lesion, as described in the seminal study, with usual ductal hyperplasia in a densely sclerotic background imparting an 'infiltrative' appearance. None of the cases showed atypical hyperplasia or carcinoma. DNA sequencing identified PI3K pathway alterations in all seven cases: PIK3CA (n = three, one with two alterations), PIK3R1 (n = three) and PIK3C3 (n = one, with concurrent FAT1 mutation). CONCLUSION SSDH shows PI3K pathway alterations similar to those seen in other non-atypical and atypical proliferative lesions as well as benign and malignant neoplasms of the breast. This finding may explain the rare association of SSDH with atypical hyperplasia, in-situ and invasive carcinoma.
Collapse
Affiliation(s)
- Baris Boyraz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Neal Lindeman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Syed A Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - James P Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
2
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
García-Sancha N, Corchado-Cobos R, Pérez-Losada J. Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies. Int J Mol Sci 2025; 26:2993. [PMID: 40243654 PMCID: PMC11988588 DOI: 10.3390/ijms26072993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Breast cancer is the most common malignancy among women globally, with incidence rates continuing to rise. A comprehensive understanding of its risk factors and the underlying biological mechanisms that drive tumor initiation is essential for developing effective prevention strategies. This review examines key non-modifiable risk factors, such as genetic predisposition, demographic characteristics, family history, mammographic density, and reproductive milestones, as well as modifiable risk factors like exogenous hormone exposure, obesity, diet, and physical inactivity. Importantly, reproductive history plays a dual role, providing long-term protection while temporarily increasing breast cancer risk shortly after pregnancy. Current chemoprevention strategies primarily depend on selective estrogen receptor modulators (SERMs), including tamoxifen and raloxifene, which have demonstrated efficacy in reducing the incidence of estrogen receptor-positive breast cancer but remain underutilized due to adverse effects. Emerging approaches such as aromatase inhibitors, RANKL inhibitors, progesterone antagonists, PI3K inhibitors, and immunoprevention strategies show promise for expanding preventive options. Understanding the interactions between risk factors, hormonal influences, and tumorigenesis is critical for optimizing breast cancer prevention and advancing safer, more targeted chemopreventive interventions.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Nair I, Behbod F. Models for Studying Ductal Carcinoma In Situ Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:95-108. [PMID: 39821022 DOI: 10.1007/978-3-031-70875-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
An estimated 55,720 new cases of ductal carcinoma in situ (DCIS) will be diagnosed in 2023 in the USA alone because of the increased use of screening mammography. The treatment goal in DCIS is early detection and treatment with the hope of preventing progression into invasive disease. Previous studies show progression into invasive cancer as well as reduction in mortality from treatment is not as high as previously thought. So, are we overdiagnosing and over-treating DCIS? An understanding of the natural progression of DCIS is paramount to address this. The purpose of this chapter is to describe various models that have been developed to simulate the processes involved in DCIS to invasive ductal carcinoma (IDC) transition. While each model possesses a unique set of strengths and weaknesses, they have collectively contributed to the current understanding of the molecular and cellular mechanisms underlying this transition. Even though much has been learned, continued advancement of the current models to best match the composition of DCIS epithelial and stromal microenvironment including the extracellular matrix (ECM), stromal cell types, and immune microenvironment will be essential. These advances will undoubtedly pave the way toward a full understanding of mechanisms associated with progression and in predicting when a DCIS lesion remains indolent and when triggers tip in the balance toward progression to malignancy.
Collapse
Affiliation(s)
- Isabella Nair
- Department of General Surgery, University of Missouri - Kansas City, Kansas City, MO, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Galappaththi SPL, Smith KR, Alsatari ES, Hunter R, Dyess DL, Turbat-Herrera EA, Dasgupta S. The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences. Int J Mol Sci 2024; 25:13165. [PMID: 39684874 DOI: 10.3390/ijms252313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is a significant health challenge worldwide and is the most frequently diagnosed cancer among women globally. This review provides a comprehensive overview of breast cancer biology, genomics, and microbial dysbiosis, focusing on its various subtypes and racial differences. Breast cancer is primarily classified into carcinomas and sarcomas, with carcinomas constituting most cases. Epidemiology and breast cancer risk factors are important for public health intervention. Staging and grading, based on the TNM and Nottingham grading systems, respectively, are crucial to determining the clinical outcome and treatment decisions. Histopathological subtypes include in situ and invasive carcinomas, such as invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). The review explores molecular subtypes, including Luminal A, Luminal B, Basal-like (Triple Negative), and HER2-enriched, and delves into breast cancer's histological and molecular progression patterns. Recent research findings related to nuclear and mitochondrial genetic alterations, epigenetic reprogramming, and the role of microbiome dysbiosis in breast cancer and racial differences are also reported. The review also provides an update on breast cancer's current diagnostics and treatment modalities.
Collapse
Affiliation(s)
- Sapthala P Loku Galappaththi
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Kelly R Smith
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Enas S Alsatari
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Rachel Hunter
- Department of Surgery, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Donna L Dyess
- Department of Surgery, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Elba A Turbat-Herrera
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Santanu Dasgupta
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
6
|
Bachert SE, Cornea V, Bocklage T. Adenosquamous proliferation in radial sclerosing lesions: Histologic spectrum and key features in systematic review of 247 lesions. Breast 2023; 71:99-105. [PMID: 37566996 PMCID: PMC10432801 DOI: 10.1016/j.breast.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Adenosquamous proliferation (ASP) is known to occur in the central nidus of radial sclerosing lesions (RSL) of the breast. However, their significance is debated and remains largely unknown. In addition, there is a histologic overlap between ASP and low-grade adenosquamous carcinomas (LGASC). We conducted a large retrospective review of 247 RSLs to evaluate the prevalence of ASP and quantitatively analyze associated histologic features of RSLs including size, stromal cellularity, and presence of chronic inflammation. The central nidus of RSLs were classified as hyalinized in 121 cases (49%), cellular in 37 cases (15%), and equally mixed hyalinized and cellular in 89 (36%). ASP occurred in 92 of 247 RSLs (37.2%). Cases with ASP were significantly associated with a cellular stroma; 78.4% of RSLS with cellular stroma had ASP versus just 11.6% of hyalinized RSLs. In our large cohort, inflammation is commonly found in RSLs with ASP (p= <0.001). In conclusion, we confirm that ASP is statistically more likely to be found in RSLs with a cellular stroma. In addition, ASP is commonly associated with chronic inflammation. The finding challenges the notion that prominent lymphocytes are a diagnostic clue to LGASC on limited biopsy material.
Collapse
Affiliation(s)
- S Emily Bachert
- University of Kentucky, Department of Pathology and Laboratory Medicine, USA.
| | - Virgilius Cornea
- University of Kentucky, Department of Pathology and Laboratory Medicine, USA
| | - Thérèse Bocklage
- University of Kentucky, Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
7
|
Nishimura T, Kakiuchi N, Yoshida K, Sakurai T, Kataoka TR, Kondoh E, Chigusa Y, Kawai M, Sawada M, Inoue T, Takeuchi Y, Maeda H, Baba S, Shiozawa Y, Saiki R, Nakagawa MM, Nannya Y, Ochi Y, Hirano T, Nakagawa T, Inagaki-Kawata Y, Aoki K, Hirata M, Nanki K, Matano M, Saito M, Suzuki E, Takada M, Kawashima M, Kawaguchi K, Chiba K, Shiraishi Y, Takita J, Miyano S, Mandai M, Sato T, Takeuchi K, Haga H, Toi M, Ogawa S. Evolutionary histories of breast cancer and related clones. Nature 2023; 620:607-614. [PMID: 37495687 PMCID: PMC10432280 DOI: 10.1038/s41586-023-06333-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Pathology, Iwate Medical University, Iwate, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhide Takeuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirona Maeda
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomoe Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yukiko Inagaki-Kawata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Limited, Osaka, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Breast Surgery Department, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Department of Integrated Analytics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
de Boer M, Verschuur-Maes AHJ, Moelans C, van Diest PJ. Papillomatous breast lesions with atypical columnar cell features. J Clin Pathol 2023; 76:228-233. [PMID: 36693714 DOI: 10.1136/jcp-2022-208389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
AIMS Columnar cell lesions (CCLs) are recognised breast cancer precursor lesions. Intraductal papillomas are usually lined by benign (polyclonal) cells. Although papillomas with monoclonal lesions (atypical ductal hyperplasia (ADH)/ductal carcinoma in situ (DCIS)) have been described, CCLs have not been described in papillomas. METHODS We present two papillary breast lesions lined by a single layer of luminal cells resembling atypical CCL/flat epithelial atypia (FEA). We compared these two lesions with 13 benign intraductal papillomas, and 2 papillomas with ADH/DCIS grade 1 features as controls were immunohistochemically stained for the oestrogen receptor alpha (oestrogen receptor) and progesterone receptors (PR), cytokeratin 5 (CK5) and cyclin D1. RESULTS Oestrogen receptor/PR expression was variable, with areas with ≥85% hormone receptor positivity in both morphologically normal papillomas and papillomas with ADH. In ADH areas, CK5 expression was seen in ≤5% of cells while cyclin D1 expression was high (>60%). The two papillary lesions with FEA were 100% oestrogen receptor and 90% cyclin D1 positive, and low on PR/CK5. There was only one morphologically normal papilloma with similar areas of low CK5 (5%) and high cyclin D1 expression; in all other morphologically benign papillomas CK5 expression varied between 10% and 50% and cyclin D1 expression was ≤50%. The papillary lesion with FEA that could be tested showed 16q losses, the hallmark genetic change in low nuclear grade breast neoplasias, in contrast to nine morphologically benign papillomas that could be tested. CONCLUSION We present two papillomatous breast lesions with atypical CCL morphology and 16q loss, for which we propose the term papillary FEA.
Collapse
Affiliation(s)
- Mirthe de Boer
- Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cathy Moelans
- Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Wilson GM, Dinh P, Pathmanathan N, Graham JD. Ductal Carcinoma in Situ: Molecular Changes Accompanying Disease Progression. J Mammary Gland Biol Neoplasia 2022; 27:101-131. [PMID: 35567670 PMCID: PMC9135892 DOI: 10.1007/s10911-022-09517-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 10/26/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC), whereby if left untreated, approximately 12% of patients develop invasive disease. The current standard of care is surgical removal of the lesion, to prevent potential progression, and radiotherapy to reduce risk of recurrence. There is substantial overtreatment of DCIS patients, considering not all DCIS lesions progress to invasive disease. Hence, there is a critical imperative to better predict which DCIS lesions are destined for poor outcome and which are not, allowing for tailored treatment. Active surveillance is currently being trialed as an alternative management practice, but this approach relies on accurately identifying cases that are at low risk of progression to invasive disease. Two DCIS-specific genomic profiling assays that attempt to distinguish low and high-risk patients have emerged, but imperfections in risk stratification coupled with a high price tag warrant the continued search for more robust and accessible prognostic biomarkers. This search has largely turned researchers toward the tumor microenvironment. Recent evidence suggests that a spectrum of cell types within the DCIS microenvironment are genetically and phenotypically altered compared to normal tissue and play critical roles in disease progression. Uncovering the molecular mechanisms contributing to DCIS progression has provided optimism for the search for well-validated prognostic biomarkers that can accurately predict the risk for a patient developing IDC. The discovery of such markers would modernize DCIS management and allow tailored treatment plans. This review will summarize the current literature regarding DCIS diagnosis, treatment, and pathology.
Collapse
Affiliation(s)
- Gemma M Wilson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuong Dinh
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Nirmala Pathmanathan
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
10
|
Gomes CC. Recurrent driver mutations in benign tumors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108412. [PMID: 35690415 DOI: 10.1016/j.mrrev.2022.108412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The understanding of the molecular pathogenesis of benign tumors may bring essential information to clarify the process of tumorigenesis, and ultimately improve the understanding of events such as malignant transformation. The definition of benign neoplasia is not always straightforward and herein the issues surrounding this concept are discussed. Benign neoplasms share all cancer hallmarks with malignancies, except for metastatic potential. Recently, next-generation sequencing has provided unprecedented opportunities to unravel the genetic basis of benign neoplasms and, so far, we have learned that benign neoplasms are indeed characterized by the presence of genetic mutations, including genes rearrangements. Driver mutations in advanced cancer are those that confer growth advantage, and which have been positively selected during cancer evolution. Herein, some discussion will be brought about this concept in the context of cancer prevention, involving precursor lesions and benign neoplasms. When considering early detection and cancer prevention, a driver mutation should not only be advantageous (i.e., confer survival advantage), but predisposing (i.e., promoting a cancer phenotype). By including the benign counterparts of malignant neoplasms in tumor biology studies, it is possible to evaluate the risk posed by a given mutation and to differentiate advantageous from predisposing mutations, further refining the concept of driver mutations. Therefore, the study of benign neoplasms should be encouraged because it provides valuable information on tumorigenesis central for understanding the progression from initiation to malignant transformation.
Collapse
Affiliation(s)
- Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
11
|
Young A, Bu W, Jiang W, Ku A, Kapali J, Dhamne S, Qin L, Hilsenbeck SG, Du YCN, Li Y. Targeting the Pro-Survival Protein BCL-2 to Prevent Breast Cancer. Cancer Prev Res (Phila) 2021; 15:3-10. [PMID: 34667127 DOI: 10.1158/1940-6207.capr-21-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention.
Collapse
Affiliation(s)
- Adelaide Young
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Amy Ku
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jyoti Kapali
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Sagar Dhamne
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Lan Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
D'Alfonso TM, Pareja F, Da Cruz Paula A, Vahdatinia M, Gazzo A, Ferrando L, da Silva EM, Cheng E, Sclafani L, Chandarlapaty S, Zhang H, Hoda SA, Wen HY, Brogi E, Weigelt B, Reis-Filho JS. Whole-exome sequencing analysis of juvenile papillomatosis and coexisting breast carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:113-120. [PMID: 33263939 PMCID: PMC7869928 DOI: 10.1002/cjp2.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Juvenile papillomatosis (JP) of the breast is a rare benign mass‐forming lesion occurring in young women, which is histologically characterized by a constellation of proliferative changes and large cysts, giving it the gross appearance of Swiss cheese. A subset of patients with JP report a family history of breast carcinoma and/or coexisting or subsequent breast carcinoma. We performed whole‐exome sequencing of the hyperplastic epithelial component of three JPs, including one with coexisting ductal carcinoma in situ (DCIS) and invasive ductal carcinoma of no special type (IDC‐NST). JPs harbored clonal somatic PIK3CA hotspot mutations in two cases. In the JP with coexisting DCIS and IDC‐NST, these lesions were clonally related to the associated JP, sharing a clonal PIK3CA E542K somatic hotspot mutation. JP showed a paucity of copy number alterations, whereas the associated DCIS and IDC‐NST showed concurrent 1q gains/16q losses, hallmarks of estrogen receptor (ER)‐positive breast cancers. We observed JP to harbor a dominant aging‐related mutational signature, whereas coexisting DCIS and IDC‐NST showed greater exposure to an APOBEC signature. Taken together, our findings suggest that, at least in a subset of cases, JP might constitute the substrate from which DCIS and invasive breast carcinomas develop.
Collapse
Affiliation(s)
- Timothy M D'Alfonso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahsa Vahdatinia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Sclafani
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Syed A Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Systematic analysis of breast atypical hyperplasia-associated hub genes and pathways based on text mining. Eur J Cancer Prev 2020; 28:507-514. [PMID: 30394935 PMCID: PMC6784767 DOI: 10.1097/cej.0000000000000494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to describe breast atypical hyperplasia (BAH)-related gene expression and to systematically analyze the functions, pathways, and networks of BAH-related hub genes. On the basis of natural language processing, gene data for BAH were extracted from the PubMed database using text mining. The enriched Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were obtained using DAVID (http://david.abcc.ncifcrf.gov/). A protein–protein interaction network was constructed using the STRING database. Hub genes were identified as genes that interact with at least 10 other genes within the BAH-related gene network. In total, 138 BAH-associated genes were identified as significant (P < 0.05), and 133 pathways were identified as significant (P < 0.05, false discovery rate < 0.05). A BAH-related protein network that included 81 interactions was constructed. Twenty genes were determined to interact with at least 10 others (P < 0.05, false discovery rate < 0.05) and were identified as the BAH-related hub genes of this protein–protein interaction network. These 20 genes are TP53, PIK3CA, JUN, MYC, EGFR, CCND1, AKT1, ERBB2, CTNN1B, ESR1, IGF-1, VEGFA, HRAS, CDKN1B, CDKN1A, PCNA, HGF, HIF1A, RB1, and STAT5A. This study may help to disclose the molecular mechanisms of BAH development and provide implications for BAH-targeted therapy or even breast cancer prevention. Nevertheless, connections between certain genes and BAH require further exploration.
Collapse
|
14
|
Tall cell carcinoma of the breast with reversed polarity (TCCRP) with mutations in the IDH2 and PIK3CA genes: a case report. Mol Biol Rep 2020; 47:4917-4921. [PMID: 32474846 DOI: 10.1007/s11033-020-05553-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Tall cell carcinoma with reversed polarity (TCCRP) is a rare breast carcinoma with low malignant potential, initially named "breast tumor resembling the tall cell variant of papillary thyroid carcinoma", which has recently been recognized as a separate entity in the 5th edition of the WHO (World Health Organization) classification of breast tumors. Since the first report of this entity in 2003, more than 40 cases have been reported in the literature. Here, we report another case of this rare tumor in a 60-year-old woman. We performed immunohistochemical analyses and next-generation-sequencing (NGS) using the Oncomine™ Comprehensive DNA Panel (Thermo Fisher Scientific). The tumor showed the typical morphological features of TCCRP and a "triple-negative" phenotype. Moreover, we identified pathogenic mutations in the IDH2 (p.R172G) and PIK3CA (p.H1047R) genes. We report a case of TCCRP of the breast showing the characteristic morphologic, immunohistochemical and molecular features of this entity. There is still a limited number of cases with comprehensive molecular analyses reported in the literature. Therefore, we herewith contribute to a better understanding of the morphological and molecular characteristics as well as the clinical behavior of this rare entity.
Collapse
|
15
|
Guillet C, Rechsteiner M, Bellini E, Choschzick M, Moskovszky L, Dedes K, Papassotiropoulos B, Varga Z. Juvenile papillomatosis of the breast (Swiss cheese disease) has frequent associations with PIK3CA and/or AKT1 mutations. Hum Pathol 2020; 98:64-73. [PMID: 32088208 DOI: 10.1016/j.humpath.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/02/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022]
Abstract
Juvenile papillomatosis (JP), the so-called Swiss cheese disease, is a rare benign breast disease of young adults. An association (up to 28%) with breast cancer within the family of affected patients has been reported. A multinodular cystic breast mass lesion and calcifications characterizes JP in imaging studies. The histological picture is diverse and comprises multiple intraductal papillomas, usual ductal hyperplasia, ductectasias, perifocal sclerosing adenosis, and calcification. Patients with complete excision of JP lesions have an excellent follow-up; breast cancer develops only on a very low subset of patients. Molecular background of JP has not been investigated until now. In this study, we addressed mutational analysis of JP cases and correlated these results with follow-up and family history in context with a comprehensive review of the JP literature. We identified 13 cases fulfilling the criteria of JP. All patients were women with a median age of 38 years (26-50 years). Follow-up information was available for 11 of 13 patients. Sufficient paraffin-embedded tissue and good DNA quality for next-generation sequencing (NGS) was available for 10 patients. Paraffin blocks were microdissected in the area of intraductal proliferative disease; the tissue cores underwent NGS analysis using the Oncomine Comprehensive Panel. In 5 of 10 patients, we found PIK3CA mutations; in 2 of 10 patients, we found AKT1 mutations in known hot spot regions. Further mutations in MET, FGFR3, PTEN, ATM, NF1, and GNAS genes were detected in individual patients. Some of these mutations were present at high allele frequencies suggesting germ line mutations. Two of 3 patients with positive family history had PIK3CA mutation; one patient with positive family history had an AKT1 mutation. One patient who subsequently developed invasive ductal carcinoma in the contralateral breast possibly had a germ line ATM mutation. Our results confirm hot spot mutations in PIK3CA and AKT1 genes in JP associated with positive family history for breast cancer, although these mutations are not specific for JP. The genetic link between JP, positive family history, and subsequent risk of breast cancer needs to be analyzed in further studies.
Collapse
Affiliation(s)
- Carole Guillet
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland; Clinic of Dermatology, University Hospital Zurich, 8091, Switzerland
| | - Markus Rechsteiner
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland
| | - Elisa Bellini
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland
| | - Matthias Choschzick
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland
| | - Linda Moskovszky
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland
| | - Konstantin Dedes
- Clinic of Gynecology, University Hospital Zurich, 8091, Switzerland
| | | | - Zsuzsanna Varga
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Switzerland.
| |
Collapse
|
16
|
Lin CY, Vennam S, Purington N, Lin E, Varma S, Han S, Desa M, Seto T, Wang NJ, Stehr H, Troxell ML, Kurian AW, West RB. Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res Treat 2019; 178:307-316. [PMID: 31420779 PMCID: PMC6800639 DOI: 10.1007/s10549-019-05401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE The detection rate of breast ductal carcinoma in situ (DCIS) has increased significantly, raising the concern that DCIS is overdiagnosed and overtreated. Therefore, there is an unmet clinical need to better predict the risk of progression among DCIS patients. Our hypothesis is that by combining molecular signatures with clinicopathologic features, we can elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS. METHODS Targeted exon sequencing with a custom panel of 223 genes/regions was performed for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive breast cancer (IBC) (DCIS + IBC group), and 65 from cases with no IBC development over a median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 8q24, and 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic regression models were fit to the outcome of DCIS progression to IBC as functions of demographic and clinical features. RESULTS We observed recurrent variants of known IBC-related mutations, and the most commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio [OR] 10.2, p < 0.05). Copy number variations in 1q32 and 8q24 were associated with progression (OR 9.3 and 46, respectively; both p < 0.05). CONCLUSIONS PIK3CA kinase domain mutations and the absence of copy number gains in DCIS are protective against progression to IBC. These results may guide efforts to distinguish low-risk from high-risk DCIS.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- DNA Copy Number Variations
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study/methods
- Genomics/methods
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Staging
- Tumor Burden
Collapse
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Eric Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Manisha Desa
- Department of Medicine and of Biomedical Data Science, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Tina Seto
- Research Information Technology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas J Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison W Kurian
- Departments of Medicine and of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Agahozo MC, Sieuwerts AM, Doebar SC, Verhoef EI, Beaufort CM, Ruigrok-Ritstier K, de Weerd V, Sleddens HFBM, Dinjens WNM, Martens JWM, van Deurzen CHM. PIK3CA mutations in ductal carcinoma in situ and adjacent invasive breast cancer. Endocr Relat Cancer 2019; 26:471-482. [PMID: 30844755 DOI: 10.1530/erc-19-0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
PIK3CA is one of the most frequently mutated genes in invasive breast cancer (IBC). These mutations are generally associated with hyper-activation of the phosphatidylinositol 3-kinase signaling pathway, which involves increased phosphorylation of AKT (p-AKT). This pathway is negatively regulated by the tumor suppressor PTEN. Data are limited regarding the variant allele frequency (VAF) of PIK3CA, PTEN and p-AKT expression during various stages of breast carcinogenesis. Therefore, the aim of this study was to gain insight into PIK3CA VAF and associated PTEN and p-AKT expression during the progression from ductal carcinoma in situ (DCIS) to IBC. We isolated DNA from DCIS tissue, synchronous IBC and metastasis when present. These samples were pre-screened for PIK3CA hotspot mutations using the SNaPshot assay and, if positive, validated and quantified by digital PCR. PTEN and p-AKT expression was evaluated by immunohistochemistry using the Histo-score (H-score). Differences in PIK3CA VAF, PTEN and p-AKT H-scores between DCIS and IBC were analyzed. PIK3CA mutations were detected in 17 out of 73 DCIS samples, 16 out of 73 IBC samples and 3 out of 23 lymph node metastasis. We detected a significantly higher VAF of PIK3CA in the DCIS component compared to the adjacent IBC component (P = 0.007). The expression of PTEN was significantly higher in DCIS compared to the IBC component in cases with a wild-type (WT) PIK3CA status (P = 0.007), while it remained similar in both components when PIK3CA was mutated. There was no difference in p-AKT expression between DCIS and the IBC component. In conclusion, our data suggest that PIK3CA mutations could be essential specifically in early stages of breast carcinogenesis. In addition, these mutations do not co-occur with PTEN expression during DCIS progression to IBC in the majority of patients. These results may contribute to further unraveling the process of breast carcinogenesis, and this could aid in the development of patient-specific treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Class I Phosphatidylinositol 3-Kinases/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammatory Breast Neoplasms/genetics
- Inflammatory Breast Neoplasms/pathology
- Middle Aged
- Mutation
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Prognosis
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S Charlane Doebar
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hein F B M Sleddens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Liau JY, Tsai JH, Huang WC, Lan J, Hong JB, Yuan CT. BRAF and KRAS mutations in tubular apocrine adenoma and papillary eccrine adenoma of the skin. Hum Pathol 2018; 73:59-65. [DOI: 10.1016/j.humpath.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
|
19
|
Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front Oncol 2017; 7:248. [PMID: 29109942 PMCID: PMC5660056 DOI: 10.3389/fonc.2017.00248] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
Collapse
Affiliation(s)
- Kylie L. Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen B. Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol 2017; 30:952-963. [PMID: 28338653 DOI: 10.1038/modpathol.2017.21] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/11/2017] [Accepted: 02/19/2017] [Indexed: 12/31/2022]
Abstract
The spectrum of genomic alterations in ductal carcinoma in situ (DCIS) is relatively unexplored, but is likely to provide useful insights into its biology, its progression to invasive carcinoma and the risk of recurrence. DCIS (n=20) with a range of phenotypes was assessed by massively parallel sequencing for mutations and copy number alterations and variants validated by Sanger sequencing. PIK3CA mutations were identified in 11/20 (55%), TP53 mutations in 6/20 (30%), and GATA3 mutations in 9/20 (45%). Screening an additional 91 cases for GATA3 mutations identified a final frequency of 27% (30/111), with a high proportion of missense variants (8/30). TP53 mutations were exclusive to high grade DCIS and more frequent in PR-negative tumors compared with PR-positive tumors (P=0.037). TP53 mutant tumors also had a significantly higher fraction of the genome altered by copy number than wild-type tumors (P=0.005), including a significant positive association with amplification or gain of ERBB2 (P<0.05). The association between TP53 mutation and ERBB2 amplification was confirmed in a wider DCIS cohort using p53 immunohistochemistry as a surrogate marker for TP53 mutations (P=0.03). RUNX1 mutations and MAP2K4 copy number loss were novel findings in DCIS. Frequent copy number alterations included gains on 1q, 8q, 17q, and 20q and losses on 8p, 11q, 16q, and 17p. Patterns of genomic alterations observed in DCIS were similar to those previously reported for invasive breast cancers, with all DCIS having at least one bona fide breast cancer driver event. However, an increase in GATA3 mutations and fewer copy number changes were noted in DCIS compared with invasive carcinomas. The role of such alterations as prognostic and predictive biomarkers in DCIS is an avenue for further investigation.
Collapse
|
21
|
Bhargava R, Florea AV, Pelmus M, Jones MW, Bonaventura M, Wald A, Nikiforova M. Breast Tumor Resembling Tall Cell Variant of Papillary Thyroid Carcinoma: A Solid Papillary Neoplasm With Characteristic Immunohistochemical Profile and Few Recurrent Mutations. Am J Clin Pathol 2017; 147:399-410. [PMID: 28375433 DOI: 10.1093/ajcp/aqx016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Breast tumor resembling tall cell variant of papillary thyroid carcinoma (BTRPTC) is a rare breast lesion that is unrelated to thyroid carcinoma. Morphologically, it shows a solid papillary lesion with bland cytology, eosinophilic/amphophilic secretions, nuclear grooves, reversal of nuclear polarity (recently described), and nuclear inclusions. Clinical course is often uneventful with few exceptions reported in the literature. Herein, we report three additional cases. METHODS Immunohistochemical staining and next-generation sequencing was performed on all three cases. RESULTS The lesional cells on all cases were positive for cytokeratin 5 and S100, with weak expression/lack of estrogen receptor. No staining was observed for myoepithelial markers (p63 and myosin heavy chain) around the lesion. IDH2 mutations were identified in two cases at nucleotide 172 (cases 1 and 3). ATM gene mutation was identified in cases 2 and 3 and PIK3CA mutation in case 3. All patients are currently without disease. CONCLUSIONS BTRPTC is a slow-growing neoplastic lesion that needs to be distinguished from other papillary lesions for optimizing therapy.
Collapse
Affiliation(s)
- Rohit Bhargava
- From the Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | - Miroslawa W Jones
- From the Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Marguerite Bonaventura
- From the Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Abigail Wald
- University of Pittsburgh Medical Center-Presbyterian, Pittsburgh, PA
| | - Marina Nikiforova
- University of Pittsburgh Medical Center-Presbyterian, Pittsburgh, PA
| |
Collapse
|
22
|
Wilsher MJ, Owens TW, Allcock RJ. Next generation sequencing of the nidus of early (adenosquamous proliferation rich) radial sclerosing lesions of the breast reveals evidence for a neoplastic precursor lesion. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:115-122. [PMID: 28451460 PMCID: PMC5402177 DOI: 10.1002/cjp2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
We sought to determine if adenosquamous proliferation of early cellular radial sclerosing lesions of the breast harbours hot spot mutations and to help clarify its relationship to low‐grade adenosquamous carcinoma as a potential form of early neoplasia. Four low‐grade adenosquamous carcinomas, early radial sclerosing lesions from 13 individuals, and 4 benign proliferative breast lesions were microdissected and assessed with a 50‐gene Hot‐spot cancer panel. Early radial sclerosing lesions were selectively microdissected concentrating on their adenosquamous proliferation (nidus). Hot spot mutations in PIK3CA were detected in ten (77% of) radial sclerosing lesions, in one low‐grade adenosquamous carcinoma, and in usual ductal hyperplasia and apocrine adenosis. Over three quarters of individuals with cellular (adenosquamous proliferation rich) early radial sclerosing lesions tested harboured somatic mutations in PIK3CA suggesting that adenosquamous proliferation is a clonal lesion. Its relationship to low‐grade adenosquamous carcinoma remains unclear in view of the small sample size and unmatched radial sclerosing lesions and low‐grade adenosquamous carcinomas.
Collapse
Affiliation(s)
- Mark J Wilsher
- Douglass Hanly Moir PathologyMacquarie ParkNew South Wales 2113Australia
| | - Thomas W Owens
- Discipline of Physiology, School of Medical Sciences & Bosch InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Richard Jn Allcock
- School of Pathology and Laboratory MedicineUniversity of Western AustraliaNedlandsWestern Australia6009, Australia.,Pathwest Laboratory Medicine WAQEII Medical CentreNedlandsWestern Australia6009, Australia
| |
Collapse
|
23
|
Shah V, Nowinski S, Levi D, Shinomiya I, Kebaier Ep Chaabouni N, Gillett C, Grigoriadis A, Graham TA, Roylance R, Simpson MA, Pinder SE, Sawyer EJ. PIK3CA mutations are common in lobular carcinoma in situ, but are not a biomarker of progression. Breast Cancer Res 2017; 19:7. [PMID: 28095868 PMCID: PMC5240238 DOI: 10.1186/s13058-016-0789-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022] Open
Abstract
Background Lobular carcinoma in situ (LCIS) is a non-invasive breast lesion that is typically found incidentally on biopsy and is often associated with invasive lobular carcinoma (ILC). LCIS is considered by some to be a risk factor for future breast cancer rather than a true precursor lesion. The aim of this study was to identify genetic changes that could be used as biomarkers of progression of LCIS to invasive disease using cases of pure LCIS and comparing their genetic profiles to LCIS which presented contemporaneously with associated ILC, on the hypothesis that the latter represents LCIS that has already progressed. Methods Somatic copy number aberrations (SCNAs) were assessed by SNP array in three subgroups: pure LCIS, LCIS associated with ILC and the paired ILC. In addition exome sequencing was performed on seven fresh frozen samples of LCIS associated with ILC, to identify recurrent somatic mutations. Results The copy number profiles of pure LCIS and LCIS associated with ILC were almost identical. However, four SCNAs were more frequent in ILC than LCIS associated with ILC, including gain/amplification of CCND1. CCND1 protein over-expression assessed by immunohistochemical analysis in a second set of samples from 32 patients with pure LCIS and long-term follow up, was associated with invasive recurrence (P = 0.02, Fisher’s exact test). Exome sequencing revealed that PIK3CA mutations were as frequent as CDH1 mutations in LCIS, but were not a useful biomarker of LCIS progression as they were as frequent in pure LCIS as in LCIS associated with ILC. We also observed heterogeneity of PIK3CA mutations and evidence of sub-clonal populations in LCIS irrespective of whether they were associated with ILC. Conclusions Our data shows that pure LCIS and LCIS co-existing with ILC have very similar SCNA profiles, supporting the hypothesis that LCIS is a true precursor lesion. We have provided evidence that over-expression of CCND1 may identify a subgroup of patients with pure LCIS who are more likely to develop invasive disease, in contrast to PIK3CA mutations, which occur too early in lobular tumorigenesis to be informative. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0789-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vandna Shah
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Salpie Nowinski
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Dina Levi
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Irek Shinomiya
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | | | - Cheryl Gillett
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Anita Grigoriadis
- Breast Cancer Now Unit, Research Oncology & Cancer Epidemiology, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Trevor A Graham
- Evolution and Cancer laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rebecca Roylance
- Department of Oncology, UCLH Foundation Trust, London, NW1 2PG, UK
| | - Michael A Simpson
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, UK
| | - Sarah E Pinder
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Elinor J Sawyer
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
24
|
Goto K, Maeda D, Kudo-Asabe Y, Hibiya T, Hayashi A, Fukayama M, Ohashi K, Goto A. PIK3CA and AKT1 mutations in hidradenoma papilliferum. J Clin Pathol 2016; 70:424-427. [PMID: 27742746 DOI: 10.1136/jclinpath-2016-204003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 11/03/2022]
Abstract
AIMS Hidradenoma papilliferum (HP) is a benign vulvar neoplasm that arises from anogenital mammary-like glands, and its morphology is similar to mammary intraductal papilloma. The aim of this study was to investigate oncogenic mutations involved in the tumourigenesis of HP. We focused specifically on PIK3CA and AKT1 mutations, which are both reported to be detected in 33% of mammary intraductal papillomas. METHODS In total, seven HP cases were analysed. Clinicopathological analyses and immunohistochemistry for oestrogen receptor, p63, smooth muscle actin (SMA), p53 and β-catenin were performed. Furthermore, PIK3CA, AKT1, BRAF and KRAS hot spot mutations were examined by Sanger sequencing. RESULTS Morphologically, all HPs had a papillary and tubular architecture with a biphasic pattern of epithelial and myoepithelial cells. Immunohistochemistry revealed that oestrogen receptor expression was restricted to epithelial cells, whereas p63 and SMA were exclusively expressed in myoepithelial cells. The patterns of p53 and β-catenin immunostaining suggested wild-type genotypes. Direct sequencing revealed the presence of somatic PIK3CA mutations (Ex9. c.1633G>A, p.E545K and Ex20. c.3140A>G, p.H1047R) in two of the HPs and an AKT1 (c.49G>A, p.E17K) mutation in one. BRAF and KRAS mutations were not found in any of the HP cases. CONCLUSIONS PIK3CA and AKT1 are frequently mutated in HP tumours (29% and 14%, respectively). PIK3CA/AKT1 pathway alterations in HP further support the hypothesis that HP is the vulvar (anogenital mammary-like gland) analogue of breast intraductal papilloma.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Diagnostic Pathology, Kainan Hospital, Aichi, Japan.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takashi Hibiya
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
25
|
Liau JY, Lee YH, Tsai JH, Yuan CT, Chu CY, Hong JB, Sheen YS. FrequentPIK3CAactivating mutations in nipple adenomas. Histopathology 2016; 70:195-202. [DOI: 10.1111/his.13043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jau-Yu Liau
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Pathology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Jia-Huei Tsai
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Pathology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Chia-Yu Chu
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Jin-Bon Hong
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
26
|
Jacob T, Gray JW, Troxell M, Vu TQ. Multiplexed imaging reveals heterogeneity of PI3K/MAPK network signaling in breast lesions of known PIK3CA genotype. Breast Cancer Res Treat 2016; 159:575-83. [PMID: 27581127 DOI: 10.1007/s10549-016-3962-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Activating genetic changes in the phosphatidylinositol-3-kinase (PI3K) signaling pathway are found in over half of invasive breast cancers (IBCs). Previously, we discovered numerous hotspot PIK3CA mutations in proliferative breast lesions. Here, we investigate the spatial nature of PI3K pathway signaling and its relationship with PI3K genotype in breast lesions. METHODS We identified PI3K phosphosignaling network signatures in columnar cell change (CCL), usual ductal hyperplasia (UDH), ductal carcinoma in situ (DCIS), and IBC in 26 lesions of known PIK3CA genotype from 10 human breast specimens using a hyperspectral-based multiplexed tissue imaging platform (MTIP) to simultaneously quantitate PI3K/MAPK pathway targets (pAKT473, pAKT308, pPRAS40, pS6, and pERK) in FFPE tissue, with single-cell resolution. RESULTS We found that breast lesional epithelia contained spatially heterogeneous patterns of PI3K pathway phosphoprotein signatures, even within microscopic areas of CCL, UDH, DCIS, and IBC. Most lesions contained 3-12 unique phosphoprotein signatures within the same microscopic field. The dominant phosphoprotein signature for each lesion was not well correlated with lesion genotype or lesion histology, yet samples from the same patient tended to group together. Further, 5 UDH/CCL lesions across different patients had a common phosphosignature at the epithelial-stromal interface (possible myoepithelial cells) that was distinct from both the adjacent lesional epithelium and distinct from adjacent stroma. CONCLUSION We present the first spatial mapping of PI3K phosphoprotein networks in proliferative breast lesions and demonstrate complex PI3K signaling heterogeneity that defies simple correlation between PIK3CA genotype and phosphosignal pattern.
Collapse
Affiliation(s)
- Thomas Jacob
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97201, USA.,OHSU Center for Spatial Systems Bioscience, Portland, OR, 97201, USA.,The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Megan Troxell
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Pathology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Tania Q Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97201, USA. .,OHSU Center for Spatial Systems Bioscience, Portland, OR, 97201, USA. .,The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Christgen M, Steinemann D, Kühnle E, Länger F, Gluz O, Harbeck N, Kreipe H. Lobular breast cancer: Clinical, molecular and morphological characteristics. Pathol Res Pract 2016; 212:583-97. [DOI: 10.1016/j.prp.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023]
|
28
|
Liau JY, Lan J, Hong JB, Tsai JH, Kuo KT, Chu CY, Sheen YS, Huang WC. Frequent PIK3CA-activating mutations in hidradenoma papilliferums. Hum Pathol 2016; 55:57-62. [PMID: 27184479 DOI: 10.1016/j.humpath.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
Hidradenoma papilliferum (HP) is a benign epithelial tumor most commonly seen in the vulva. It is proposed to be derived from the anogenital mammary-like glands and is histologically very similar to the mammary intraductal papilloma (IP). Approximately 60% of mammary IPs have activating mutations in either PIK3CA or AKT1, with each gene accounting for 30% of cases. In this study, we screened the mutation statuses of PIK3CA, AKT1, RAS, and BRAF in 30 HPs. The results showed that activating mutations in either PIK3CA or AKT1 were identified in 20 tumors (67%); 19 tumors had PIK3CA mutations (63%; 13 in exon 20 and 6 in exon 9), and 1 had an AKT1 E17K mutation (3%). BRAF V600E mutation was found in an HP that also had a PIK3CA H1047R mutation. No RAS mutation was found. The mutation status was not correlated with the degree of epithelial cell hyperplasia. We conclude that although there might be site-related variations in the mutation frequencies of PIK3CA and AKT1 genes, HP is histologically and also genetically very similar to the mammary IP, suggesting that HP can be viewed as the extramammary counterpart of mammary IP.
Collapse
Affiliation(s)
- Jau-Yu Liau
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jin-Bon Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Jia-Huei Tsai
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Kuan-Tin Kuo
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Wen-Chang Huang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
29
|
Jahn SW, Kashofer K, Thüringer A, Abete L, Winter E, Eidenhammer S, Viertler C, Tavassoli F, Moinfar F. Mutation Profiling of Usual Ductal Hyperplasia of the Breast Reveals Activating Mutations Predominantly at Different Levels of the PI3K/AKT/mTOR Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:15-23. [PMID: 26718977 DOI: 10.1016/j.ajpath.2015.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/29/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
Abstract
Usual ductal hyperplasia (UDH) of the breast is generally regarded as a nonneoplastic proliferation, albeit loss of heterozygosity has long been reported in a part of these lesions. To gain deeper insights into the molecular drivers of these lesions, an extended mutation profiling was performed. The coding regions of 409 cancer-related genes were investigated by next-generation sequencing in 16 cases of UDH, nine unassociated with neoplasia (classic) and seven arising within papillomas. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) activation was investigated by phosphorylated AKT, mTOR, and S6 immunohistochemistry. Of 16 lesions, 10 (63%) were mutated; 56% of classic lesions were unassociated with neoplasia, and 71% of lesions arose in papillomas. Fourteen missense mutations were detected: PIK3CA [6 (43%) of 14], AKT1 [2 (14%) of 14], as well as GNAS, MTOR, PIK3R1, LPHN3, LRP1B, and IGF2R [each 1 (7%) of 14]. Phosphorylated mTOR was seen in 83% and phosphorylated S6 in 86% of evaluable lesions (phospho-AKT staining was technically uninterpretable). In conclusion, UDH displays mutations of the phosphatidylinositol 3-kinase/AKT/mTOR axis at different levels, with PIK3R1, MTOR, and GNAS mutations not previously described. Specifically, oncogenic G-protein activation represents a yet unrecognized route to proliferation in UDH. On the basis of evidence of activating mutations, loss of heterozygosity, and a mass forming proliferation, we propose that UDH is most appropriately viewed as an early neoplastic intraductal proliferation.
Collapse
Affiliation(s)
- Stephan W Jahn
- Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Thüringer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Luca Abete
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Elke Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Fattaneh Tavassoli
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Farid Moinfar
- Institute of Pathology, Medical University of Graz, Graz, Austria; Department of Pathology, Hospital of the Sisters of Charity, Linz, Austria
| |
Collapse
|
30
|
Myers MB, Banda M, McKim KL, Wang Y, Powell MJ, Parsons BL. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas. Neoplasia 2016; 18:253-63. [PMID: 27108388 PMCID: PMC4840288 DOI: 10.1016/j.neo.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs), examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E). As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10(-3) to 4.6 × 10(-2)) in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.
Collapse
Affiliation(s)
- Meagan B Myers
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Malathi Banda
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Karen L McKim
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Yiying Wang
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Michael J Powell
- DiaCarta, Inc., JOINN Innovation Park, 2600 Hilltop Drive, Richmond, CA 94806
| | - Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079.
| |
Collapse
|
31
|
Chapa J, An G, Kulkarni SA. Examining the Relationship between Pre-Malignant Breast Lesions, Carcinogenesis and Tumor Evolution in the Mammary Epithelium Using an Agent-Based Model. PLoS One 2016; 11:e0152298. [PMID: 27023391 PMCID: PMC4811527 DOI: 10.1371/journal.pone.0152298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/12/2016] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. METHODS The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. RESULTS Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. CONCLUSIONS The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.
Collapse
Affiliation(s)
- Joaquin Chapa
- Pritzker School of Medicine, University of Chicago, 924 East 57th Street #104, Chicago, Illinois, 60637, United States of America
| | - Gary An
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave, Chicago, Illinois, 60637, United States of America
| | - Swati A. Kulkarni
- Department of Surgery, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, 303 E Superior Street, Lurie, 4–105, Chicago, Illinois, 60611, United States of America
| |
Collapse
|
32
|
Eberle CA, Piscuoglio S, Rakha EA, Ng CKY, Geyer FC, Edelweiss M, Sakr RA, Weigelt B, Reis-Filho JS, Ellis IO. Infiltrating epitheliosis of the breast: characterization of histological features, immunophenotype and genomic profile. Histopathology 2016; 68:1030-9. [PMID: 26497122 DOI: 10.1111/his.12897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
Abstract
AIMS Infiltrating epitheliosis is a rare complex sclerosing lesion (CSL) of the breast, characterized by infiltrating ducts immersed in a scleroelastotic stroma and filled with cells having architectural and cytological patterns reminiscent of those of usual ductal hyperplasia. In this study we sought to define the molecular characteristics of infiltrating epitheliosis. METHODS AND RESULTS Eight infiltrating epitheliosis, adjacent breast lesions (one usual ductal hyperplasia, one papilloma, one micropapillary ductal carcinoma in situ and one low-grade adenosquamous carcinoma), and corresponding normal breast tissue from each case were microdissected and subjected to massively parallel sequencing analysis targeting all coding regions of 254 genes mutated recurrently in breast cancer and/or related to DNA repair. Mutations in components of the PI3K pathway were found in all infiltrating epitheliosis samples, seven of which harboured PIK3CA hotspot mutations, while the remaining case displayed a PIK3R1 somatic mutation. CONCLUSIONS Somatic mutations affecting PI3K pathway genes were found to be highly prevalent in infiltrating epitheliosis, suggesting that these lesions may be neoplastic rather than hyperplastic. The landscape of somatic genetic alterations found in infiltrating epitheliosis is similar to that of radial scars/CSLs, suggesting that infiltrating epitheliosis may represent one end of this spectrum of lesions.
Collapse
Affiliation(s)
- Carey A Eberle
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emad A Rakha
- Department of Histopathology, Nottingham University Hospitals, Nottingham, UK
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rita A Sakr
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian O Ellis
- Department of Histopathology, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
33
|
Afghahi A, Forgó E, Mitani AA, Desai M, Varma S, Seto T, Rigdon J, Jensen KC, Troxell ML, Gomez SL, Das AK, Beck AH, Kurian AW, West RB. Chromosomal copy number alterations for associations of ductal carcinoma in situ with invasive breast cancer. Breast Cancer Res 2015; 17:108. [PMID: 26265211 PMCID: PMC4534146 DOI: 10.1186/s13058-015-0623-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Screening mammography has contributed to a significant increase in the diagnosis of ductal carcinoma in situ (DCIS), raising concerns about overdiagnosis and overtreatment. Building on prior observations from lineage evolution analysis, we examined whether measuring genomic features of DCIS would predict association with invasive breast carcinoma (IBC). The long-term goal is to enhance standard clinicopathologic measures of low- versus high-risk DCIS and to enable risk-appropriate treatment. METHODS We studied three common chromosomal copy number alterations (CNA) in IBC and designed fluorescence in situ hybridization-based assay to measure copy number at these loci in DCIS samples. Clinicopathologic data were extracted from the electronic medical records of Stanford Cancer Institute and linked to demographic data from the population-based California Cancer Registry; results were integrated with data from tissue microarrays of specimens containing DCIS that did not develop IBC versus DCIS with concurrent IBC. Multivariable logistic regression analysis was performed to describe associations of CNAs with these two groups of DCIS. RESULTS We examined 271 patients with DCIS (120 that did not develop IBC and 151 with concurrent IBC) for the presence of 1q, 8q24 and 11q13 copy number gains. Compared to DCIS-only patients, patients with concurrent IBC had higher frequencies of CNAs in their DCIS samples. On multivariable analysis with conventional clinicopathologic features, the copy number gains were significantly associated with concurrent IBC. The state of two of the three copy number gains in DCIS was associated with a risk of IBC that was 9.07 times that of no copy number gains, and the presence of gains at all three genomic loci in DCIS was associated with a more than 17-fold risk (P = 0.0013). CONCLUSIONS CNAs have the potential to improve the identification of high-risk DCIS, defined by presence of concurrent IBC. Expanding and validating this approach in both additional cross-sectional and longitudinal cohorts may enable improved risk stratification and risk-appropriate treatment in DCIS.
Collapse
Affiliation(s)
- Anosheh Afghahi
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Erna Forgó
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| | - Aya A Mitani
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Manisha Desai
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| | - Tina Seto
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Joseph Rigdon
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Kristin C Jensen
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
- Pathology and Laboratory Medicine, Palo Alto Veterans Affairs Health Care System, 795 Willow Road, Palo Alto, CA, 94025, USA.
| | - Megan L Troxell
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Scarlett Lin Gomez
- Department of Health Research and Policy, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA.
- Cancer Prevention Institute of California (CPIC), 2201 Walnut Avenue, Fremont, CA, 94538, USA.
| | - Amar K Das
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
- Department of Psychiatry and The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, 1 Rope Ferry Road, Lebanon, NH, 03755, USA.
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
- Department of Health Research and Policy, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA.
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Logan GJ, Dabbs DJ, Lucas PC, Jankowitz RC, Brown DD, Clark BZ, Oesterreich S, McAuliffe PF. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res 2015; 17:76. [PMID: 26041550 PMCID: PMC4453073 DOI: 10.1186/s13058-015-0580-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lobular carcinoma in situ (LCIS) is considered to be a risk factor for the development of invasive breast carcinoma, but it may also be a non-obligate precursor to invasive lobular carcinoma (ILC). Many LCIS lesions do not progress to ILC, and the molecular changes that are necessary for progression from LCIS to ILC are poorly understood. Disruption in the E-cadherin complex is the hallmark of lobular lesions, but other signaling molecules, such as PIK3CA and c-src, are consistently altered in LCIS. This review focuses on the molecular drivers of lobular carcinoma, a more complete understanding of which may give perspective on which LCIS lesions progress, and which will not, thus having immense clinical implications.
Collapse
Affiliation(s)
- Greg J Logan
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - David J Dabbs
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Peter C Lucas
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Rachel C Jankowitz
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Medical Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Daniel D Brown
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Beth Z Clark
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Steffi Oesterreich
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Priscilla F McAuliffe
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
35
|
Weng Z, Spies N, Zhu SX, Newburger DE, Kashef-Haghighi D, Batzoglou S, Sidow A, West RB. Cell-lineage heterogeneity and driver mutation recurrence in pre-invasive breast neoplasia. Genome Med 2015; 7:28. [PMID: 25918554 PMCID: PMC4410742 DOI: 10.1186/s13073-015-0146-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Background All cells in an individual are related to one another by a bifurcating lineage tree, in which each node is an ancestral cell that divided into two, each branch connects two nodes, and the root is the zygote. When a somatic mutation occurs in an ancestral cell, all its descendants carry the mutation, which can then serve as a lineage marker for the phylogenetic reconstruction of tumor progression. Using this concept, we investigate cell lineage relationships and genetic heterogeneity of pre-invasive neoplasias compared to invasive carcinomas. Methods We deeply sequenced over a thousand phylogenetically informative somatic variants in 66 morphologically independent samples from six patients that represent a spectrum of normal, early neoplasia, carcinoma in situ, and invasive carcinoma. For each patient, we obtained a highly resolved lineage tree that establishes the phylogenetic relationships among the pre-invasive lesions and with the invasive carcinoma. Results The trees reveal lineage heterogeneity of pre-invasive lesions, both within the same lesion, and between histologically similar ones. On the basis of the lineage trees, we identified a large number of independent recurrences of PIK3CA H1047 mutations in separate lesions in four of the six patients, often separate from the diagnostic carcinoma. Conclusions Our analyses demonstrate that multi-sample phylogenetic inference provides insights on the origin of driver mutations, lineage heterogeneity of neoplastic proliferations, and the relationship of genomically aberrant neoplasias with the primary tumors. PIK3CA driver mutations may be comparatively benign inducers of cellular proliferation. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0146-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Noah Spies
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shirley X Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Daniel E Newburger
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305 USA
| | | | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, CA 94305 USA
| | - Arend Sidow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|