1
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
2
|
van Ree JH, Jeganathan KB, Fierro Velasco RO, Zhang C, Can I, Hamada M, Li H, Baker DJ, van Deursen JM. Hyperphosphorylated PTEN exerts oncogenic properties. Nat Commun 2023; 14:2983. [PMID: 37225693 PMCID: PMC10209192 DOI: 10.1038/s41467-023-38740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Brady L, Carlsson J, Baird AM, Casey O, Vlajnic T, Murchan P, Cormican D, Costigan D, Gray S, Sheils O, O'Neill A, Watson RW, Andren O, Finn S. Correlation of integrated ERG/PTEN assessment with biochemical recurrence in prostate cancer. Cancer Treat Res Commun 2021; 29:100451. [PMID: 34507017 DOI: 10.1016/j.ctarc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Prostate cancer is a heterogeneous disease, with a complex molecular landscape that evolves throughout disease progression. Common alterations in genes such as ERG and PTEN have been attributed to worse prognosis. This study aimed to further examine the clinical relevance of PTEN and ERG expression in a cohort of patients with prostate cancer post radical prostatectomy. METHODS Tissue microarrays were constructed from 132 patients with prostate cancer from the Irish Prostate Cancer Research Consortium and University Hospital of Orebro, Sweden. Patients were divided into three groups - Group 1: biochemical recurrence, Group 2: no biochemical recurrence and Group 3: immediate progression after surgery. PTEN and ERG immunohistochemical analysis was performed and the association between expression levels and clinical parameters were compared. RESULTS Pathological stage pT3 tumours were more common at borderline significantly higher levels amongst patients who biochemically recurred when compared to patients who did not recur after radical prostatectomy (p = 0.05). ERG and PTEN expression levels were compared separately and concurrently across all three patient groups. Lack of ERG expression was strongly associated with immediate progression after surgery (p = 0.029). Loss of/low PTEN trended towards an association with immediate progression, however this was not statistically significant (p = 0.066). CONCLUSION In this study, negative ERG expression was strongly associated with immediate biochemical progression after radical prostatectomy. Moreover, a trend towards a relationship between aberrant PTEN expression and progression was observed. Additional studies with long-term follow up data may provide further clinical insight into the genomic heterogeneity in this population.
Collapse
Affiliation(s)
- Lauren Brady
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Casey
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Tatjana Vlajnic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - David Cormican
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Danielle Costigan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Steven Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Department of Histopathology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Ganguli A, Mostafa A, Saavedra C, Kim Y, Le P, Faramarzi V, Feathers RW, Berger J, Ramos-Cruz KP, Adeniba O, Diaz GJP, Drnevich J, Wright CL, Hernandez AG, Lin W, Smith AM, Kosari F, Vasmatzis G, Anastasiadis PZ, Bashir R. Three-dimensional microscale hanging drop arrays with geometric control for drug screening and live tissue imaging. SCIENCE ADVANCES 2021; 7:7/17/eabc1323. [PMID: 33893093 PMCID: PMC8064630 DOI: 10.1126/sciadv.abc1323] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/05/2021] [Indexed: 05/09/2023]
Abstract
Existing three-dimensional (3D) culture techniques are limited by trade-offs between throughput, capacity for high-resolution imaging in living state, and geometric control. Here, we introduce a modular microscale hanging drop culture where simple design elements allow high replicates for drug screening, direct on-chip real-time or high-resolution confocal microscopy, and geometric control in 3D. Thousands of spheroids can be formed on our microchip in a single step and without any selective pressure from specific matrices. Microchip cultures from human LN229 glioblastoma and patient-derived mouse xenograft cells retained genomic alterations of originating tumors based on mate pair sequencing. We measured response to drugs over time with real-time microscopy on-chip. Last, by engineering droplets to form predetermined geometric shapes, we were able to manipulate the geometry of cultured cell masses. These outcomes can enable broad applications in advancing personalized medicine for cancer and drug discovery, tissue engineering, and stem cell research.
Collapse
Affiliation(s)
- A Ganguli
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - A Mostafa
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - C Saavedra
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Y Kim
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - P Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - V Faramarzi
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - R W Feathers
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - J Berger
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - K P Ramos-Cruz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - O Adeniba
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - G J Pagan Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - C L Wright
- DNA Services Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - A G Hernandez
- DNA Services Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - W Lin
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - A M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - F Kosari
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - G Vasmatzis
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - P Z Anastasiadis
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA.
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - R Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mayo-Illinois Alliance for Technology-Based Healthcare, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61820, USA
| |
Collapse
|
5
|
Murphy SJ, Harris FR, Smadbeck JB, Serla V, Karagouga G, Johnson SH, Kosari F, Pierson KE, Bungum AO, Edell ES, Mansfield AS, Wigle DA, Kipp BR, Vasmatzis G, Aubry MC. Optimizing clinical cytology touch preparations for next generation sequencing. Genomics 2020; 112:5313-5323. [PMID: 33144219 DOI: 10.1016/j.ygeno.2020.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Intraoperative diagnosis is routinely performed on cytology touch preparations (TPs) from core needle biopsies (CNBs). Current interest promotes their utility as an important source of patient tissue for clinical genomic testing. Herein we present whole genome structural variant analysis (SVA) from mate-pair sequencing (MPseq) and whole exome sequencing (WES) mutation calling in DNA directly whole genome amplified (WGA) from TPs. Chromosomal copy changes and somatic DNA junction detection from MPseq of TPs were highly consistent with associated CNBs and bulk resected tissues in all cases. While increased frequency coverage noise from limitations of amplification of limited sample input was significant, this was effectively compensated by natural tumor enrichment during the TP process, which also enhanced variant detection and loss of heterozygosity evaluations from WES. This novel TP methodology enables expanded utility of frequently limited CNB for both clinical and research genomic testing.
Collapse
Affiliation(s)
- Stephen J Murphy
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States.
| | - Faye R Harris
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States
| | - James B Smadbeck
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States
| | - Vishnu Serla
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States; Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Giannoula Karagouga
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States
| | - Sarah H Johnson
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States
| | - Farhad Kosari
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States
| | - Karlyn E Pierson
- Departments of Thoracic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron O Bungum
- Departments of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eric S Edell
- Departments of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Dennis A Wigle
- Departments of Thoracic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Benjamin R Kipp
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - George Vasmatzis
- Center for Individualized Medicine, Bio-marker Discovery Program, Mayo Clinic, Rochester, MN, United States.
| | - Marie Christine Aubry
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
6
|
Huang H, Li J, Shen J, Lin L, Wu X, Xiang S, Li Y, Xu Y, Zhao Q, Zhao Y, Kaboli PJ, Li M, Li X, Wang W, Wen Q, Xiao Z. Increased ABCC4 Expression Induced by ERRα Leads to Docetaxel Resistance via Efflux of Docetaxel in Prostate Cancer. Front Oncol 2020; 10:1474. [PMID: 33014785 PMCID: PMC7493678 DOI: 10.3389/fonc.2020.01474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Docetaxel is a major treatment for advanced prostate cancer (PCa); however, its resistance compromises clinical effectiveness. Estrogen receptor-related receptor alpha (ERRα) belongs to an orphan nuclear receptor superfamily and was recently found to be closely involved in cancer. In the present study, we found that ERRα was involved in docetaxel resistance in PCa. Overexpression of ERRα conferred docetaxel resistance in PCa cell lines, and cells with ERRα downregulation were more sensitive to docetaxel. Among the drug resistance-related genes, ABCC4 demonstrated synchronous expression after ERRα manipulation in cells. Moreover, both ERRα and ABCC4 were overexpressed in the docetaxel-resistant cell, which could be reversed by ERRα knockdown. The knockdown of ERRα also reversed the reduced drug accumulation in the docetaxel-resistant cell. We also demonstrated for the first time that ABCC4 was a direct target of ERRα as determined by the CHIP and luciferase assays. Bioinformatics analysis revealed high expression of ERRα and ABCC4 in PCa patients, and a number of potential ERRα/ABCC4 targets were predicted. In conclusion, our study demonstrated a critical role for ERRα in docetaxel resistance by directly targeting ABCC4 and stressed the importance of ERRα as a potential therapeutic target for drug-resistant PCa.
Collapse
Affiliation(s)
- Houbao Huang
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yawei Li
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Yujie Xu
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Weiping Wang
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
7
|
Hu D, Jiang L, Luo S, Zhao X, Hu H, Zhao G, Tang W. Development of an autophagy-related gene expression signature for prognosis prediction in prostate cancer patients. J Transl Med 2020; 18:160. [PMID: 32264916 PMCID: PMC7137440 DOI: 10.1186/s12967-020-02323-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 01/12/2023] Open
Abstract
Background Prostate cancer (PCa) is one of the most prevalent cancers that occur in men worldwide. Autophagy-related genes (ARGs) may play an essential role in multiple biological processes of prostate cancer. However, ARGs expression signature has rarely been used to investigate the association between autophagy and prognosis in PCa. This study aimed to identify and assess prognostic ARGs signature to predict overall survival (OS) and disease-free survival (DFS) in PCa patients. Methods First, a total of 234 autophagy-related genes were obtained from The Human Autophagy Database. Then, differentially expressed ARGs were identified in prostate cancer patients based on The Cancer Genome Atlas (TCGA) database. The univariate and multivariate Cox regression analysis was performed to screen hub prognostic ARGs for overall survival and disease-free survival, and the prognostic model was constructed. Finally, the correlation between the prognostic model and clinicopathological parameters was further analyzed, including age, T status, N status, and Gleason score. Results The OS-related prognostic model was constructed based on the five ARGs (FAM215A, FDD, MYC, RHEB, and ATG16L1) and significantly stratified prostate cancer patients into high- and low-risk groups in terms of OS (HR = 6.391, 95% CI = 1.581– 25.840, P < 0.001). The area under the receiver operating characteristic curve (AUC) of the prediction model was 0.84. The OS-related prediction model values were higher in T3-4 than in T1-2 (P = 0.008), and higher in Gleason score > 7 than ≤ 7 (P = 0.015). In addition, the DFS-related prognostic model was constructed based on the 22 ARGs (ULK2, NLRC4, MAPK1, ATG4D, MAPK3, ATG2A, ATG9B, FOXO1, PTEN, HDAC6, PRKN, HSPB8, P4HB, MAP2K7, MTOR, RHEB, TSC1, BIRC5, RGS19, RAB24, PTK6, and NRG2), with AUC of 0.85 (HR = 7.407, 95% CI = 4.850–11.320, P < 0.001), which were firmly related to T status (P < 0.001), N status (P = 0.001), and Gleason score (P < 0.001). Conclusions Our ARGs based prediction models are a reliable prognostic and predictive tool for overall survival and disease-free survival in prostate cancer patients.
Collapse
Affiliation(s)
- Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Xin Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Hao Hu
- Department of Urology, The People's Hospital of Nan Chuan, Chongqing, 408400, People's Republic of China
| | - Guozhi Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
8
|
Roquid KAR, Alcantara KMM, Garcia RL. Identification and validation of mRNA 3'untranslated regions of DNMT3B and TET3 as novel competing endogenous RNAs of the tumor suppressor PTEN. Int J Oncol 2020; 56:544-558. [PMID: 31894272 PMCID: PMC6959461 DOI: 10.3892/ijo.2019.4947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN inactivation is a frequent event in oncogenesis. Multiple regulatory mechanisms such as promoter hypermethylation, antisense regulation, histone modifications, targeting by microRNAs (miRNAs/miRs) and regulation by transcription factors have all been shown to affect the tumor suppressor functions of PTEN. More recently, the functional involvement of competing endogenous RNAs (ceRNAs) in miRNA‑dependent and coding‑independent regulation of genes shed light on the highly nuanced control of PTEN expression. The present study has identified and validated DNA methyltransferase 3β (DNMT3B) and TET methylcytosine dioxygenase 3 (TET3) as novel ceRNAs of PTEN, with which they share multiple miRNAs, in HCT116 colorectal cancer cells. miR‑4465 was identified and characterized as a miRNA that directly targets and regulates all 3 transcripts via their 3'untranslated regions (3'UTRs) through a combination of luciferase reporter assays, abrogation of miRNA response elements (MREs) via site‑directed mutagenesis, target protection of MREs with locked nucleic acids, RT‑qPCR assays and western blot analysis. Competitive miRNA sequestration was demonstrated upon reciprocal 3'UTR overexpression and siRNA‑mediated knockdown of their respective transcripts. Overexpression of DNMT3B or TET3 3'UTR promoted apoptosis and decreased migratory capacity, potentially because of shared miRNA sequestration and subsequent activation of PTEN expression. Knockdown of TET3 and DNMT3B decoupled their protein‑coding from miRNA‑dependent, coding‑independent functions. Furthermore, the findings suggested that the phenotypic outcome of ceRNAs is dictated largely by the number of shared miRNAs, and predictably, by the existence of other ceRNA networks in which they participate. Taken together, the findings of the present study identified DNMT3B and TET3 as novel ceRNAs of PTEN that may impact its dose‑sensitive tumor suppressive function.
Collapse
Affiliation(s)
- Kenneth Anthony R. Roquid
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Hesse, Germany
| | - Krizelle Mae M. Alcantara
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| |
Collapse
|
9
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
10
|
Al Bashir S, Alzoubi A, Alfaqih MA, Kheirallah K, Smairat A, Haddad H, Al-Dwairy A, Fawwaz BAB, Alzoubi M, Trpkov K. PTEN Loss in a Prostate Cancer Cohort From Jordan. Appl Immunohistochem Mol Morphol 2020; 28:389-394. [PMID: 30614821 DOI: 10.1097/pai.0000000000000732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Deletion of phosphatase and tensin homolog (PTEN) in prostate cancer has been associated with early biochemical recurrence, increased metastatic potential, and androgen independence. We evaluated the status of PTEN loss in a cohort of prostate cancer patients from Jordan. We investigated 71 patients with prostate cancer and 52 control subjects with benign prostatic hyperplasia (BPH). PTEN status was assessed by immunohistochemistry. PTEN mutations on exons 1, 2, 5, and 8 were also evaluated by polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP). We found PTEN loss in 42 of 71 (59.2%) evaluated prostate cancer cases by immunohistochemistry. In contrast, 51 of 52 BPH (98.1%) cases had an intact PTEN. In a subset of 24 prostate cancer cases evaluated by PCR-SSCP, we found PTEN mutations in 15 (62.5%) cases, whereas 22 (91.7%) of BPH controls lacked PTEN mutations. Exon 5 was the most frequently mutated exon (37.5%). Although the loss of PTEN was not significantly correlated with the Gleason Score (GS) or the World Health Organization (WHO)-International Society of Urological Pathology (ISUP) Grade Group (GG), we found higher frequency of PTEN loss (64%) in patients with GS≥4+3/GG≥3, compared with patients with GS≤3+4/GG≤2 (47.6%). In this first study to address the question of PTEN loss in a predominantly Arab population, we documented the frequency of PTEN loss in prostate cancer patients from Jordan, which was found to be higher than in comparable cohorts from East Asia, and was at the higher end of the range of reported frequency of PTEN loss in respective cohorts from North America and Western Europe. Although there was more frequent PTEN loss in cancers with higher GS/GG, this was not statistically significant.
Collapse
Affiliation(s)
| | | | | | - Khalid Kheirallah
- Public Health and Community Medicine, Faculty of Medicine, Jordan University of Science and Technology
| | | | | | | | | | - Mazhar Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Vasmatzis G, Kosari F, Murphy SJ, Terra S, Kovtun IV, Harris FR, Zarei S, Smadbeck JB, Johnson SH, Gaitatzes AG, Therneau TM, Rangel LJ, Knudson RA, Greipp P, Sukov WR, Knutson DL, Kloft-Nelson SM, Karnes RJ, Cheville JC. Large Chromosomal Rearrangements Yield Biomarkers to Distinguish Low-Risk From Intermediate- and High-Risk Prostate Cancer. Mayo Clin Proc 2019; 94:27-36. [PMID: 30611450 DOI: 10.1016/j.mayocp.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To test the hypothesis that chromosomal rearrangements (CRs) can distinguish low risk of progression (LRP) from intermediate and high risk of progression (IHRP) to prostate cancer (PCa) and if these CRs have the potential to identify men with LRP on needle biopsy that harbor IHRP PCa in the prostate gland. PATIENTS AND METHODS Mate pair sequencing of amplified DNA from pure populations of Gleason patterns in 154 frozen specimens from 126 patients obtained between August 14, 2001, and July 15, 2011, was used to detect CRs including abnormal junctions and copy number variations. Potential CR biomarkers with higher incidence in IHRP than in LRP to cancer and having significance in PCa biology were identified. Independent validation was performed by fluorescence in situ hybridization in 152 specimens from 124 patients obtained between February 12, 2002, and July 12, 2008. RESULTS The number of abnormal junctions did not distinguish LRP from IHRP. Loci corresponding to genes implicated in PCa were more frequently altered in IHRP. Integrated analysis of copy number variations and microarray data yielded 6 potential markers that were more frequently detected in Gleason pattern 3 of a Gleason score 7 of PCa than in Gleason pattern 3 of a Gleason score 6 PCa. Five of those were cross-validated in an independent sample set with statistically significant areas under the receiver operating characteristic curves (AUCs) (P≤.01). Probes detecting deletions in PTEN and CHD1 had AUCs of 0.87 (95% CI, 0.77-0.97) and 0.73 (95% CI, 0.60-0.86), respectively, and probes detecting gains in ASAP1, MYC, and HDAC9 had AUCs of 0.71 (95% CI, 0.59-0.84), 0.82 (95% CI, 0.71-0.93), and 0.77 (95% CI, 0.66-0.89), respectively (for expansion of gene symbols, use search tool at www.genenames.org). CONCLUSION Copy number variations in regions encompassing important PCa genes were predictive of cancer significance and have the potential to identify men with LRP PCa by needle biopsy who have IHRP PCa in their prostate gland.
Collapse
Affiliation(s)
- George Vasmatzis
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN.
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Stephen J Murphy
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Simone Terra
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN; Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | - Irina V Kovtun
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Faye R Harris
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Shabnam Zarei
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | - James B Smadbeck
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Athanasios G Gaitatzes
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Terry M Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | - John C Cheville
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN; Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Liu Y, Le P, Lim SJ, Ma L, Sarkar S, Han Z, Murphy SJ, Kosari F, Vasmatzis G, Cheville JC, Smith AM. Enhanced mRNA FISH with compact quantum dots. Nat Commun 2018; 9:4461. [PMID: 30367061 PMCID: PMC6203793 DOI: 10.1038/s41467-018-06740-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts. Compared with dyes, compact QD probes provide exceptional photostability and more robust transcript quantification due to enhanced brightness. New spectrally engineered QDs also allow quantification of multiple distinct mRNA transcripts at the single-molecule level in individual cells. We expect that QD-FISH will particularly benefit high-resolution gene expression studies in three dimensional biological specimens for which quantification and multiplexing are major challenges. FISH-based techniques to image and count mRNA in single cells can be limited by the photophysical properties of organic dyes. Here the authors develop photostable quantum dot FISH probes for multiplexed imaging.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Phuong Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sung Jun Lim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Intelligent Devices and Systems Research Group, DGIST, Hyeonpung, Daegu, 42988, Republic of Korea
| | - Liang Ma
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suresh Sarkar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiyuan Han
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen J Murphy
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Vasmatzis
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - John C Cheville
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carle Illinois College of Medicine, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Köseoğlu H. Genetics in the Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.77259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Carneiro A, Barbosa ÁRG, Takemura LS, Kayano PP, Moran NKS, Chen CK, Wroclawski ML, Lemos GC, da Cunha IW, Obara MT, Tobias-Machado M, Sowalsky AG, Bianco B. The Role of Immunohistochemical Analysis as a Tool for the Diagnosis, Prognostic Evaluation and Treatment of Prostate Cancer: A Systematic Review of the Literature. Front Oncol 2018; 8:377. [PMID: 30280090 PMCID: PMC6153326 DOI: 10.3389/fonc.2018.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Prostate cancer (PCa) is a heterogeneous disease that lends itself toward numerous therapeutic options depending on its risk stratification. One of the greatest challenges in PCa urologic practice is to select patients who should be referred for biopsy and, for those patients who are diagnosed with cancer, to differentiate between patients with indolent disease from those with an unfavorable prognosis and, to determine ideal patient management and avoid unnecessary interventions. Accordingly, there is a growing body of literature reporting immunohistochemical studies with the objective of determining a prostate cancer prognosis. Among the most frequent biomarkers studied are Ki-67, p53, PTEN, MYC, and ERG. Based on these findings, we systematically reviewed articles that assessed the role of these main prognostic markers in prostate cancer. Methods: Consistent with PRISMA guidelines, we performed a systematic literature search throughout the Web of Science and PubMed Medline databases. We considered all types of studies evaluating the role of Ki-67, p53, PTEN, MYC, and ERG immunohistochemical analysis in prostate cancer until July 2017. Results: We identified 361 articles, 44 of which were summarized in this review. Diagnostically, no single immunohistochemical marker was able to define a tumor as benign or malignant. Prognostically, Ki-67, p53, and MYC were related to the tumor grade given by Gleason score and to the tumor stage (higher levels related to higher tumor grade). Furthermore, Ki-67 was also related to higher PSA levels, shorter disease-free intervals and shorter tumor-specific survival; the latter was also related to p53. The loss of PTEN protein expression showed a higher association with biochemical recurrence and with a worse prognosis, beyond that predicted by the Gleason score and tumor stage. ERG staining also showed a strong association with biochemical recurrence. Conclusion: There are several studies relating immunohistochemical markers with clinical-laboratorial outcomes in prostate cancer, the most frequent being Ki-67, p53, ERG, PTEN, and MYC. However, none of these markers have been validated by literary consensus to be routinely applied in medical practice.
Collapse
Affiliation(s)
- Arie Carneiro
- Department of Urology, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | | | | | - Carolina Ko Chen
- Department of Urology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcelo Langer Wroclawski
- Department of Urology, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Marcos Takeo Obara
- Department of Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bianca Bianco
- Human Reproduction and Genetics Center, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
15
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Vidotto T, Tiezzi DG, Squire JA. Distinct subtypes of genomic PTEN deletion size influence the landscape of aneuploidy and outcome in prostate cancer. Mol Cytogenet 2018; 11:1. [PMID: 29308088 PMCID: PMC5753467 DOI: 10.1186/s13039-017-0348-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Background Inactivation of the PTEN tumor suppressor gene by deletion occurs in 20-30% of prostate cancer tumors and loss strongly correlates with a worse outcome. PTEN loss of function not only leads to activation of the PI3K/AKT pathway, but is also thought to affect genome stability and increase levels of tumor aneuploidy. We performed an in silico integrative genomic and transcriptomic analysis of 491 TCGA prostate cancer tumors. These data were used to map the genomic sizes of PTEN gene deletions and to characterize levels of instability and patterns of aneuploidy acquisition. Results PTEN homozygous deletions had a significant increase in aneuploidy compared to PTEN tumors without an apparent deletion, and hemizygous deletions showed an intermediate aneuploidy profile. A supervised clustering of somatic copy number alterations (SCNA) demonstrated that the size of PTEN deletions was not random, but comprised five distinct subtypes: (1) "Small Interstitial" (70 bp-789Kb); (2) "Large Interstitial" (1-7 MB); (3) "Large Proximal" (3-65 MB); (4) "Large Terminal" (8-64 MB), and (5) "Extensive" (71-132 MB). Many of the deleted fragments in each subtype were flanked by low copy repetitive (LCR) sequences. SCNAs such as gain at 3q21.1-3q29 and deletions at 8p, RB1, TP53 and TMPRSS2-ERG were variably present in all subtypes. Other SCNAs appeared to be recurrent in some deletion subtypes, but absent from others. To determine how the aneuploidy influenced global levels of gene expression, we performed a comparative transcriptome analysis. One deletion subtype (Large Interstitial) was characterized by gene expression changes associated with angiogenesis and cell adhesion, structure, and metabolism. Logistic regression demonstrated that this deletion subtype was associated with a high Gleason score (HR = 2.386; 95% C.I. 1.245-4.572), extraprostatic extension (HR = 2.423, 95% C.I. 1.157-5.075), and metastasis (HR = 7.135; 95% C.I. 1.540-33.044). Univariate and multivariate Cox Regression showed that presence of this deletion subtype was also strongly predictive of disease recurrence. Conclusions Our findings indicate that genomic deletions of PTEN fall into five different size distributions, with breakpoints that often occur close LCR regions, and that each subtype is associated with a characteristic aneuploidy signature. The Large Interstitial deletion had a distinct gene expression signature that was related to cancer progression and was also predictive of a worse prognosis.
Collapse
Affiliation(s)
- Thiago Vidotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Guimarães Tiezzi
- Deparment of Gynecology and Obstetrics, Clinical Hospital of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, São Paulo 14040-900 Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
17
|
Ullman D, Dorn D, Rais-Bahrami S, Gordetsky J. Clinical Utility and Biologic Implications of Phosphatase and Tensin Homolog (PTEN) and ETS-related Gene (ERG) in Prostate Cancer. Urology 2017; 113:59-70. [PMID: 29225123 DOI: 10.1016/j.urology.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog (PTEN) and ETS-related gene (ERG) mutations are commonly found in prostate cancer. Although mouse studies have demonstrated that PTEN and ERG cooperatively interact during tumorigenesis, human studies examining these genes have been inconclusive. A systematic PubMed search including original articles assessing the pathogenesis of PTEN and ERG in prostate cancer was performed. Studies examining ERG's prognostic significance have conflicting results. Studies examining PTEN and ERG simultaneously found these genes are likely to occur together, but cooperative tumorigenesis functions have not been conclusively established. PTEN mutations are associated with a range of prognostic features. However, the practical clinical utility of this information remains to be determined.
Collapse
Affiliation(s)
- David Ullman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - David Dorn
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Gordetsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Department of Urology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
18
|
Murphy SJ, Kosari F, Karnes RJ, Nasir A, Johnson SH, Gaitatzes AG, Smadbeck JB, Rangel LJ, Vasmatzis G, Cheville JC. Retention of Interstitial Genes between TMPRSS2 and ERG Is Associated with Low-Risk Prostate Cancer. Cancer Res 2017; 77:6157-6167. [PMID: 29127096 DOI: 10.1158/0008-5472.can-17-0529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
Abstract
TMPRSS2-ERG gene fusions occur in over 50% of prostate cancers, but their impact on clinical outcomes is not well understood. Retention of interstitial genes between TMPRSS2 and ERG has been reported to influence tumor progression in an animal model. In this study, we analyzed the status of TMPRSS2-ERG fusion genes and interstitial genes in tumors from a large cohort of men treated surgically for prostate cancer, associating alterations with biochemical progression. Through whole-genome mate pair sequencing, we mapped and classified rearrangements driving ETS family gene fusions in 133 cases of very low-, low-, intermediate-, and high-risk prostate cancer from radical prostatectomy specimens. TMPRSS2-ERG gene fusions were observed in 44% of cases, and over 90% of these fusions occurred in ERG exons 3 or 4. ERG fusions retaining interstitial sequences occurred more frequently in very low-risk tumors. These tumors also frequently displayed ERG gene fusions involving alternative 5'-partners to TMPRSS2, specifically SLC45A3 and NDRG1 and other ETS family genes, which retained interstitial TMPRSS2/ERG sequences. Lastly, tumors displaying TMPRSS2-ERG fusions that retained interstitial genes were less likely to be associated with biochemical recurrence (P = 0.028). Our results point to more favorable clinical outcomes in patients with ETS family fusion-positive prostate cancers, which retain potential tumor-suppressor genes in the interstitial regions between TMPRSS2 and ERG Identifying these patients at biopsy might improve patient management, particularly with regard to active surveillance. Cancer Res; 77(22); 6157-67. ©2017 AACR.
Collapse
Affiliation(s)
- Stephen J Murphy
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Aqsa Nasir
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Athanasios G Gaitatzes
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,Genomics Systems Unit, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laureano J Rangel
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - John C Cheville
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Moschini M, Carroll PR, Eggener SE, Epstein JI, Graefen M, Montironi R, Parker C. Low-risk Prostate Cancer: Identification, Management, and Outcomes. Eur Urol 2017; 72:238-249. [PMID: 28318726 DOI: 10.1016/j.eururo.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023]
Abstract
CONTEXT The incidence of low-risk prostate cancer (PCa) has increased as a consequence of prostate-specific antigen testing. OBJECTIVE In this collaborative review article, we examine recent literature regarding low-risk PCa and the available prognostic and therapeutic options. EVIDENCE ACQUISITION We performed a literature review of the Medline, Embase, and Web of Science databases. The search strategy included the terms: prostate cancer, low risk, active surveillance, focal therapy, radical prostatectomy, watchful waiting, biomarker, magnetic resonance imaging, alone or in combination. EVIDENCE SYNTHESIS Prospective randomized trials have failed to show an impact of radical treatments on cancer-specific survival in low-risk PCa patients. Several series have reported the risk of adverse pathologic outcomes at radical prostatectomy. However, it is not clear if these patients are at higher risk of death from PCa. Long-term follow-up indicates the feasibility of active surveillance in low-risk PCa patients, although approximately 30% of men starting active surveillance undergo treatment within 5 yr. Considering focal therapies, robust data investigating its impact on long-term survival outcomes are still required and therefore should be considered experimental. Magnetic resonance imaging and tissue biomarkers may help to predict clinically significant PCa in men initially diagnosed with low-risk disease. CONCLUSIONS The incidence of low-risk PCa has increased in recent years. Only a small proportion of men with low-risk PCa progress to clinical symptoms, metastases, or death and prospective trials have not shown a benefit for immediate radical treatments. Tissue biomarkers, magnetic resonance imaging, and ongoing surveillance may help to identify those men with low-risk PCa who harbor more clinically significant disease. PATIENT SUMMARY Low-risk prostate cancer is very common. Active surveillance has excellent long-term results, while randomized trials have failed to show a beneficial impact of immediate radical treatments on survival. Biomarkers and magnetic resonance imaging may help to identify which men may benefit from early treatment.
Collapse
Affiliation(s)
- Marco Moschini
- Unit of Urology/Division of Oncology, IRCCS Ospedale San Raffaele, URI, Milan, Italy.
| | - Peter R Carroll
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Scott E Eggener
- University of Chicago Medical Center, Section of Urology, Chicago, IL, USA
| | | | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Christopher Parker
- Academic Urology Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
20
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
21
|
Epigenetic Signature: A New Player as Predictor of Clinically Significant Prostate Cancer (PCa) in Patients on Active Surveillance (AS). Int J Mol Sci 2017; 18:ijms18061146. [PMID: 28555004 PMCID: PMC5485970 DOI: 10.3390/ijms18061146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Widespread prostate-specific antigen (PSA) testing notably increased the number of prostate cancer (PCa) diagnoses. However, about 30% of these patients have low-risk tumors that are not lethal and remain asymptomatic during their lifetime. Overtreatment of such patients may reduce quality of life and increase healthcare costs. Active surveillance (AS) has become an accepted alternative to immediate treatment in selected men with low-risk PCa. Despite much progress in recent years toward identifying the best candidates for AS in recent years, the greatest risk remains the possibility of misclassification of the cancer or missing a high-risk cancer. This is particularly worrisome in men with a life expectancy of greater than 10–15 years. The Prostate Cancer Research International Active Surveillance (PRIAS) study showed that, in addition to age and PSA at diagnosis, both PSA density (PSA-D) and the number of positive cores at diagnosis (two compared with one) are the strongest predictors for reclassification biopsy or switching to deferred treatment. However, there is still no consensus upon guidelines for placing patients on AS. Each institution has its own protocol for AS that is based on PRIAS criteria. Many different variables have been proposed as tools to enrol patients in AS: PSA-D, the percentage of freePSA, and the extent of cancer on biopsy (number of positive cores or percentage of core involvement). More recently, the Prostate Health Index (PHI), the 4 Kallikrein (4K) score, and other patient factors, such as age, race, and family history, have been investigated as tools able to predict clinically significant PCa. Recently, some reports suggested that epigenetic mapping differs significantly between cancer patients and healthy subjects. These findings indicated as future prospect the use of epigenetic markers to identify PCa patients with low-grade disease, who are likely candidates for AS. This review explores literature data about the potential of epigenetic markers as predictors of clinically significant disease.
Collapse
|
22
|
Ronen S, Abbott DW, Kravtsov O, Abdelkader A, Xu Y, Banerjee A, Iczkowski KA. PTEN loss and p27 loss differ among morphologic patterns of prostate cancer, including cribriform. Hum Pathol 2017; 65:85-91. [PMID: 28504208 DOI: 10.1016/j.humpath.2017.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
The presence and extent of cribriform pattern of prostate cancer portend recurrence and cancer death. The relative expressions within this morphology of the prognostically adverse loss of PTEN, and the downstream inactivation of cell cycle inhibitor p27/Kip1 had been uncertain. In this study, we examined 52 cases of cribriform cancer by immunohistochemistry for PTEN, p27, and CD44 variant (v)7/8, and a subset of 17 cases by chromogenic in situ hybridization (ISH) using probes for PTEN or CDKN1B (gene for p27). The fractions of epithelial pixels positive by immunohistochemistry and ISH were digitally assessed for benign acini, high-grade prostatic intraepithelial neoplasia, and 8 morphologic patterns of cancer. Immunostaining results demonstrated that (1) PTEN loss was significant for fused small acini, cribriform-central cells, small cribriform acini, and Gleason grade 5 cells in comparison with other acini; (2) p27 loss was significant only for cribriform-peripheral cells and borderline significant for fused small acini in comparison with benign acini; and (3) CD44v7/8 showed expression loss in cribriform-peripheral cells; other comparisons were not significant. ISH showed that cribriform cancer had significant PTEN loss normalized to benign acini (P<.02), whereas Gleason 3 cancer or fused small acini did not. With CDKN1B, the degree of signal loss among various cancer morphologies was insignificant. In conclusion, molecular disparities emerged between the fused small acini and cribriform patterns of Gleason 4 cancer. PTEN or p27 loss as prognostic factors demands distinct assessment in the varieties of Gleason 4 cancer, and in the biphenotypic peripheral versus central populations in cribriform structures.
Collapse
Affiliation(s)
- Shira Ronen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel W Abbott
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oleksandr Kravtsov
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amrou Abdelkader
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yayun Xu
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anjishnu Banerjee
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
23
|
Moselhy J, Suman S, Alghamdi M, Chandarasekharan B, Das TP, Houda A, Ankem M, Damodaran C. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer. Neoplasia 2017; 19:451-459. [PMID: 28494348 PMCID: PMC5421823 DOI: 10.1016/j.neo.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022] Open
Abstract
We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease.
Collapse
Affiliation(s)
- Jim Moselhy
- Department of Urology, University of Louisville, KY, USA
| | - Suman Suman
- Department of Urology, University of Louisville, KY, USA
| | | | | | - Trinath P Das
- Department of Urology, University of Louisville, KY, USA
| | - Alatassi Houda
- Department of Pathology, University of Louisville, KY, USA
| | - Murali Ankem
- Department of Urology, University of Louisville, KY, USA
| | | |
Collapse
|
24
|
Fisher KW, Zhang S, Wang M, Montironi R, Wang L, Baldrige LA, Wang JY, MacLennan GT, Williamson SR, Lopez-Beltran A, Cheng L. TMPRSS2-ERGgene fusion is rare compared to PTENdeletions in stage T1a prostate cancer. Mol Carcinog 2017; 56:814-820. [DOI: 10.1002/mc.22535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Kurt W. Fisher
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Shaobo Zhang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Mingsheng Wang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Rodolfo Montironi
- Department of Urology; Institute of Pathological Anatomy and Histopathology; Polytechnic University of the Marche Region (Ancona); United Hospitals; Ancona Italy
| | - Lisha Wang
- Michigan Center for Translational Pathology; University of Michigan; Ann Arbor Michigan
| | - Lee A. Baldrige
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Jonas Y. Wang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Gregory T. MacLennan
- Departments of Pathology and Laboratory Medicine; Case Western Reserve University; Cleveland Ohio
| | - Sean R. Williamson
- Department of Pathology and Laboratory Medicine; Henry Ford Health System; Detroit Michigan
- Josephine Ford Cancer Institute; Henry Ford Health System; Detroit Michigan
- Department of Pathology; Wayne State University School of Medicine; Detroit Michigan
| | - Antonio Lopez-Beltran
- Faculty of Medicine, Department of Pathology and Surgery, Cordoba University Spain and Champalimaud Clinical Center; Cordoba University; Lisbon Portugal
| | - Liang Cheng
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| |
Collapse
|
25
|
Giannico GA, Arnold SA, Gellert LL, Hameed O. New and Emerging Diagnostic and Prognostic Immunohistochemical Biomarkers in Prostate Pathology. Adv Anat Pathol 2017; 24:35-44. [PMID: 27941540 PMCID: PMC10182893 DOI: 10.1097/pap.0000000000000136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diagnosis of minimal prostatic adenocarcinoma can be challenging on prostate needle biopsy, and immunohistochemistry may be used to support the diagnosis of cancer. The International Society of Urologic Pathology currently recommends the use of the basal cell markers high-molecular-weight cytokeraratin and p63, and α-methylacyl-coenzyme-A racemase. However, there are caveats associated with the interpretation of these markers, particularly with benign mimickers. Another issue is that of early detection of presence and progression of disease and prediction of recurrence after clinical intervention. There remains a lack of reliable biomarkers to accurately predict low-risk cancer and avoid over treatment. As such, aggressive forms of prostate cancer may be missed and indolent disease may be subjected to unnecessary radical therapy. New biomarker discovery promises to improve early detection and prognosis and to provide targets for therapeutic interventions. In this review, we present the emerging immunohistochemical biomarkers of prostate cancer PTEN, ERG, FASN, MAGI-2, and SPINK1, and address their diagnostic and prognostic advantages and limitations.
Collapse
Affiliation(s)
- Giovanna A. Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | - Shanna A. Arnold
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
- Department of Veterans Affairs, Nashville, TN
| | - Lan L. Gellert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | - Omar Hameed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| |
Collapse
|
26
|
Gerrin SJ, Sowalsky AG, Balk SP, Ye H. Mutation Profiling Indicates High Grade Prostatic Intraepithelial Neoplasia as Distant Precursors of Adjacent Invasive Prostatic Adenocarcinoma. Prostate 2016; 76:1227-36. [PMID: 27272561 PMCID: PMC5507580 DOI: 10.1002/pros.23212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION High Grade Prostatic Intraepithelial Neoplasia (HGPIN) is the putative precursor lesion to prostatic adenocarcinoma (PCa), but the precise relationship between HGPIN and PCa remains unclear. METHODS We performed a molecular case study in which we studied mutation profiles of six tumor-associated HGPIN lesions in a single case of TMPRSS2:ERG fusion positive Gleason score 7 PCa that we had previously mapped for somatic mutations in adjacent Gleason patterns 3 and 4 foci, using microdissection and targeted deep-sequencing. RESULTS A total of 32 tumor-specific mutated sites were successfully amplified and sequenced, including 25 truncal mutations and 7 mutations that were specific to either the Gleason pattern 3 or pattern 4 foci. All six HGPIN foci shared the same tumor-specific TMPRSS2:ERG fusion breakpoint, establishing that they were all clonally related to the adjacent invasive tumor. Among the 32 gene targets mutated in the invasive tumor, only mutation of the OR2AP1 gene, a truncal mutation, was found in a single focus of HGPIN. The remaining gene targets that were successfully sequenced were wild-type in all other HGPIN foci. DISCUSSION This study demonstrates the feasibility of targeted mutation profiling of HGPIN lesions, which will be important to understand PCa tumorigenesis. The results in this case, showing a remarkable absence of truncal mutations in HGPIN lesions bearing the tumor-specific ERG fusion, indicate HGPIN lesions may be relatively stable genetically and argue against a stepwise clonal evolution model of HGPIN to PCa. Prostate 76:1227-1236, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sean J. Gerrin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Adam G. Sowalsky
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
27
|
Moschini M, Spahn M, Mattei A, Cheville J, Karnes RJ. Incorporation of tissue-based genomic biomarkers into localized prostate cancer clinics. BMC Med 2016; 14:67. [PMID: 27044421 PMCID: PMC4820857 DOI: 10.1186/s12916-016-0613-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
Localized prostate cancer (PCa) is a clinically heterogeneous disease, which presents with variability in patient outcomes within the same risk stratification (low, intermediate or high) and even within the same Gleason scores. Genomic tools have been developed with the purpose of stratifying patients affected by this disease to help physicians personalize therapies and follow-up schemes. This review focuses on these tissue-based tools. At present, four genomic tools are commercially available: Decipher™, Oncotype DX®, Prolaris® and ProMark®. Decipher™ is a tool based on 22 genes and evaluates the risk of adverse outcomes (metastasis) after radical prostatectomy (RP). Oncotype DX® is based on 17 genes and focuses on the ability to predict outcomes (adverse pathology) in very low-low and low-intermediate PCa patients, while Prolaris® is built on a panel of 46 genes and is validated to evaluate outcomes for patients at low risk as well as patients who are affected by high risk PCa and post-RP. Finally, ProMark® is based on a multiplexed proteomics assay and predicts PCa aggressiveness in patients found with similar features to Oncotype DX®. These biomarkers can be helpful for post-biopsy decision-making in low risk patients and post-radical prostatectomy in selected risk groups. Further studies are needed to investigate the clinical benefit of these new technologies, the financial ramifications and how they should be utilized in clinics.
Collapse
Affiliation(s)
| | - Martin Spahn
- Department of Urology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Agostino Mattei
- Klinik für Urologie, Luzerner Kantonsspital, Luzern, Switzerland
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | | |
Collapse
|
28
|
Klaff R, Rosell J, Varenhorst E, Sandblom G. The Long-term Disease-specific Mortality of Low-risk Localized Prostate Cancer: A Prospective Population-based Register Study Over Two Decades. Urology 2016; 91:77-82. [PMID: 26879734 DOI: 10.1016/j.urology.2016.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/19/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify prognostic factors, and to estimate the long-term disease-specific and annual disease-specific mortality rates of low-risk prostate cancer patients from the early prostate-specific antigen (PSA) era. PATIENTS AND METHODS We studied data extracted from the Southeast Region Prostate Cancer Register in Sweden, on1300 patients with clinically localized low-risk tumors, T1-2, PSA level ≤10 µg/L and Gleason scores 2-6 or World Health Organization Grade 1, diagnosed 1992-2003. The Cox multivariate regression model was used to evaluate factors predicting survival. Prostate cancer death rates per 1000 person-years were estimated for 4 consecutive follow-up time periods: 0-5, 5-10, 10-15, and 15+ years after diagnosis. RESULTS During the follow-up of overall survivors (mean 10.6 years; maximum 21.8 years), 93 patients (7%) died of prostate cancer. Cancer-specific survival was 0.98 (95% confidence interval [CI] 0.97-0.99), 0.95 (95% CI 0.93-0.96), 0.89 (95% CI 0.86-0.91), and 0.84 (95% CI 0.80-0.88), 5, 10, 15, and 20 years after diagnosis. The 5-year increases in cancer-specific mortality were statistically significant (P < .001). Patients with PSA ≥ 4 µg/L managed initially with watchful waiting and those aged 70 years or older had a significantly higher risk of dying from their prostate cancer. CONCLUSION The long-term disease-specific mortality of low-risk localized prostate cancer is low, but the annual mortality rate from prostate cancer gradually increases. This indicates that some tumors slowly develop into lethal cancer, particularly in patients 70 years or older with a PSA level ≥ 4 µg/L.
Collapse
Affiliation(s)
- Rami Klaff
- Department of Urology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Johan Rosell
- Regional Cancer Centre, Southeast, Region, Linköping, Sweden
| | - Eberhard Varenhorst
- Department of Urology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gabriel Sandblom
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Hospital, Huddinge, Sweden
| |
Collapse
|