1
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Ganci F, Allegretti M, Frascolla C, Spinella F, Rollo F, Sacconi A, Valentina PD, Palcau AC, Manciocco V, Vescovo M, Cotroneo E, Blandino F, Benevolo M, Covello R, Muti P, Strano S, Vidiri A, Fontemaggi G, Pellini R, Blandino G. Combined TP53 status in tumor-free resection margins and circulating microRNA profiling predicts the risk of locoregional recurrence in head and neck cancer. Biomark Res 2024; 12:32. [PMID: 38444004 PMCID: PMC10916059 DOI: 10.1186/s40364-024-00576-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Locoregional recurrences represent a frequently unexpected problem in head and neck squamous cell carcinoma (HNSCC). Relapse often (10-30%) occurs in patients with histologically negative resection margins (RMs), probably due to residual tumor cells or hidden pre-cancerous lesions in normal mucosa, both missed by histopathological examination. Therefore, definition of a 'clean' or tumor-negative RM is controversial, demanding for novel approaches to be accurately explored. Here, we evaluated next generation sequencing (NGS) and digital PCR (dPCR) as tools to profile TP53 mutational status and circulating microRNA expression aiming at scoring the locoregional risk of recurrence by means of molecular analyses. Serial monitoring of these biomarkers allowed identifying patients at high risk, laying the ground for accurate tracking of disease evolution and potential intensification of post-operative treatments. Additionally, our pipeline demonstrated its applicability into the clinical routine, being cost-effective and feasible in terms of patient sampling, holding promise to accurately (re)-stage RMs in the era of precision medicine.
Collapse
Affiliation(s)
- Federica Ganci
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Matteo Allegretti
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carlotta Frascolla
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesca Spinella
- Department of Research and Development, Eurofins Genoma Group, Rome, Italy
| | - Francesca Rollo
- Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Sacconi
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Pascale De Valentina
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alina Catalina Palcau
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Valentina Manciocco
- Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mariavittoria Vescovo
- Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ettore Cotroneo
- Clinical and Technical Department Management, Eurofins Genoma Group, Rome, Italy
| | - Francesca Blandino
- Department of Research and Development, Eurofins Genoma Group, Rome, Italy
| | - Maria Benevolo
- Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Renato Covello
- Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paola Muti
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Fontemaggi
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Raul Pellini
- Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giovanni Blandino
- Translational Oncologic Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
3
|
Kozłowska-Masłoń J, Guglas K, Kolenda T, Lamperska K, Makałowska I. miRNA in head and neck squamous cell carcinomas: promising but still distant future of personalized oncology. Rep Pract Oncol Radiother 2023; 28:681-697. [PMID: 38179293 PMCID: PMC10764040 DOI: 10.5603/rpor.96666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) - molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients' needs.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Yerukala Sathipati S, Ho SY. Survival associated miRNA signature in patients with head and neck carcinomas. Heliyon 2023; 9:e17218. [PMID: 37360084 PMCID: PMC10285236 DOI: 10.1016/j.heliyon.2023.e17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Head and neck carcinoma (HNSC) is often diagnosed at advanced stage, incurring poor patient outcome. Despite of advances in chemoradiation and surgery approaches, limited improvements in survival rates of HNSC have been observed over the last decade. Accumulating evidences have demonstrated the importance of microRNAs (miRNAs) in carcinogenesis. In this context, we sought to identify a miRNA signature associated with the survival time in patients with HNSC. This study proposed a survival estimation method called HNSC-Sig that identified a miRNA signature consists of 25 miRNAs associated with the survival in 133 patients with HNSC. HNSC-Sig achieved 10-fold cross validation a mean correlation coefficient and a mean absolute error of 0.85 ± 0.01 and 0.46 ± 0.02 years, respectively, between actual and estimated survival times. The survival analysis revealed that five miRNAs, hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p, were significantly associated with prognosis in patients with HNSC. Comparing the relative expression difference of top 10 prioritized miRNAs, eight miRNAs, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-221-3p, hsa-miR-501-5p, hsa-miR-491-5p, hsa-miR-149-3p, hsa-miR-3934-5p, and hsa-miR-3170, were significantly expressed between cancer and normal groups. In addition, biological relevance, disease association, and target interactions of the miRNA signature were discussed. Our results suggest that identified miRNA signature have potential to serve as biomarker for diagnosis and clinical practice in HNSC.
Collapse
Affiliation(s)
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
6
|
Chamroukhi F, Brivet S, Savadjiev P, Coates M, Forghani R. DECT-CLUST: Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation. Diagnostics (Basel) 2022; 12:diagnostics12123072. [PMID: 36553079 PMCID: PMC9776609 DOI: 10.3390/diagnostics12123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Dual-energy computed tomography (DECT) is an advanced CT computed tomography scanning technique enabling material characterization not possible with conventional CT scans. It allows the reconstruction of energy decay curves at each 3D image voxel, representing varied image attenuation at different effective scanning energy levels. In this paper, we develop novel unsupervised learning techniques based on mixture models and functional data analysis models to the clustering of DECT images. We design functional mixture models that integrate spatial image context in mixture weights, with mixture component densities being constructed upon the DECT energy decay curves as functional observations. We develop dedicated expectation-maximization algorithms for the maximum likelihood estimation of the model parameters. To our knowledge, this is the first article to develop statistical functional data analysis and model-based clustering techniques to take advantage of the full spectral information provided by DECT. We evaluate the application of DECT to head and neck squamous cell carcinoma. Current image-based evaluation of these tumors in clinical practice is largely qualitative, based on a visual assessment of tumor anatomic extent and basic one- or two-dimensional tumor size measurements. We evaluate our methods on 91 head and neck cancer DECT scans and compare our unsupervised clustering results to tumor contours traced manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability even among experts at delineating head and neck tumors, and given the potential importance of tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add value in downstream machine learning applications for clinical outcome prediction based on DECT data in head and neck cancer.
Collapse
Affiliation(s)
- Faicel Chamroukhi
- IRT SystemX, 2 Boulevard Thomas Gobert, 91120 Palaiseau, France
- Correspondence:
| | - Segolene Brivet
- Electrical and Computer Engineering Department, McGill University, Montreal, QC H3A 0G4, Canada
| | - Peter Savadjiev
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology, McGill University, Montreal, QC H3G 1A4, Canada
| | - Mark Coates
- Electrical and Computer Engineering Department, McGill University, Montreal, QC H3A 0G4, Canada
| | - Reza Forghani
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology, McGill University, Montreal, QC H3G 1A4, Canada
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Mehterov N, Sacconi A, Pulito C, Vladimirov B, Haralanov G, Pazardjikliev D, Nonchev B, Berindan-Neagoe I, Blandino G, Sarafian V. A novel panel of clinically relevant miRNAs signature accurately differentiates oral cancer from normal mucosa. Front Oncol 2022; 12:1072579. [PMID: 36531016 PMCID: PMC9753689 DOI: 10.3389/fonc.2022.1072579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Although a considerable body of knowledge has been accumulated regarding the early diagnosis and treatment of oral squamous cell carcinoma (OSCC), its survival rates have not improved over the last decades. Thus, deciphering the molecular mechanisms governing oral cancer will support the development of even better diagnostic and therapeutic strategies. Previous studies have linked aberrantly expressed microRNAs (miRNAs) with the development of OSCC. METHODS We combined bioinformatical and molecular methods to identify miRNAs with possible clinical significance as biomarkers in OSCC. A set of 10 miRNAs were selected via an in silico approach by analysing the 3'untranslated regions (3'UTRs) of cancer-related mRNAs such as FLRT2, NTRK3, and SLC8A1, TFCP2L1 and etc. RT-qPCR was used to compare the expression of in silico identified miRNAs in OSCC and normal tissues (n=32). RESULTS Among the screened miRNAs, miR-21-5p (p < 0.0001), miR-93-5p (p < 0.0197), miR-146b-5p (p <0.0012), miR-155-5p (p < 0.0001), miR-182-5p (p < 0.0001) were significantly overexpressed, whereas miR-133b (p < 0.05) was significantly downregulated in OSCC tissues, a scenario confirmed in two additional OSCC validation cohorts: Regina Elena National Cancer Institute (IRE cohort, N=74) and The Cancer Genome Atlas Data Portal (TCGA cohort, N=354). Initial stage tumors (T1, T2) expressed significantly higher levels of miR-133b (p < 0.0004) compared to more advanced ones (T3, T4). Also, we identified miR-93-5p (p < 0.0003), miR-133b (p < 0.0017) and miR-155-5p (p < 0.0004) as correlated with HPV-induced OSCC. The high expression of these 6 miRNAs as a signature predicted shorter disease-free survival (DFS) and could efficiently distinguish OSCC cases from healthy controls with areas under the curve (AUC) of 0.91 with sensitivity and specificity of 0.98 and 0.6, respectively. Further target identification analysis revealed enrichment of genes involved in FOXO, longevity, glycan biosynthesis and p53 cancer-related signaling pathways. Also, the selected targets were underexpressed in OSCC tissues and showed clinical significance related to overall survival (OS) and DFS. DISCUSSION Our results demonstrate that a novel panel consisting of miR-21-5p, miR-93-5p, miR-133b, miR-146b-5p, miR-155-5p and miR-182-5p could be used as OSCC-specific molecular signature with diagnostic and prognostic significance related to OS and DFS.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Georgi Haralanov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, Plovdiv, Bulgaria
| | | | - Boyan Nonchev
- Department of Endocrinology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Global microRNA expression profile in laryngeal carcinoma unveils new prognostic biomarkers and novel insights into field cancerization. Sci Rep 2022; 12:17051. [PMID: 36224266 PMCID: PMC9556831 DOI: 10.1038/s41598-022-20338-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022] Open
Abstract
Laryngeal carcinoma is still a worldwide burden that has shown no significant improvement during the last few decades regarding definitive treatment strategies. The lack of suitable biomarkers for personalized treatment protocols and delineating field cancerization prevents further progress in clinical outcomes. In the light of this perspective, MicroRNAs could be promising biomarkers both in terms of diagnostic and prognostic value. The aim of this prospective study is to find strong prognostic microRNA biomarkers for advanced laryngeal carcinoma and molecular signatures of field cancerization. Sixty patients were enrolled and four samples were collected from each patient: tumor surface and depth, peritumor normal mucosa, and control distant laryngeal mucosa. Initially, a global microRNA profile was conducted in twelve patients from the whole cohort and subsequently, we validated a selected group of 12 microRNAs with RT-qPCR. The follow-up period was 24 months (SD ± 13 months). Microarray expression profile revealed 59 dysregulated microRNAs. The validated expression levels of miR-93-5p (χ2(2) = 4.68, log-rank p = 0.03), miR-144-3p (χ2(2) = 4.53, log-rank p = 0.03) and miR-210-3p (χ2(2) = 4.53, log-rank p = 0.03) in tumor samples exhibited strong association with recurrence-free survival as higher expression levels of these genes predict worse outcome. Tumor suppressor genes miR-144-3p (mean rank 1.58 vs 2.14 vs 2.29, p = 0.000) and miR-145-5p (mean rank 1.57 vs 2.15 vs 2.28, p = 0.000) were significantly dysregulated in peritumor mucosa with a pattern of expression consistent with paired tumor samples thus revealing a signature of field cancerization in laryngeal carcinoma. Additionally, miR-1260b, miR-21-3p, miR-31-3p and miR-31-5p were strongly associated with tumor grade. Our study reports the first global microRNA profile specifically in advanced laryngeal carcinoma that includes survival analysis and investigates the molecular signature of field cancerization. We report two strong biomarkers of field cancerization and three predictors for recurrence in advance stage laryngeal cancer.
Collapse
|
9
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
10
|
Ng L, Li HS, Man ATK, Chow AKM, Foo DCC, Lo OSH, Pang RWC, Law WL. High Expression of a Cancer Stemness-Related Gene, Chromobox 8 (CBX8), in Normal Tissue Adjacent to the Tumor (NAT) Is Associated with Poor Prognosis of Colorectal Cancer Patients. Cells 2022; 11:cells11111852. [PMID: 35681547 PMCID: PMC9180723 DOI: 10.3390/cells11111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Several studies have demonstrated that the molecular profile of normal tissue adjacent to the tumor (NAT) is prognostic for recurrence in patients with different cancers. This study investigated the clinical significance of CBX8 gene expression, a cancer stemness-related gene, in tumor and NAT tissue of colorectal cancer (CRC) patients. Methods: The gene level of CBX8 in paired CRC and NAT specimens from 95 patients was determined by quantitative PCR. CBX8 protein level in CRC and NAT specimens from 66 patients was determined by immunohistochemistry. CBX8 gene and protein levels were correlated with the patients’ clinicopathological parameters and circulatory immune cell profiles. The association between CBX8 and pluripotency-associated genes was analyzed using the TCGA database. Results: NAT CBX8 gene level positively correlated with TNM stage, tumor invasion, lymph node metastasis and distant metastasis, indicating its association with tumor progression and metastasis. There was no correlation between NAT CBX8 protein level and clinicopathological parameters. Moreover, a high level of CBX8 gene and protein in NAT both correlated with poor DFS and OS. There was an inverse correlation between CBX8 gene level and post-operative platelet counts and platelet to lymphocyte level, suggesting its association with systematic inflammation. Finally, TCGA analysis showed that CBX8 level was correlated with a couple of pluripotency-associated genes, supporting its association with cancer stemness. Conclusions: High NAT CBX8 is a poor prognostic factor for tumor progression and survival in CRC patients.
Collapse
Affiliation(s)
- Lui Ng
- Correspondence: (L.N.); (W.-L.L.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang F, Tan R, Feng K, Hu J, Zhuang Z, Wang C, Hou J, Liu X. Magnetic Resonance Imaging-Based Radiomics Features Associated with Depth of Invasion Predicted Lymph Node Metastasis and Prognosis in Tongue Cancer. J Magn Reson Imaging 2021; 56:196-209. [PMID: 34888985 PMCID: PMC9299921 DOI: 10.1002/jmri.28019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background Adequate safe margin in tongue cancer radical surgery is one of the most important prognostic factors. However, the role of peritumoral tissues in predicting lymph node metastasis (LNM) and prognosis using radiomics analysis remains unclear. Purpose To investigate whether magnetic resonance imaging (MRI)‐based radiomics analysis with peritumoral extensions contributes toward the prediction of LNM and prognosis in tongue cancer. Study type Retrospective. Population Two hundred and thirty‐six patients (38.56% female) with tongue cancer (training set, N = 157; testing set, N = 79; 37.58% and 40.51% female for each). Field Strength/Sequence 1.5 T; T2‐weighted turbo spin‐echo images. Assessment Radiomics models (Rprim, Rprim+3, Rprim+5, Rprim+10, Rprim+15) were developed with features extracted from the primary tumor without or with peritumoral extensions (3, 5, 10, and 15 mm, respectively). Clinicopathological characteristics selected from univariate analysis, including MRI‐reported LN status, radiological extrinsic lingual muscle invasion, and pathological depth of invasion (DOI) were further incorporated into radiomics models to develop combined radiomics models (CRprim, CRprim+3, CRprim+5, CRprim+10, CRprim+15). Finally, the model performance was validated in the testing set. DOI was measured from the adjacent normal mucosa to the deepest point of tumor invasion. Statistical Tests Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, decision analysis, spearman correlation analysis. The Delong test was used to compare area under the ROC (AUC). P < 0.05 was considered statistically significant. Results Of all the models, the CRprim+10 reached the highest AUC of 0.995 in the training set and 0.872 in the testing set. Radiomics features were significantly correlated with pathological DOI (correlation coefficients, −0.157 to −0.336). The CRprim+10 was an independent indicator for poor disease‐free survival (hazard ratio, 5.250) and overall survival (hazard ratio, 17.464) in the testing set. Data Conclusion Radiomics analysis with a 10‐mm peritumoral extension had excellent power to predict LNM and prognosis in tongue cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Rukeng Tan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kun Feng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jing Hu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehang Zhuang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer. Mol Biol Rep 2021; 49:1501-1511. [PMID: 34837627 DOI: 10.1007/s11033-021-06954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
Collapse
Affiliation(s)
- Sethu Thakachy Subha
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jun Wei Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasni Idayu Saidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Profiling and Functional Analysis of microRNA Deregulation in Cancer-Associated Fibroblasts in Oral Squamous Cell Carcinoma Depicts an Anti-Invasive Role of microRNA-204 via Regulation of Their Motility. Int J Mol Sci 2021; 22:ijms222111960. [PMID: 34769388 PMCID: PMC8584862 DOI: 10.3390/ijms222111960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Knowledge on the role of miR changes in tumor stroma for cancer progression is limited. This study aimed to investigate the role of miR dysregulation in cancer-associated fibroblasts (CAFs) in oral squamous cell carcinoma (OSCC). Methodology: CAF and normal oral fibroblasts (NOFs) were isolated from biopsies of OSCC patients and healthy individuals after informed consent and grown in 3D collagen gels. Total RNA was extracted. Global miR expression was profiled using Illumina version 2 panels. The functional impact of altered miR-204 expression in fibroblasts on their phenotype and molecular profile was investigated using mimics and inhibitors of miR-204. Further, the impact of miR-204 expression in fibroblasts on invasion of adjacent OSCC cells was assessed in 3D-organotypic co-cultures. Results: Unsupervised hierarchical clustering for global miR expression resulted in separate clusters for CAF and NOF. SAM analysis identified differential expression of twelve miRs between CAF and NOF. Modulation of miR-204 expression did not affect fibroblast cell proliferation, but resulted in changes in the motility phenotype, expression of various motility-related molecules, and invasion of the adjacent OSCC cells. 3′ UTR miR target reporter assay showed ITGA11 to be a direct target of miR-204. Conclusions: This study identifies differentially expressed miRs in stromal fibroblasts of OSCC lesions compared with normal oral mucosa and it reveals that one of the significantly downregulated miRs in CAF, miR-204, has a tumor-suppressive function through inhibition of fibroblast migration by modulating the expression of several different molecules in addition to directly targeting ITGA11.
Collapse
|
14
|
Qiu K, Song Y, Rao Y, Liu Q, Cheng D, Pang W, Ren J, Zhao Y. Diagnostic and Prognostic Value of MicroRNAs in Metastasis and Recurrence of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:711171. [PMID: 34646767 PMCID: PMC8503605 DOI: 10.3389/fonc.2021.711171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs have been proven to make remarkable differences in the clinical behaviors of head and neck squamous cell carcinoma (HNSCC). This study aims to systematically analyze whether differential expression levels of microRNAs are related to recurrence or metastasis in patients with HNSCC. A comprehensive search of the PubMed, EMBASE, and CENTRAL was conducted up to July 24th, 2021. Data were collected and combined from studies reporting recurrence-free survival (RFS) of HNSCC patients with high microRNA expression compared to those with low expression. Besides, studies providing necessary data for evaluating the diagnostic value of microRNAs for detecting recurrence and metastasis based on their expression levels were also included and combined. The pooled hazard ratio (HR) value for the outcomes of RFS in 1,093 HNSCC samples from 10 studies was 2.51 (95%CI: 2.13–2.96). A sensitivity of 0.79 (95% CI: 0.72–0.85) and specificity of 0.77 (95%CI: 0.68–0.83) were observed in three studies, of which 93 patients with recurrence and 82 nonrecurrence controls were included, and the area under the curve (AUC) was 0.85 (95% CI: 0.81–0.88). Additionally, high diagnostic accuracy of microRNAs in detecting lymph node metastasis (LNM) was also reported. In conclusion, two panels of microRNAs showed the potential to predict recurrence or diagnose recurrence in HNSCC patients, respectively, which could facilitate prognosis prediction and diagnosis of clinical behaviors in HNSCC patients.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufang Rao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiurui Liu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Wendu Pang
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianjun Ren
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China.,West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Overview of Oral Potentially Malignant Disorders: From Risk Factors to Specific Therapies. Cancers (Basel) 2021; 13:cancers13153696. [PMID: 34359597 PMCID: PMC8345150 DOI: 10.3390/cancers13153696] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a very aggressive cancer, representing one of the most common malignancies worldwide. Oral potentially malignant disorders (OPMDs) regroup a variegate set of different histological lesions, characterized by the potential capacity to transform in OSCC. Most of the risk factors associated with OSCC are present also in OPMDs' development; however, the molecular mechanisms and steps of malignant transformation are still unknown. Treatment of OSCC, including surgery, systemic therapy and radiotherapy (alone or in combination), has suffered a dramatic change in last years, especially with the introduction of immunotherapy. However, most cases are diagnosed during the advanced stage of the disease, decreasing drastically the survival rate of the patients. Hence, early diagnosis of premalignant conditions (OPMDs) is a priority in oral cancer, as well as a massive education about risk factors, the understanding of mechanisms involved in malignant progression and the development of specific and more efficient therapies. The aim of this article is to review epidemiological, clinical, morphological and molecular features of OPMDs, with the purpose to lay the foundation for an exhaustive comprehension of these lesions and their ability of malignant transformation and for the development of more effective and personalized treatments.
Collapse
|
16
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
17
|
Zhu L, Zhang L, Tang Y, Zhang F, Wan C, Xu L, Guo P. MicroRNA-363-3p inhibits tumor cell proliferation and invasion in oral squamous cell carcinoma cell lines by targeting SSFA2. Exp Ther Med 2021; 21:549. [PMID: 33850521 DOI: 10.3892/etm.2021.9981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the expression levels of microRNA (miR)-363-3p and its underlying physiological function in oral squamous cell carcinoma (OSCC). miR-363-3p expression levels were measured in OSCC cell lines using reverse transcription-quantitative PCR. The role of miR-363-3p in OSCC cells was examined using gain-of-function assays in vitro. Cell proliferation was assessed using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine assays and flow cytometry. Cell migration and invasion were evaluated in wound-healing and Transwell Matrigel assays. In addition, bioinformatics analysis predicted binding sites of miR-363-3p on sperm-specific antigen 2 (SSFA2). Luciferase reporter and RNA pull-down assays were conducted to test whether miR-363-3p interacted with SSFA2. miR-363-3p expression was downregulated in OSCC cell lines compared with that in the normal epithelial cell line (NHOK). Additionally, miR-363-3p overexpression suppressed OSCC cell proliferation, migration and invasion in vitro. SSFA2 was verified as a direct target of miR-363-3p, and SSFA2 overexpression partially counteracted the inhibitory effects of miR-363-3p on cell proliferation, migration and invasion in OSCC cell lines. Thus, miR-363-3p may serve as a tumor suppressor via targeting SSFA2 and may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Liangming Zhu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Zhang
- Jiangcheng Dental Clinic, Wuhu, Anhui 241000, P.R. China
| | - Ying Tang
- Department of Endocrinology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui 241000, P.R. China
| | - Fang Zhang
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Wan
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Liang Xu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ping Guo
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
18
|
Wu X, Cheng YSL, Matthen M, Yoon A, Schwartz GK, Bala S, Taylor AM, Momen-Heravi F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021; 40:70. [PMID: 33596979 PMCID: PMC7890893 DOI: 10.1186/s13046-021-01865-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.
Collapse
Affiliation(s)
- Xun Wu
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning, Guangxi, China
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Mathew Matthen
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Yoon
- Division of Pathology, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gary K Schwartz
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Ganci F, Allegretti M, Manciocco V, Fiorentino F, Sanguineti G, Giacomini P, Pellini R, Spinella F, Blandino G. Two distinct TP53 mutations in HNSCC primary tumor: Only one circulates in the blood. Oral Oncol 2020; 115:105096. [PMID: 33234482 DOI: 10.1016/j.oraloncology.2020.105096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | - Matteo Allegretti
- Oncogenomic and Epigenetic Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | - Valentina Manciocco
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | | | - Giuseppe Sanguineti
- Radiation Oncology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | - Patrizio Giacomini
- Oncogenomic and Epigenetic Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | - Raul Pellini
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy
| | - Francesca Spinella
- Eurofins Genoma Group Srl, Via di Castel Giubileo, 11, 00138 Rome, Italy.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy.
| |
Collapse
|
20
|
Ghafouri-Fard S, Gholipour M, Taheri M, Shirvani Farsani Z. MicroRNA profile in the squamous cell carcinoma: prognostic and diagnostic roles. Heliyon 2020; 6:e05436. [PMID: 33204886 PMCID: PMC7653070 DOI: 10.1016/j.heliyon.2020.e05436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/27/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are human malignancies associated with both genetic and environmental factors. MicroRNAs (miRNAs) as a group of small non-coding RNAs have prominent roles in the development of this kind of cancer. Expressions of several miRNAs have been demonstrated to be increased in HNSCC samples vs. non-malignant tissues. In silico prediction tools and functional analyses have confirmed the function of some miRNAs in the modulation of cancer-associated targets, thus indicating these miRNAs as onco-miRs. Moreover, numerous miRNAs have been down-regulated in HNSCC samples. Their targets mostly enhance cell proliferation or inhibit apoptosis. miRNAs signature has practical implications in the diagnosis, staging, and management of HNSC. Most notably, numerous miRNAs have been shown to alter response of tumor cells to anti-cancer drugs such as cisplatin and doxorubicin. Circulating levels of these small transcripts have been suggested as promising biomarkers for diagnosis of HNSCC. In the present manuscript, we sum up the available literature regarding the miRNAs signature in HNSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
21
|
Sacconi A, Donzelli S, Pulito C, Ferrero S, Spinella F, Morrone A, Rigoni M, Pimpinelli F, Ensoli F, Sanguineti G, Pellini R, Agrawal N, Izumchenko E, Ciliberto G, Giannì A, Muti P, Strano S, Blandino G. TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:200. [PMID: 32967703 PMCID: PMC7510014 DOI: 10.1186/s13046-020-01708-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Background SARS-coronavirus-2 enters host cells through binding of the Spike protein to ACE2 receptor and subsequent S priming by the TMPRSS2 protease. We aim to assess differences in both ACE2 and TMPRSS2 expression in normal tissues from oral cavity, pharynx, larynx and lung tissues as well as neoplastic tissues from the same areas. Methods The study has been conducted using the TCGA and the Regina Elena Institute databases and validated by experimental model in HNSCC cells. We also included data from one COVID19 patient who went under surgery for HNSCC. Results TMPRSS2 expression in HNSCC was significantly reduced compared to the normal tissues. It was more evident in women than in men, in TP53 mutated versus wild TP53 tumors, in HPV negative patients compared to HPV positive counterparts. Functionally, we modeled the multivariate effect of TP53, HPV, and other inherent variables on TMPRSS2. All variables had a statistically significant independent effect on TMPRSS2. In particular, in tumor tissues, HPV negative, TP53 mutated status and elevated TP53-dependent Myc-target genes were associated with low TMPRSS2 expression. The further analysis of both TCGA and our institutional HNSCC datasets identified a signature anti-correlated to TMPRSS2. As proof-of-principle we also validated the anti-correlation between microRNAs and TMPRSS2 expression in a SARS-CoV-2 positive HNSCC patient tissues Finally, we did not find TMPRSS2 promoter methylation. Conclusions Collectively, these findings suggest that tumoral tissues, herein exemplified by HNSCC and lung cancers might be more resistant to SARS-CoV-2 infection due to reduced expression of TMPRSS2. These observations may help to better assess the frailty of SARS-CoV-2 positive cancer patients.
Collapse
Affiliation(s)
- Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | | | - Aldo Morrone
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Marta Rigoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan, Italy.,Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Giuseppe Sanguineti
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Otolaryngology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nishant Agrawal
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Giannì
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan, Italy
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
22
|
The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res 2020; 5:88-98. [PMID: 32637757 PMCID: PMC7327754 DOI: 10.1016/j.ncrna.2020.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most frequent type of cancers originating from the endocrine system. Early diagnosis leads to good clinical outcome in differentiated types of thyroid cancer. Yet, there are few treatment options for patients with medullary or anaplastic thyroid cancer. Thus, identification of molecular markers that explain the pathologic process during evolution of this cancer has practical significance. MicroRNAs (miRNAs) have been shown to influence the activity of thyroid cancer-related signaling pathways such as MAPK pathway and RET gene. These small transcripts not only can differentiate malignant tissues from non-malignant tissues, but also have differential expression in different stages of thyroid cancer. Assessment of serum levels of miRNAs is a practical noninvasive method for follow-up of patients after thyroidectomy. Moreover, the therapeutic effects of a number of miRNAs have been verified in xenograft models of thyroid cancer. In the current review, we summarize the data regarding the role of miRNAs in thyroid cancer.
Collapse
|
23
|
Chai RC, Zhang KN, Chang YZ, Wu F, Liu YQ, Zhao Z, Wang KY, Chang YH, Jiang T, Wang YZ. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis 2020; 40:1229-1239. [PMID: 31157866 DOI: 10.1093/carcin/bgz102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 11/13/2022] Open
Abstract
1p/19q codeletion, which leads to the abnormal expression of 1p19q genes in oligodendroglioma, is associated with chemosensitivity and favorable prognosis. Here, we aimed to explore the clinical implications of 1p19q gene expression in 1p/19q non-codel gliomas. We analyzed expression of 1p19q genes in 668 1p/19q non-codel gliomas obtained from The Cancer Genome Atlas (n = 447) and the Chinese Glioma Genome Atlas (n = 221) for training and validation, respectively. The expression of 1p19q genes was significantly correlated with the clinicopathological features and overall survival of 1p/19q non-codel gliomas. Then, we derived a risk signature of 25 selected 1p19q genes that not only had prognosis value in total 1p/19q non-codel gliomas but also had prognosis value in stratified gliomas. The prognosis value of the risk signature was superior than known clinicopathological features in 1p/19q non-codel gliomas and was also highly associated with the following features: loss of CDKN2A/B copy number in mutant-IDH-astrocytoma; telomerase reverse transcriptase (TERT) promoter mutation, combined chromosome 7 gain/chromosome 10 loss and epidermal growth factor receptor amplification in wild-type-IDH-astrocytoma; classical and mesenchymal subtypes in glioblastoma. Furthermore, genes enriched in the biological processes of cell division, extracellular matrix, angiogenesis significantly correlated to the signature risk score, and this is also supported by the immunohistochemistry and cell biology experiments. In conclusion, the expression profile of 1p19q genes is highly associated with the malignancy and prognosis of 1p/19q non-codel gliomas. A 25-1p19q-gene signature has powerfully predictive value for both malignant molecular pathological features and prognosis across distinct subgroups of 1p/19q non-codel gliomas.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yu-Zhou Chang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Kuan-Yu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yuan-Hao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Wang W, Li T, Gao L, Li Y, Sun Y, Yao HC. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomark Med 2020; 14:87-95. [PMID: 31789049 DOI: 10.2217/bmm-2019-0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study aimed to investigate the correlation between the expression of circulating miR-208b and miR-499 and acute coronary syndrome (ACS) patients. Materials & methods: A total of 160 consecutive patients with ACS and 48 healthy control subjects were enrolled for primary analysis. The ACS patients (n = 160) were followed up for 6 months for further analysis regarding major adverse cardiac events. Results: Area under the curve values of miR-208b and miR-499 for predicting ACS were 0.910 and 0.851 (p < 0.001, respectively). Cox proportional hazards regression analysis revealed that miR-208b but not miR-499 was an independent predictor of major adverse cardiac events. Conclusion: Circulating miR-208b and miR-499 could be considered as diagnostic or prognostic biomarkers for patients with ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng 252000, PR China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Ying Sun
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| |
Collapse
|
25
|
Gaya-Bover A, Hernández-López R, Alorda-Clara M, Ibarra de la Rosa JM, Falcó E, Fernández T, Company MM, Torrens-Mas M, Roca P, Oliver J, Sastre-Serra J, Pons DG. Antioxidant enzymes change in different non-metastatic stages in tumoral and peritumoral tissues of colorectal cancer. Int J Biochem Cell Biol 2020; 120:105698. [PMID: 31981728 DOI: 10.1016/j.biocel.2020.105698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Antioxidant defences and oxidative stress are related to development, progression and malignancy of colorectal cancer. However, their role in early stages of cancer remains unknown. More and more recent studies have revealed that non-tumour adjacent tissue is not a normal tissue. Thus, our aim was to analyse protein levels of MnSOD (Manganese Superoxide Dismutase), acMnSOD (Acetylated Manganese superoxide Dismutase), SIRT3 (Sirtuin 3), CuZnSOD (Cupper Zinc Superoxide Dismutase), CAT (Catalase), GPx (Glutathione Peroxidase), and GRd (Glutathione Reductase) both in tumour and non-tumour adjacent tissue from colorectal cancer patients by western blot. Non-tumour adjacent tissue seemed to have higher levels of antioxidant enzymes that detoxify hydrogen peroxide compared to tumour tissue. In contrast, tumour tissue had higher levels of MnSOD and acMnSOD. Furthermore, most of the proteins analysed showed significant differences between stage I and II in both non-tumour adjacent and tumour tissue. This could indicate that antioxidant enzymes, especially MnSOD, play a crucial role in early stages of colorectal cancer in both tissues, so they could be analysed as novel biomarkers to improve colorectal cancer diagnosis.
Collapse
Affiliation(s)
- Auba Gaya-Bover
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain
| | - Reyniel Hernández-López
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain
| | - Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain
| | - Javier M Ibarra de la Rosa
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Hospital Son Llàtzer, Palma de Mallorca, 07198, Illes Balears, Spain
| | - Esther Falcó
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Hospital Son Llàtzer, Palma de Mallorca, 07198, Illes Balears, Spain
| | - Teresa Fernández
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Hospital Son Llàtzer, Palma de Mallorca, 07198, Illes Balears, Spain
| | - Maria Margarita Company
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Clinica Rotger, Palma de Mallorca, 07012, Islas Baleares, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain; Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain.
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122 Illes Balears, Spain; Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Illes Balears, Spain
| |
Collapse
|
26
|
Valenti F, Sacconi A, Ganci F, Grasso G, Strano S, Blandino G, Di Agostino S. The miR-205-5p/BRCA1/RAD17 Axis Promotes Genomic Instability in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2019; 11:E1347. [PMID: 31514456 PMCID: PMC6771082 DOI: 10.3390/cancers11091347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Defective DNA damage response (DDR) is frequently associated with tumorigenesis. Abrogation of DDR leads to genomic instability, which is one of the most common characteristics of human cancers. TP53 mutations with gain-of-function activity are associated with tumors under high replicative stress, high genomic instability, and reduced patient survival. The BRCA1 and RAD17 genes encode two pivotal DNA repair proteins required for proper cell-cycle regulation and maintenance of genomic stability. We initially evaluated whether miR-205-5p, a microRNA (miRNA) highly expressed in head and neck squamous cell carcinoma (HNSCC), targeted BRCA1 and RAD17 expression. We found that, in vitro and in vivo, BRCA1 and RAD17 are targets of miR-205-5p in HNSCC, leading to inefficient DNA repair and increased chromosomal instability. Conversely, miR-205-5p downregulation increased BRCA1 and RAD17 messenger RNA (mRNA) levels, leading to a reduction in in vivo tumor growth. Interestingly, miR-205-5p expression was significantly anti-correlated with BRCA1 and RAD17 targets. Furthermore, we documented that miR-205-5p expression was higher in tumoral and peritumoral HNSCC tissues than non-tumoral tissues in patients exhibiting reduced local recurrence-free survival. Collectively, these findings unveil miR-205-5p's notable role in determining genomic instability in HNSCC through its selective targeting of BRCA1 and RAD17 gene expression. High miR-205-5p levels in the peritumoral tissues might be relevant for the early detection of minimal residual disease and pre-cancer molecular alterations involved in tumor development.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Giuseppe Grasso
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Sabrina Strano
- Molecular Chemoprevention Group, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| |
Collapse
|
27
|
Gong SQ, Xu M, Xiang ML, Shan YM, Zhang H. The Expression and Effection of MicroRNA-499a in High-Tobacco Exposed Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Oncol 2019; 9:678. [PMID: 31417866 PMCID: PMC6685408 DOI: 10.3389/fonc.2019.00678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Few studies have directly investigated the differential expression of microRNAs (miRNAs) in head and neck squamous cell carcinoma (HNSCC) with low, medium, and high tobacco exposure. The purpose of this study is to screen the differentially expressed miRNAs and to investigate their clinical significance and potential biological mechanisms in the three groups of HNSCC. Methods: The datasets of HNSCC were obtained from The Cancer Genome Atlas (TCGA). The edgeR package was used to determine differentially expressed miRNAs and genes among the three groups of HNSCC. Statistical methods were applied to assess the clinical significance of miRNA and its correlation with genes. The correlation between gene expression and clinical characteristics was analyzed using weighted gene co-expression network analysis (WGCNA). Three online databases were used to predict the target genes of miRNAs. More importantly, qRT-PCR was employed to verify the differential expression of miRNAs and genes in our patients. Results: 32 differentially expressed miRNAs and 1,820 differentially expressed genes were found among the three groups of HNSCC. Patients with high expression of hsa-miR-499a had lower overall survival than the ones with low expression in high-tobacco exposed HNSCC. Cox regression analysis found that high expression of hsa-miR-499a and female were independent risk factors for prognosis in high-tobacco exposed HNSCC. Chi-square test found that hsa-miR-499a was associated with N stage in high-tobacco exposed HNSCC. WGCNA identified four gene modules associated with N stage in high-tobacco exposed HNSCC. Then three online databases were used to predict potential target genes for hsa-miR-499a, which were AEBP2 and ZNRF1. Pearson correlation analysis showed that hsa-miR-499a was negatively correlated with AEBP2 and ZNRF1. qRT-PCR supported bioinformatic results that hsa-miR-499a, AEBP2, and ZNRF1 were differentially expressed among the three groups of HNSCC in our patients. Conclusion: 32 differentially expressed miRNAs and 1,820 differentially expressed genes were successfully identified in HNSCC with low, medium, and high tobacco exposure. The patients with high expression of hsa-miR-499a had poor prognoses compared with patients with low expression in high-tobacco exposed HNSCC. Hsa-miR-499a was associated with N stage in high-tobacco exposed HNSCC. AEBP2 and ZNRF1 were the potential target genes of hsa-miR-499a.
Collapse
Affiliation(s)
- Shi-Qi Gong
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ming-Liang Xiang
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ya-Min Shan
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
28
|
Blandino G, Valenti F, Sacconi A, Di Agostino S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol 2019; 98:105-117. [PMID: 31112799 DOI: 10.1016/j.semcdb.2019.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell metabolism is one of the cancer hallmarks. Mitochondrial DNA mutations and enzyme defects, aberrant tumor suppressor or oncogenic activities cause mitochondrial dysfunction leading to deregulated cellular energetics. The tumor suppressor protein, p53 is a tetrameric transcription factor that in response to diverse genotoxic and non-genotoxic insults activates a plethora of target genes to preserve genome integrity. In the last two decades the discovery of cytoplasmic p53 localization focused intense research on its extra-nuclear functions. The ability of p53 to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm have been investigated. A role of cytoplasmic p53 in autophagy, pentose phosphate pathway, fatty acid synthesis and oxidation, and drug response has been proposed. TP53 gene is mutated in more than half of human cancers. In parallel to loss of tumor suppressive functions, mutant p53 proteins often gain new tumorigenic activities (GOF, gain of function). It has been recently shown that mutant p53 proteins mediate metabolic changes thereby promoting cancer development and metastases. Here we review the contribution of either wild-type p53 or mutant p53 proteins to the fine-tuning of mitochondrial metabolism of both normal and cancer cells. Greater knowledge at the mechanistic level might provide insights to develop new cancer therapeutic approaches.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
29
|
Vahabi M, Pulito C, Sacconi A, Donzelli S, D'Andrea M, Manciocco V, Pellini R, Paci P, Sanguineti G, Strigari L, Spriano G, Muti P, Pandolfi PP, Strano S, Safarian S, Ganci F, Blandino G. miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:141. [PMID: 30925916 PMCID: PMC6440033 DOI: 10.1186/s13046-019-1119-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide. They are typically characterized by a high incidence of local recurrence, which is the most common cause of death in HNSCC patients. TP53 is the most frequently mutated gene in HNSCC and patients carrying TP53 mutations are associated with a higher probability to develop local recurrence. MiRNAs, which are among the mediators of the oncogenic activity of mt-p53 protein, emerge as an appealing tool for screening, diagnosis and prognosis of cancer. We previously identified a signature of 12 miRNAs whose aberrant expression associated with TP53 mutations and was prognostic for HNSCC. Among them miR-96-5p emerges as an oncogenic miRNAs with prognostic significance in HNSCC. METHODS To evaluate the oncogenic role of miR-96-5p in a tumoral context, we performed colony formation, cell migration and cell viability assays in two HNSCC cell lines transfected for miR-96-5p mimic or inhibitor and treated with or without radio/chemo-therapy. In addition, to identify genes positively and negatively correlated to miR-96-5p expression in HNSCC, we analyzed the correlation between gene expression and miR-96-5p level in the subset of TCGA HNSCC tumors carrying missense TP53 mutations by Spearman and Pearson correlation. To finally identify targets of miR-96-5p, we used in silico analysis and the luciferase reporter assay to confirm PTEN as direct target. RESULTS Our data showed that overexpression of miR-96-5p led to increased cell migration and radio-resistance, chemotherapy resistance in HNSCC cells. In agreement with these results, among the most statistically significant pathways in which miR-96-5p is involved, are focal Adhesion, extracellular matrix organization and PI3K-Akt-mTOR-signaling pathway. As a direct target of miR-96-5p, we identified PTEN, the main negative regulator of PI3K-Akt signalling pathway activation. CONCLUSIONS These results highlight a new mechanism of chemo/radio-resistance insurgence in HNSCC cells and support the possibility that miR-96-5p expression could be used as a novel promising biomarker to predict radiotherapy response and local recurrence development in HNSCC patients. In addition, the identification of pathways in which miR-96-5p is involved could contribute to develop new therapeutic strategies to overcome radio-resistance.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.,Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Claudio Pulito
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco D'Andrea
- Unit of Radiotherapy, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Manciocco
- Unit of Otolaryngology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Unit of Otolaryngology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council, Rome, Italy.,SysBio Centre for Systems Biology, Rome, Italy
| | - Giuseppe Sanguineti
- Unit of Radiotherapy, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Canada
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Strano
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Shahrokh Safarian
- Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran.
| | - Federica Ganci
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
30
|
Guo Y, Yang J, Huang Q, Hsueh C, Zheng J, Wu C, Chen H, Zhou L. Circular RNAs and their roles in head and neck cancers. Mol Cancer 2019; 18:44. [PMID: 30898135 PMCID: PMC6427840 DOI: 10.1186/s12943-019-1003-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/13/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are abundant endogenous non-coding RNA with no 5′ cap and 3′ polyadenylation tail that modify liner mRNAs and have no terminal structures. Our knowledge of the biogenesis of circular RNAs has been expanded, and circular RNAs were shown to be key regulators of various diseases, especially cancers. Head and neck cancers are the sixth most popular cancers worldwide, and the overall survival rates remain unsatisfactory. Recent studies have indicated that circular RNAs are involved in the tumorigenesis, progression, invasion and chemosensitivity of head and neck cancers and that some circular RNAs could serve as diagnostic and prognostic biomarkers. In this study, we summarize research advances in the regulation of circular RNA biogenesis, their characteristics and functions, the involvement of circular RNAs in the pathophysiology of head and neck cancers and their potential clinical utilization, as well as the likely directions of future studies.
Collapse
Affiliation(s)
- Yang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jiechao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chiyao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Juan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chunping Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Yang CX, Sedhom W, Song J, Lu SL. The Role of MicroRNAs in Recurrence and Metastasis of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:E395. [PMID: 30901831 PMCID: PMC6468798 DOI: 10.3390/cancers11030395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects 650,000 people worldwide and has a dismal 50% 5-year survival rate. Recurrence and metastasis are believed the two most important factors causing this high mortality. Understanding the biological process and the underlying mechanisms of recurrence and metastasis is critical to develop novel and effective treatment, which is expected to improve patients' survival of HNSCC. MicroRNAs are small, non-coding nucleotides that regulate gene expression at the transcriptional and post-transcriptional level. Oncogenic and tumor-suppressive microRNAs have shown to regulate nearly every step of recurrence and metastasis, ranging from migration and invasion, epithelial-mesenchymal transition (EMT), anoikis, to gain of cancer stem cell property. This review encompasses an overview of microRNAs involved in these processes. The recent advances of utilizing microRNA as biomarkers and targets for treatment, particularly on controlling recurrence and metastasis are also reviewed.
Collapse
Affiliation(s)
- Chris X Yang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Marcasciano M, Mazzocchi M, Kaciulyte J, Spissu N, Casella D, Ribuffo D, Dessy LA. Skin cancers and dermal substitutes: Is it safe? Review of the literature and presentation of a 2-stage surgical protocol for the treatment of non-melanoma skin cancers of the head in fragile patients. Int Wound J 2018; 15:756-768. [PMID: 29863792 DOI: 10.1111/iwj.12924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022] Open
Abstract
Non-melanoma skin cancers (NMSC) represent the most common skin tumours of the head region. We describe the use of dermal substitute in a 2-stage surgery protocol for selected fragile patients to remove NMSC of the head region. A review of the literature focusing on dermal substitutes' safety after skin tumours excision is provided. A total of 45 fragile patients with NMSC in the head region were selected and scheduled for the 2-stage surgical protocol. The first stage consisted of traditional surgical excision and immediate coverage with Hyalomatrix (Fidia Advanced Biopolymers, Abano Terme, Italy). After histology confirmed diagnosis and clearance of the margins, full-thickness skin autografts were performed. All of the patients reached complete tumour excision and wound healing. No local recurrences were registered during 24 months follow up. The 2-stage surgical therapeutic-diagnostic-reconstructive approach represents a less stressful and oncologically safe surgical protocol in selected fragile patients. When patients cannot tolerate invasive and long surgical procedures, general anaesthesia, and long hospitalisation, skin grafting following temporary skin substitute coverage can achieve oncological clearance and provide good functional and aesthetic results. The use of dermal substitutes represents a valid alternative surgical option in cases of ASA III, fragile patients non-eligible for complex reconstructive surgery. To our knowledge, this is the first paper reviewing literature focusing on dermal substitutes' applications and safety after skin tumour excision.
Collapse
Affiliation(s)
- Marco Marcasciano
- Department of Surgery "P. Valdoni", Unit of Plastic and Reconstructive Surgery, Sapienza University of Rome, Policlinico Umberto I, Roma, Italy
| | - Marco Mazzocchi
- Unit of Plastic and Reconstructive Surgery, Department of Surgery, Ospedale Santa Maria Della Misericordia, Perugia (PG), Italy
| | - Juste Kaciulyte
- Department of Surgery "P. Valdoni", Unit of Plastic and Reconstructive Surgery, Sapienza University of Rome, Policlinico Umberto I, Roma, Italy
| | - Noemi Spissu
- UOC di Chirurgia Generale, Ospedale San Francesco, di Nuoro, Italy
| | - Donato Casella
- Department of Surgery "P. Valdoni", Unit of Plastic and Reconstructive Surgery, Sapienza University of Rome, Policlinico Umberto I, Roma, Italy
| | - Diego Ribuffo
- Department of Surgery "P. Valdoni", Unit of Plastic and Reconstructive Surgery, Sapienza University of Rome, Policlinico Umberto I, Roma, Italy
| | | |
Collapse
|
33
|
Tong KL, Mahmood Zuhdi AS, Wan Ahmad WA, Vanhoutte PM, de Magalhaes JP, Mustafa MR, Wong PF. Circulating MicroRNAs in Young Patients with Acute Coronary Syndrome. Int J Mol Sci 2018; 19:ijms19051467. [PMID: 29762500 PMCID: PMC5983847 DOI: 10.3390/ijms19051467] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022] Open
Abstract
Circulating microRNAs (miRNAs) hold great potential as novel diagnostic markers for acute coronary syndrome (ACS). This study sought to identify plasma miRNAs that are differentially expressed in young ACS patients (mean age of 38.5 ± 4.3 years) and evaluate their diagnostic potentials. Small RNA sequencing (sRNA-seq) was used to profile plasma miRNAs. Discriminatory power of the miRNAs was determined using receiver operating characteristic (ROC) analysis. Thirteen up-regulated and 16 down-regulated miRNAs were identified in young ACS patients. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) validation showed miR-183-5p was significantly up-regulated (8-fold) in ACS patients with non-ST-segment elevated myocardial infarction (NSTEMI) whereas miR-134-5p, miR-15a-5p, and let-7i-5p were significantly down-regulated (5-fold, 7-fold and 3.5-fold, respectively) in patients with ST-segment elevated myocardial infarction (STEMI), compared to the healthy controls. MiR-183-5p had a high discriminatory power to differentiate NSTEMI patients from healthy controls (area under the curve (AUC) of ROC = 0.917). The discriminatory power for STEMI patients was highest with let-7i-5p (AUC = 0.833) followed by miR-134-5p and miR-15a-5p and this further improved (AUC = 0.935) with the three miRNAs combination. Plasma miR-183-5p, miR-134-5p, miR-15a-5p and let-7i-5p are deregulated in STEMI and NSTEMI and could be potentially used to discriminate the two ACS forms.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | - Wan Azman Wan Ahmad
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Joao Pedro de Magalhaes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|