1
|
Tribble JT, Pfeiffer RM, Brownell I, Cahoon EK, Sargen MR, Shiels MS, Luo Q, Cohen C, Drezner K, Hernandez B, Moreno A, Pawlish K, Saafir-Callaway B, Engels EA, Volesky-Avellaneda KD. Merkel Cell Carcinoma and Immunosuppression, UV Radiation, and Merkel Cell Polyomavirus. JAMA Dermatol 2025; 161:47-55. [PMID: 39602110 PMCID: PMC11736500 DOI: 10.1001/jamadermatol.2024.4607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Importance Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer. Quantifying the contribution of major potentially modifiable risk factors to the burden of MCC may inform prevention efforts. Objective To estimate the population attributable fraction of MCC cases in the US that were attributable to major immunosuppressing conditions (eg, HIV, solid organ transplant, chronic lymphocytic leukemia [CLL]), ambient UV radiation [UVR] exposure, and Merkel cell polyomavirus [MCPyV]). Design, Setting, and Participants This epidemiological assessment combined data from population-based registries and case series and included cases of MCC that were diagnosed from January 2001 to December 2019 diagnosed in people with HIV, solid organ transplant recipients, and patients with CLL who were identified through population-based cancer registries and linkages with HIV and transplant registries. UVR-based on cloud-adjusted daily ambient UVR irradiance was merged with cancer registry data on the county of residence at diagnosis. Studies reporting the prevalence of MCPyV in MCC specimens collected in the US were combined via a meta-analysis. Exposures HIV, solid organ transplant, CLL, UVR, and MCPyV. Main Outcomes and Measures Population attributable fraction of MCC cases attributable to major risk factors. Results A total of 38 020 MCCs were diagnosed in the US among xx patients (14 325 [38%] female individuals; 1586 [4%] Hispanic, 561 [1%] non-Hispanic Black, and 35 171 [93%] non-Hispanic White individuals). Compared with the general US population, MCC incidence was elevated among people with HIV (standardized incidence ratio [SIR], 2.78), organ transplant recipients (SIR, 13.1), and patients with CLL (SIR, 5.75). Due to the rarity of these conditions, only 0.2% (95% CI, 0.1%-0.3%) of MCC cases were attributable to HIV, 1.5% (95% CI, 1.4%-1.7%) to solid organ transplant, and 0.8% (95% CI, 0.5%-1.3%) to CLL. Compared with individuals of racial and ethnic minority groups, MCC incidence was elevated among non-Hispanic White individuals at lower and higher ambient UVR exposure levels (incidence rate ratios: 4.05 and 4.91, respectively, for MCC on the head and neck). Overall, 65.1% (95% CI, 63.6%-66.7%) of MCCs were attributable to UVR. Based on a meta-analysis of 19 case series, 63.8% (95% CI, 54.5%-70.9%) of MCCs were attributable to MCPyV. Studies were identified from a MEDLINE search performed on October 12, 2023. Conclusions and Relevance The results of this study suggest that most MCC cases in the US were attributable to ambient UVR exposure or MCPyV, with a small fraction due to immunosuppressive conditions. Efforts to lower MCC incidence could focus on limiting UVR exposure.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/epidemiology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/etiology
- Ultraviolet Rays/adverse effects
- Skin Neoplasms/epidemiology
- Skin Neoplasms/virology
- Skin Neoplasms/immunology
- Skin Neoplasms/etiology
- Merkel cell polyomavirus/isolation & purification
- Female
- Male
- Middle Aged
- Immunocompromised Host
- Aged
- Risk Factors
- United States/epidemiology
- Polyomavirus Infections/epidemiology
- Polyomavirus Infections/virology
- Polyomavirus Infections/immunology
- Registries
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Adult
- Organ Transplantation
- HIV Infections/epidemiology
- HIV Infections/immunology
- Incidence
- Aged, 80 and over
Collapse
Affiliation(s)
- Jacob T. Tribble
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Elizabeth K. Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Meredith S. Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Qianlai Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Colby Cohen
- Florida Department of Health, Tallahassee, Florida
| | - Kate Drezner
- HIV/AIDS, Hepatitis, STD, and TB Administration, DC Health, Washington, DC
| | | | - Adrianne Moreno
- Cancer Epidemiology and Surveillance Branch, Texas Department of States Health Services, Austin
| | - Karen Pawlish
- Cancer Epidemiology Services, New Jersey Department of Health, Trenton
| | | | - Eric A. Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Karena D. Volesky-Avellaneda
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
2
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Khattri M, Amako Y, Gibbs JR, Collura JL, Arora R, Harold A, Li MY, Harms PW, Ezhkova E, Shuda M. Methyltransferase-independent function of enhancer of zeste homologue 2 maintains tumorigenicity induced by human oncogenic papillomavirus and polyomavirus. Tumour Virus Res 2023; 16:200264. [PMID: 37244352 PMCID: PMC10258072 DOI: 10.1016/j.tvr.2023.200264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Merkel cell polyomavirus (MCV) and high-risk human papillomavirus (HPV) are human tumor viruses that cause Merkel cell carcinoma (MCC) and oropharyngeal squamous cell carcinoma (OSCC), respectively. HPV E7 and MCV large T (LT) oncoproteins target the retinoblastoma tumor suppressor protein (pRb) through the conserved LxCxE motif. We identified enhancer of zeste homolog 2 (EZH2) as a common host oncoprotein activated by both viral oncoproteins through the pRb binding motif. EZH2 is a catalytic subunit of the polycomb 2 (PRC2) complex that trimethylates histone H3 at lysine 27 (H3K27me3). In MCC tissues EZH2 was highly expressed, irrespective of MCV status. Loss-of-function studies revealed that viral HPV E6/E7 and T antigen expression are required for Ezh2 mRNA expression and that EZH2 is essential for HPV(+)OSCC and MCV(+)MCC cell growth. Furthermore, EZH2 protein degraders reduced cell viability efficiently and rapidly in HPV(+)OSCC and MCV(+)MCC cells, whereas EZH2 histone methyltransferase inhibitors did not affect cell proliferation or viability within the same treatment period. These results suggest that a methyltransferase-independent function of EZH2 contributes to tumorigenesis downstream of two viral oncoproteins, and that direct targeting of EZH2 protein expression could be a promising strategy for the inhibition of tumor growth in HPV(+)OSCC and MCV(+)MCC patients.
Collapse
Affiliation(s)
- Michelle Khattri
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yutaka Amako
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia R Gibbs
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joseph L Collura
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Reety Arora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Meng Yen Li
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Ezhkova
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Krajisnik A, Rezaee N, Crystal J, Duncan ER, Balzer BL, Frishberg DP, Shon W. The Intricate Relationship Between H3K27 Trimethylation and Merkel Cell Polyomavirus Status in Merkel Cell Carcinoma. Am J Dermatopathol 2023; 45:783-785. [PMID: 37856744 DOI: 10.1097/dad.0000000000002541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
| | - Neda Rezaee
- Departments of Pathology and Laboratory Medicine, and
| | | | | | | | | | - Wonwoo Shon
- Departments of Pathology and Laboratory Medicine, and
| |
Collapse
|
5
|
Durand MA, Drouin A, Mouchard A, Durand L, Esnault C, Berthon P, Tallet A, Le Corre Y, Hainaut-Wierzbicka E, Blom A, Saiag P, Beneton N, Bens G, Nardin C, Aubin F, Dinulescu M, Collin C, Fromont-Hankard G, Cribier B, Laurent-Roussel S, Cokelaere K, Houben R, Schrama D, Peixoto P, Hervouet E, Bachiri K, Kantar D, Coyaud E, Guyétant S, Samimi M, Touzé A, Kervarrec T. Distinct Regulation of EZH2 and its Repressive H3K27me3 Mark in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. J Invest Dermatol 2023; 143:1937-1946.e7. [PMID: 37037414 DOI: 10.1016/j.jid.2023.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.
Collapse
Affiliation(s)
- Marie-Alice Durand
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Aurélie Drouin
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Alice Mouchard
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Department of Dermatology, CHRU of Tours, University of Tours, Chambray-lès-Tours, France
| | - Laurine Durand
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Clara Esnault
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Patricia Berthon
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, CHU of Tours, University of Tours, Tours, France
| | - Yannick Le Corre
- Dermatology Department, CHU of Angers, LUNAM University, Angers, France
| | | | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, CARADERM Network, Boulogne-Billancourt, France; Research unit EA 4340, University of Versailles-Saint-Quentin-en-Yvelines, Paris-Saclay University, Boulogne-Billancourt, France
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, CARADERM Network, Boulogne-Billancourt, France; Research unit EA 4340, University of Versailles-Saint-Quentin-en-Yvelines, Paris-Saclay University, Boulogne-Billancourt, France
| | - Nathalie Beneton
- Dermatology Department, CHU of Le Mans, University of Le Mans, Le Mans, France
| | - Guido Bens
- Dermatology department, CHR Orleans, Orleans, France
| | - Charlee Nardin
- Dermatology, CHU Besançon, Besançon, France; INSERM 1098, Université Bourgogne Franche-Comté, Besançon, France
| | - François Aubin
- Dermatology, CHU Besançon, Besançon, France; INSERM 1098, Université Bourgogne Franche-Comté, Besançon, France
| | - Monica Dinulescu
- Dermatology department, CHU Rennes, Institut Dermatologique du Grand Ouest (IDGO), Rennes, France
| | - Christine Collin
- Platform of Somatic Tumor Molecular Genetics, CHU of Tours, University of Tours, Tours, France
| | | | - Bernard Cribier
- Dermatology Department, CHU of Strasbourg, University of Strasbourg, Strasbourg, France
| | | | | | - Roland Houben
- Department of Dermatology, Venerology and Allergology, University Hospital of Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venerology and Allergology, University Hospital of Würzburg, Würzburg, Germany
| | - Paul Peixoto
- INSERM, EFS-BFC, UMR 1098 RIGHT, University Bourgogne-Franche-Comté, Besançon, France; EPIgenetics and GENe Expression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- INSERM, EFS-BFC, UMR 1098 RIGHT, University Bourgogne-Franche-Comté, Besançon, France; EPIgenetics and GENe Expression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, Besançon, France
| | - Kamel Bachiri
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Diala Kantar
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Etienne Coyaud
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Serge Guyétant
- Pathology Department, CHU of Tours, University of Tours, Tours, France; Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Mahtab Samimi
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Department of Dermatology, CHRU of Tours, University of Tours, Chambray-lès-Tours, France
| | - Antoine Touzé
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Thibault Kervarrec
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Pathology Department, CHU of Tours, University of Tours, Tours, France.
| |
Collapse
|
6
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Zhu Y, Yin Y, Li F, Ren Z, Dong Y. A review on the oncogenesis of Merkel cell carcinoma: Several subsets arise from different stages of differentiation of stem cell. Medicine (Baltimore) 2023; 102:e33535. [PMID: 37058042 PMCID: PMC10101282 DOI: 10.1097/md.0000000000033535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Merkel cell carcinoma (MCC), a rare primary cutaneous neuroendocrine neoplasm, is extremely aggressive and has a higher mortality rate than melanoma. Based on Merkel cell polyomavirus (MCPyV) status and morphology, MCCs are often divided into several distinct subsets: pure MCPyV-positive, pure MCPyV-negative, and combined MCC. MCPyV-positive MCC develops by the clonal integration of viral DNA, whereas MCPyV-negative MCC is induced by frequent ultraviolet (UV)-mediated mutations, that are characterized by a high mutational burden, UV signature mutations, and many mutations in TP53 and retinoblastoma suppressor gene (RB1). Combined MCC consists of an intimate mix of MCC and other cutaneous tumor populations, and is usually MCPyV-negative, with rare exceptions. Based on the existing subsets of MCC, it is speculated that there are at least 4 stages in the natural history of stem cell differentiation: primitive pluripotent stem cells, divergent differentiated stem cells, unidirectional stem cells, and Merkel cells (or epidermal/adnexal cells). In the first stage, MCPyV may integrate into the genome of primitive pluripotent stem cells, driving oncogenesis in pure MCPyV-positive MCC. If MCPyV integration does not occur, the stem cells enter the second stage and acquire the ability to undergo multidirectional neuroendocrine and epidermal (or adnexal) differentiation. At this stage, accumulated UV-mediated mutations may drive the development of combined MCC. In the third stage, the stem cells differentiate into unidirectional neuroendocrine stem cells, UV-mediated mutations can induce carcinogenesis in pure MCPyV-negative MCC. Therefore, it has been speculated that several subsets of MCCs arise from different stages of differentiation of common stem cells.
Collapse
Affiliation(s)
- Yueyang Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuqiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiyuan Ren
- Department of Mechanical Engineering, University of Illinois Urbana Champaign, Champaign, IL
| | - Yaru Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
DeCoste RC, Walsh NM, Gaston D, Ly TY, Pasternak S, Cutler S, Nightingale M, Carter MD. RB1-deficient squamous cell carcinoma: the proposed source of combined Merkel cell carcinoma. Mod Pathol 2022; 35:1829-1836. [PMID: 36075957 DOI: 10.1038/s41379-022-01151-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/05/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine (NE) carcinoma arising from integration of Merkel cell polyomavirus (MCPyV) DNA into a host cell or from ultraviolet light-induced genetic damage (proportions vary geographically). Tumors in the latter group include those with "pure" NE phenotype and those "combined" with other elements, most often squamous cell carcinoma (SCC). We performed comprehensive genomic profiling (CGP) of MCPyV+ and MCPyV- (pure and combined) tumors, to better understand their mutational profiles and shed light on their pathogenesis. Supplemental immunohistochemistry for Rb expression was also undertaken. After eliminating low quality samples, 37 tumors were successfully analyzed (14 MCPyV+, 8 pure MCPyV- and 15 combined MCPyV-). The SCC and NE components were sequenced separately in 5 combined tumors. Tumor mutational burden was lower in MCPyV+ tumors (mean 1.66 vs. 29.9/Mb, P < 0.0001). MCPyV- tumors featured frequent mutations in TP53 (95.6%), RB1 (87%), and NOTCH family genes (95.6%). No recurrently mutated genes were identified in MCPyV+ tumors. Mutational overlap in the NE and SCC components of combined tumors was substantial ('similarity index' >24% in 4/5 cases). Loss of Rb expression correlated with RB1 mutational (P < 0.0001) and MCPyV- status (P < 0.0001) in MCCs and it was observed more frequently in the SCC component of combined MCC than in a control group of conventional cutaneous SCC (P = 0.0002). Our results (i) support existing evidence that MCPyV+ and MCPyV- MCCs are pathogenetically distinct entities (ii) concur with earlier studies linking the NE and SCC components of combined MCCs via shared genetic profiles and (iii) lend credence to the proposal that an Rb-deficient subset of SCC's is the source of phenotypically divergent combined MCCs.
Collapse
Affiliation(s)
- Ryan C DeCoste
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, Canada.
| | - Noreen M Walsh
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Daniel Gaston
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Thai Yen Ly
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Sam Cutler
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Mat Nightingale
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Michael D Carter
- Department of Pathology and Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Jay Sarkar T, Hermsmeier M, L. Ross J, Scott Herron G. Genetic and Epigenetic Influences on Cutaneous Cellular Senescence. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.
Collapse
|
10
|
Yang JF, You J. Merkel cell polyomavirus and associated Merkel cell carcinoma. Tumour Virus Res 2022; 13:200232. [PMID: 34920178 PMCID: PMC8715208 DOI: 10.1016/j.tvr.2021.200232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a ubiquitous skin infection that can cause Merkel cell carcinoma (MCC), a highly lethal form of skin cancer with a nearly 50% mortality rate. Since the discovery of MCPyV in 2008, great advances have been made to improve our understanding of how the viral encoded oncoproteins contribute to MCC oncogenesis. However, our knowledge of the MCPyV infectious life cycle and its oncogenic mechanisms are still incomplete. The incidence of MCC has tripled over the past two decades, but effective treatments are lacking. Only recently have there been major victories in combatting metastatic MCC with the application of PD-1 immune checkpoint blockade. Still, these immune-based therapies are not ideal for patients with a medical need to maintain systemic immune suppression. As such, a better understanding of MCPyV's oncogenic mechanisms is needed in order to develop more effective and targeted therapies against virus-associated MCC. In this review, we discuss current areas of interest for MCPyV and MCC research and the progress made in elucidating both the natural host of MCPyV infection and the cell of origin for MCC. We also highlight the remaining gaps in our knowledge on the transcriptional regulation of MCPyV, which may be key to understanding and targeting viral oncogenesis for developing future therapies.
Collapse
Affiliation(s)
- June F Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
11
|
Kuriyama Y, Shimizu A, Kim J, Yasuda M, Motegi SI. The differential expression of long interspersed nuclear elements-1 as a marker for hypomethylation in Merkel cell carcinoma. Clin Exp Dermatol 2022; 47:1726-1728. [PMID: 35596537 DOI: 10.1111/ced.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yuko Kuriyama
- Department of Dermatology, Gunma University Graduate School of Medicine
| | - Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine
| | - Jain Kim
- Department of Dermatology, Kanazawa Medical University
| | | | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine
| |
Collapse
|
12
|
Ladányi A, Hegyi B, Balatoni T, Liszkay G, Rohregger R, Waldnig C, Dudás J, Ferrone S. HLA Class I Downregulation in Progressing Metastases of Melanoma Patients Treated With Ipilimumab. Pathol Oncol Res 2022; 28:1610297. [PMID: 35531074 PMCID: PMC9073691 DOI: 10.3389/pore.2022.1610297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022]
Abstract
Characterization of the molecular mechanisms underlying antitumor immune responses and immune escape mechanisms has resulted in the development of more effective immunotherapeutic strategies, including immune checkpoint inhibitor (ICI) therapy. ICIs can induce durable responses in patients with advanced cancer in a wide range of cancer types, however, the majority of the patients fail to respond to this therapy or develop resistance in the course of the treatment. Information about the molecular mechanisms underlying primary and acquired resistance is limited. Although HLA class I molecules are crucial in the recognition of tumor antigens by cytotoxic T lymphocytes, only a few studies have investigated the role of their expression level on malignant cells in ICI resistance. To address this topic, utilizing immunohistochemical staining with monoclonal antibodies (mAbs) we analyzed HLA class I expression level in pre-treatment and post-treatment tumor samples from melanoma patients treated with ipilimumab. Twenty-nine metastases removed from six patients were available for the study, including 18 pre-treatment and 11 post-treatment lesions. Compared to metastases excised before ipilimumab therapy, post-treatment lesions displayed a significantly lower HLA class I expression level on melanoma cells; HLA class I downregulation was most marked in progressing metastases from nonresponding patients. We also evaluated the level of infiltration by CD8+ T cells and NK cells but did not find consistent changes between pre- and post-treatment samples. Our results indicate the potential role of HLA class I downregulation as a mechanism of ICI resistance.
Collapse
Affiliation(s)
- Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Barbara Hegyi
- Department of Thoracic and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary.,Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - Tímea Balatoni
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Liszkay
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Raphael Rohregger
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Waldnig
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Genomic evidence suggests that cutaneous neuroendocrine carcinomas can arise from squamous dysplastic precursors. Mod Pathol 2022; 35:506-514. [PMID: 34593967 PMCID: PMC8964828 DOI: 10.1038/s41379-021-00928-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma without a known dysplastic precursor. In some cases, MCC is associated with SCCIS in the overlying epidermis; however, the MCC and SCCIS populations display strikingly different morphologies, and thus far a relationship between these components has not been demonstrated. To better understand the relationship between these distinct tumor cell populations, we evaluated 7 pairs of MCC-SCCIS for overlapping genomic alterations by cancer profiling panel. A subset was further characterized by transcriptional profiling and immunohistochemistry. In 6 of 7 MCC-SCCIS pairs there was highly significant mutational overlap including shared TP53 and/or RB1 mutations. In some cases, oncogenic events previously implicated in MCC (MYCL gain, MDM4 gain, HRAS mutation) were detected in both components. Although FBXW7 mutations were enriched in MCC, no gene mutation was unique to the MCC component across all cases. Transcriptome analysis identified 2736 differentially expressed genes between MCC and SCCIS. Genes upregulated in the MCC component included Polycomb repressive complex targets; downregulated transcripts included epidermal markers, and immune genes such as HLA-A. Immunohistochemical studies revealed increased expression of SOX2 in the MCC component, with diminished H3K27Me3, Rb, and HLA-A expression. In summary, MCC-SCCIS pairs demonstrate clonal relatedness. The shift to neuroendocrine phenotype is associated with loss of Rb protein expression, decrease in global H3K27Me3, and increased expression of Merkel cell genes such as SOX2. Our findings suggest an epidermal origin of MCC in this setting, and to our knowledge provide the first molecular evidence that intraepithelial squamous dysplasia may represent a direct precursor for small cell carcinoma.
Collapse
|
15
|
Mazziotta C, Lanzillotti C, Gafà R, Touzé A, Durand MA, Martini F, Rotondo JC. The Role of Histone Post-Translational Modifications in Merkel Cell Carcinoma. Front Oncol 2022; 12:832047. [PMID: 35350569 PMCID: PMC8957841 DOI: 10.3389/fonc.2022.832047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non-melanoma skin cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, is the etiological agent of MCC. Although representing a small proportion of MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic mechanisms, including histone post-translational modifications (PTMs) in MCC, have been only partially determined. This review aims to describe the most recent progress on PTMs and their regulative factors in the context of MCC onset/development, providing an overview of current findings on both MCC subtypes. An outline of current knowledge on the potential employment of PTMs and related factors as diagnostic and prognostic markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC therapy is provided. Recent research shows that PTMs are emerging as important epigenetic players involved in MCC onset/development, and therefore may show a potential clinical significance. Deeper and integrated knowledge of currently known PTM dysregulations is of paramount importance in order to understand the molecular basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this deadly tumor.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Marie-Alice Durand
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic Dysregulations in Merkel Cell Polyomavirus-Driven Merkel Cell Carcinoma. Int J Mol Sci 2021; 22:11464. [PMID: 34768895 PMCID: PMC8584046 DOI: 10.3390/ijms222111464] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Krump NA, You J. From Merkel Cell Polyomavirus Infection to Merkel Cell Carcinoma Oncogenesis. Front Microbiol 2021; 12:739695. [PMID: 34566942 PMCID: PMC8457551 DOI: 10.3389/fmicb.2021.739695] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host responses that normally control MCPyV infection could inform prophylactic measures in at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with vulnerabilities that-if better characterized-could yield targeted intervention solutions for metastatic MCC cases. In this review, we discuss recent developments in elucidating the interplay between host cells and MCPyV within the context of viral infection and MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV infection in aging and chronically UV-damaged skin causes unbridled viral replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Gujar H, Mehta A, Li HT, Tsai YC, Qiu X, Weisenberger DJ, Jasiulionis MG, In GK, Liang G. Characterizing DNA methylation signatures and their potential functional roles in Merkel cell carcinoma. Genome Med 2021; 13:130. [PMID: 34399838 PMCID: PMC8365948 DOI: 10.1186/s13073-021-00946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer with limited treatment possibilities. Merkel cell tumors display with neuroendocrine features and Merkel cell polyomavirus (MCPyV) infection in the majority (80%) of patients. Although loss of histone H3 lysine 27 trimethylation (H3K27me3) has been shown during MCC tumorigenesis, epigenetic dysregulation has largely been overlooked. METHODS We conducted global DNA methylation profiling of clinically annotated MCC primary tumors, metastatic skin tumors, metastatic lymph node tumors, paired normal tissues, and two human MCC cell lines using the Illumina Infinium EPIC DNA methylation BeadArray platform. RESULTS Significant differential DNA methylation patterns across the genome are revealed between the four tissue types, as well as based on MCPyV status. Furthermore, 964 genes directly regulated by promoter or gene body DNA methylation were identified with high enrichment in neuro-related pathways. Finally, our findings suggest that loss of H3K27me3 occupancy in MCC is attributed to KDM6B and EZHIP overexpression as a consequence of promoter DNA hypomethylation. CONCLUSIONS We have demonstrated specific DNA methylation patterns for primary MCC tumors, metastatic MCCs, and adjacent-normal tissues. We have also identified DNA methylation markers that not only show potential diagnostic or prognostic utility in MCC management, but also correlate with MCC tumorigenesis, MCPyV expression, neuroendocrine features, and H3K27me3 status. The identification of DNA methylation alterations in MCC supports the need for further studies to understand the clinical implications of epigenetic dysregulation and potential therapeutic targets in MCC.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Arjun Mehta
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Yvonne C. Tsai
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Xiangning Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP 04039032 Brazil
| | - Gino K. In
- Department of Dermatology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
19
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
20
|
Oss-Ronen L, Cohen I. Epigenetic regulation and signalling pathways in Merkel cell development. Exp Dermatol 2021; 30:1051-1064. [PMID: 34152646 DOI: 10.1111/exd.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Merkel cells are specialized epithelial cells connected to afferent nerve endings responsible for light-touch sensations, formed at specific locations in touch-sensitive regions of the mammalian skin. Although Merkel cells are descendants of the epidermal lineage, little is known about the mechanisms responsible for the development of these unique mechanosensory cells. Recent studies have highlighted that the Polycomb group (PcG) of proteins play a significant role in spatiotemporal regulation of Merkel cell formation. In addition, several of the major signalling pathways involved in skin development have been shown to regulate Merkel cell development as well. Here, we summarize the current understandings of the role of developmental regulators in Merkel cell formation, including the interplay between the epigenetic machinery and key signalling pathways, and the lineage-specific transcription factors involved in the regulation of Merkel cell development.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
21
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
22
|
Tomassen T, Kester LA, Tops BB, Driehuis E, van Noesel MM, van Ewijk R, van Gorp JM, Hulsker CC, Terwisscha-van Scheltinga SEJ, Merks HHM, Flucke U, Hiemcke-Jiwa LS. Loss of H3K27me3 occurs in a large subset of embryonal rhabdomyosarcomas: Immunohistochemical and molecular analysis of 25 cases. Ann Diagn Pathol 2021; 52:151735. [PMID: 33770660 DOI: 10.1016/j.anndiagpath.2021.151735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Loss of histone 3 lysine 27 trimethylation (H3K27me3) has been described as a diagnostic marker for malignant peripheral nerve sheath tumor (MPNST), also discriminating MPNST with rhabdomyoblastic differentiation (malignant Triton tumor) from rhabdomyosarcoma (RMS). We studied the immunohistochemical expression of H3K27me3 in embryonal RMSs (ERMSs), performed methylation profiling in order to support the diagnosis and RNA-sequencing for comparison of the transcriptome of H3K27me3-positive and -negative cases. Of the 25 ERMS patients, 17 were males and 8 were females with an age range from 1 to 67 years (median, 6 years). None were known with neurofibromatosis type 1. One patient had Li-Fraumeni syndrome. Tumor localization included paratesticular (n = 9), genitourinary (n = 6), head/neck (n = 5), retroperitoneal (n = 4) and lower arm (n = 1). Five MPNSTs served as reference group. All ERMS had classical features including a variable spindle cell component. Immunohistochemical loss (partial or complete) of H3K27me3 was detected in 18/25 cases (72%). Based on methylation profiling, 22/22 cases were classified as ERMS. Using RNA sequencing, the ERMS group (n = 14) had a distinct gene expression profile in contrast to MPNSTs, confirming that the H3K27me3 negative ERMS cases do not represent malignant Triton tumors. When comparing H3K27me3-negative and -positive ERMSs, gene set enrichment analysis revealed differential expression of genes related to histone acetylation and normal muscle function with H3K27me3 negative ERMSs being associated with acetylation. Conclusion: Loss of H3K27me3 frequently occurs in ERMSs and correlates with H3K27 acetylation. H3K27me3 is not a suitable marker to differentiate ERMS (with spindle cell features) from malignant Triton tumor.
Collapse
Affiliation(s)
- Tess Tomassen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bastiaan B Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Else Driehuis
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Joost M van Gorp
- Department of Pathology, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | - Hans H M Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
23
|
Zhao J, Jia Y, Shen S, Kim J, Wang X, Lee E, Brownell I, Cho-Vega JH, Lewis C, Homsi J, Sharma RR, Wang RC. Merkel Cell Polyomavirus Small T Antigen Activates Noncanonical NF-κB Signaling to Promote Tumorigenesis. Mol Cancer Res 2020; 18:1623-1637. [PMID: 32753470 DOI: 10.1158/1541-7786.mcr-20-0587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023]
Abstract
Multiple human polyomaviruses (HPyV) can infect the skin, but only Merkel cell polyomavirus (MCPyV) has been implicated in the development of a cancer, Merkel cell carcinoma (MCC). While expression of HPyV6, HPyV7, and MCPyV small T antigens (sT), all induced a senescence-associated secretory phenotype (SASP), MCPyV sT uniquely activated noncanonical NF-κB (ncNF-κB), instead of canonical NF-κB signaling, to evade p53-mediated cellular senescence. Through its large T stabilization domain, MCPyV sT activated ncNF-κB signaling both by inducing H3K4 trimethylation-mediated increases of NFKB2 and RELB transcription and also by promoting NFKB2 stabilization and activation through FBXW7 inhibition. Noncanonical NF-κB signaling was required for SASP cytokine secretion, which promoted the proliferation of MCPyV sT-expressing cells through autocrine signaling. Virus-positive MCC cell lines and tumors showed ncNF-κB pathway activation and SASP gene expression, and the inhibition of ncNF-κB signaling prevented VP-MCC cell growth in vitro and in xenografts. We identify MCPyV sT-induced ncNF-κB signaling as an essential tumorigenic pathway in MCC. IMPLICATIONS: This work is the first to identify the activation of ncNF-κB signaling by any polyomavirus and its critical role in MCC tumorigenesis.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yuemeng Jia
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas
| | - Shunli Shen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiwoong Kim
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Xun Wang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas
| | - Eunice Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Isaac Brownell
- Cutaneous Development and Carcinogenesis Section, NIAMS, Bethesda, Maryland
| | - Jeong Hee Cho-Vega
- Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida
| | - Cheryl Lewis
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Jade Homsi
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rohit R Sharma
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Richard C Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Merkel cell carcinoma (MCC), a rapidly progressing skin cancer, has poor prognosis. We reviewed the epidemiology, pathogenesis, diagnosis and treatment of MCC, with a focus on recent therapeutic advancements. RECENT FINDINGS Risk factors for MCC, such as old age, immunosuppression, polyomavirus infection and exposure to UV radiation have already been identified, but the underlying mechanisms leading to carcinogenesis still need clarification. On the basis of recent advances, immunotherapy - in particular, inhibition targeting the programmed cell death protein 1/programmed death-ligand 1 (PD1)/PDL1) immune checkpoint blockade - is currently being investigated in the treatment of metastatic MCC. Avelumab, an anti-PDL1 antibody, was the first drug to be approved internationally as second-line monotherapy for patients with advanced MCC, based on results from the JAVELIN Merkel 200 clinical trial. Avelumab has also recently been approved as first-line treatment for advanced MCC in Europe. Pembrolizumab (anti-PD1) in first-line and nivolumab (anti-PD1) in first-line and second-line treatments are two other checkpoint inhibitors that are under investigation, and showing promising results. New innovative therapies are also in development. SUMMARY New insights concerning advances in MCC diagnosis and treatment have been highlighted. Immunotherapy for metastatic MCC constitutes a recent breakthrough in an unmet medical need, but alternative therapies should continue to be investigated.
Collapse
Affiliation(s)
- Véronique Del Marmol
- Department of Dermatology and Venereology, Hopital Erasme-Université Libre de Bruxelles, Brussels, Belgium
| | - Celeste Lebbé
- APHP, Department of Dermatology, Saint-Louis Hospital, Sorbonne Paris Cité Université, Paris Diderot, INSERM U976, Paris, France
| |
Collapse
|
25
|
Nehme Z, Pasquereau S, Herbein G. Targeting histone epigenetics to control viral infections. HISTONE MODIFICATIONS IN THERAPY 2020. [PMCID: PMC7453269 DOI: 10.1016/b978-0-12-816422-8.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decades, many studies have significantly broadened our understanding of complex virus-host interactions to control chromatin structure and dynamics.1, 2 However, the role and impact of such modifications during viral infections is not fully revealed. Indeed, this type of regulation is bidirectional between the virus and the host. While viral replication and gene expression are significantly impacted by histone modifications on the viral chromatin,3 studies have shown that some viral pathogens dynamically manipulate cellular epigenetic factors to enhance their own survival and pathogenesis, as well as escape the immune system defense lines.4 In this dynamic, histone posttranslational modifications (PTMs) appear to play fundamental roles in the regulation of chromatin structure and recruitment of other factors.5 Genuinely, those PTMs play a vital role in lytic infection, latency reinforcement, or, conversely, viral reactivation.6 In this chapter, we will examine and review the involvement of histone modifications as well as their potential manipulation to control infections during various viral life cycle stages, highlighting their prospective implications in the clinical management of human immunodeficiency virus (HIV), herpes simplex virus (HSV), human cytomegalovirus (HCMV), hepatitis B and C viruses (HBV and HCV, respectively), Epstein–Barr virus (EBV), and other viral diseases. Targeting histone modifications is critical in setting the treatment of chronic viral infections with both lytic and latent stages (HIV, HCMV, HSV, RSV), virus-induced cancers (HBV, HCV, EBV, KSHV, HPV), and epidemic/emerging viruses (e.g. influenza virus, arboviruses).
Collapse
|
26
|
Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Mod Pathol 2019; 32:1434-1446. [PMID: 31175328 PMCID: PMC6763358 DOI: 10.1038/s41379-019-0287-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Malignant peripheral nerve sheath tumors contain loss of histone H3K27 trimethylation (H3K27me3) due to driver mutations affecting the polycomb repressive complex 2 (PRC2). Consequently, loss of H3K27me3 staining has served as a diagnostic marker for this tumor type. However, recent reports demonstrate H3K27me3 loss in numerous other tumors, including some in the differential diagnosis of malignant peripheral nerve sheath tumor. Since these tumors lose H3K27me3 through mechanisms distinct from PRC2 loss, we set out to determine whether loss of dimethylation of H3K27, which is also catalyzed by PRC2, might be a more specific marker of PRC2 loss and malignant peripheral nerve sheath tumor. Using mass spectrometry, we identify a near complete loss of H3K27me2 in malignant peripheral nerve sheath tumors and cell lines. Immunohistochemical analysis of 72 malignant peripheral nerve sheath tumors, seven K27M-mutant gliomas, 43 ependymomas, and 10 Merkel cell carcinomas demonstrates that while H3K27me3 loss is common across these tumor types, H3K27me2 loss is limited to malignant peripheral nerve sheath tumors and is highly concordant with H3K27me3 loss (33/34 cases). Thus, increased specificity does not come at the cost of greatly reduced sensitivity. To further compare H3K27me2 and H3K27me3 immunohistochemistry, we investigated 42 melanomas and 54 synovial sarcomas, histologic mimics of malignant peripheral nerve sheath tumor with varying degrees of H3K27me3 loss in prior reports. While global H3K27me3 loss was not seen in these tumors, weak and limited H3K27me3 staining was common. By contrast, H3K27me2 staining was more clearly retained in all cases, making it a superior binary classifier. This was confirmed by digital image analysis of stained slides. Our findings indicate that H3K27me2 loss is highly specific for PRC2 loss and that PRC2 loss is a rarer phenomenon than H3K27me3 loss. Consequently, H3K27me2 loss is a superior diagnostic marker for malignant peripheral nerve sheath tumor.
Collapse
|
27
|
Saller J, Seydafkan S, Shahid M, Gadara M, Cives M, Eschrich SA, Boulware D, Strosberg JR, Aejaz N, Coppola D. EPB41L5 is Associated With the Metastatic Potential of Low-grade Pancreatic Neuroendocrine Tumors. Cancer Genomics Proteomics 2019; 16:309-318. [PMID: 31467225 PMCID: PMC6727072 DOI: 10.21873/cgp.20136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Low-grade pancreatic neuroendocrine tumors (LG-PNETs) behave unpredictably. The aim of the study was to identify biomarkers that predict PNET metastasis to improve treatment selection. PATIENTS AND METHODS Five patients with primary non-metastatic LG-PNETs, six with primary LG-PNETs with synchronous or metachronous metastases (M-PNETs), and six metastatic to liver LG-PNETs (ML-PNETs) from the group of six M-PNET patients were selected. RNA data were normalized using iterative rank-order normalization. Student's t-test identified differentially-expressed genes in LG-PNETs versus M-PNETs. A 2-fold difference in expression was considered to be significant. Results were validated with an independent dataset of LG-PNETs and metastatic LG-PNETs. RESULTS Overall, 195 genes had a >2-fold change (in either direction). A total of 29 genes were differentially overexpressed in M-PNETs. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) had a 2.07-fold change increase in M-PNETs and the smallest p-value. EPB41L5 was not statistically different between M-PNETs and ML-PNETs. EPB41L5 differential expression between primary and metastatic LG-PNETs was confirmed by immunohistochemistry. CONCLUSION These results support further investigation into whether EPB41L5 is a biomarker of PNETs with high risk for metastases.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Shabnam Seydafkan
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Mohammad Shahid
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Manoj Gadara
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Mauro Cives
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Steven A Eschrich
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - David Boulware
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Jonathan R Strosberg
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Nasir Aejaz
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.
- Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
- Department of Oncological Sciences, University of South Florida, Tampa, FL, U.S.A
| |
Collapse
|
28
|
Balakrishnan L, Milavetz B. Epigenetic Regulation of Viral Biological Processes. Viruses 2017; 9:v9110346. [PMID: 29149060 PMCID: PMC5707553 DOI: 10.3390/v9110346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
It is increasingly clear that DNA viruses exploit cellular epigenetic processes to control their life cycles during infection. This review will address epigenetic regulation in members of the polyomaviruses, adenoviruses, human papillomaviruses, hepatitis B, and herpes viruses. For each type of virus, what is known about the roles of DNA methylation, histone modifications, nucleosome positioning, and regulatory RNA in epigenetic regulation of the virus infection will be discussed. The mechanisms used by certain viruses to dysregulate the host cell through manipulation of epigenetic processes and the role of cellular cofactors such as BRD4 that are known to be involved in epigenetic regulation of host cell pathways will also be covered. Specifically, this review will focus on the role of epigenetic regulation in maintaining viral episomes through the generation of chromatin, temporally controlling transcription from viral genes during the course of an infection, regulating latency and the switch to a lytic infection, and global dysregulation of cellular function.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Barry Milavetz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| |
Collapse
|
29
|
Reduced H3K27me3 expression in radiation-associated angiosarcoma of the breast. Virchows Arch 2017; 472:361-368. [DOI: 10.1007/s00428-017-2242-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
|