1
|
Chen Y, Lu X, Peng G, Liu S, Wang M, Hou H. A bibliometric analysis of research on PD-1/PD-L1 in urinary tract tumors. Hum Vaccin Immunother 2024; 20:2390727. [PMID: 39385743 PMCID: PMC11469446 DOI: 10.1080/21645515.2024.2390727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are key components in immune checkpoint studies across various tumors, including those in the urinary tract. The utilization of PD-1/PD-L1 inhibitors in urinary tract tumors is on the rise. This study provides a comprehensive overview of PD-1/PD-L1 research in urinary tract tumors through bibliometric analysis. A search was conducted in the Web of Science Core Collection (WoSCC) database for academic papers on PD-1/PD-L1 in urinary tract tumors published between January 1, 1999, and September 3, 2022. Tools such as VOSviewer, CiteSpace, and an online bibliometric platform, were used for an in-depth analysis covering countries, institutions, authors, journals, references, and keywords. A total of 1,711 articles on PD-1/PD-L1 in urinary tract tumors were analyzed. The United States led in article contributions, followed by China and Japan. Harvard University was the top institution in this research area. With notable conctributions from Choueiri TK, who authored 48 related articles. The Journal for Immunotherapy of Cancer was the top publisher, and Topalian SL's 2012 publication in The New England Journal of Medicine was the most cited article. Key author keywords included "immunotherapy," "PD-L1," "renal cell carcinoma," "bladder cancer," and "immune checkpoint inhibitors." Notably, research on the role of PD-1/PD-L1 in kidney and bladder cancer has garnered significant attention.
Collapse
Affiliation(s)
- Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Genyuan Peng
- Department of Gastrointestinal Surgery, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhou QQ, Guo J, Wang Z, Li J, Chen M, Xu Q, Zhu L, Xu Q, Wang Q, Pan H, Pan J, Zhu Y, Song M, Liu X, Wang J, Zhang Z, Zhang L, Wang Y, Cai H, Chen X, Lu G. Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology. J Adv Res 2024; 65:257-271. [PMID: 38072311 PMCID: PMC11519053 DOI: 10.1016/j.jare.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. OBJECTIVE To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. METHODS We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. RESULTS The entire process from signal collection to visualization could be completed within 30 min. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31 %) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. CONCLUSIONS This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.
Collapse
Affiliation(s)
- Qing-Qing Zhou
- Department of Radiology, Jinling Hospital, Affiliated Nanjing Medical University, Nanjing, China; Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxing Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Nanjing Nuoyuan Medical Devices Co. Ltd, Nanjing, China
| | - Jianrui Li
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meng Chen
- Nanjing Nuoyuan Medical Devices Co. Ltd, Nanjing, China
| | - Qiang Xu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Zhu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Xu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Pan
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Ming Song
- Department of Mathmatical Sciences, The University of Texas at Dallas, Richardson, USA
| | - Xiaoxue Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Huiming Cai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Nanjing Nuoyuan Medical Devices Co. Ltd, Nanjing, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Affiliated Nanjing Medical University, Nanjing, China; Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Wang B, Zhou R, Wu J, Kim H, Kim K. Inhibition of δ-catenin palmitoylation slows the progression of prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119741. [PMID: 38697304 DOI: 10.1016/j.bbamcr.2024.119741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.
Collapse
Affiliation(s)
- Beini Wang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jin Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer 2024; 23:26. [PMID: 38291400 PMCID: PMC10826015 DOI: 10.1186/s12943-024-01941-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea
| | - Gyeongjun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario, ON, M5S 3H6, Canada
| | - Amos C Lee
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation. J Nutr Biochem 2023; 112:109186. [PMID: 36309154 DOI: 10.1016/j.jnutbio.2022.109186] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
PD-L1 interacts with its receptor PD-1 on T cells to negatively regulate T cell function, leading to cancer cell immune escape from the immune surveillance. Therefore, targeting PD-L1 is considered to be an attractive approach for cancer immunotherapy. In this study, we demonstrated for the first time that ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) reduced the expression of PD-L1 in cancer cells both in vitro and in vivo. Promotion of PD-L1 ubiquitin-proteasome degradation by DHA resulted in a decrease of PD-L1 expression, leading to reduction of PD-L1 and PD-1 interaction, and reversing PD-L1-mediated immune suppression, which in turn contributed to the inhibitory effect on tumor growth. Furtherly, DHA significantly reduced fatty acid synthase (FASN) expression in cancer cells, which inhibited the palmitoyltransferases DHHC5, promoting the CSN5-dependent PD-L1 degradation. Our present finding uncovered a novel mechanism involved in the anti-cancer activity of DHA, and implicated that DHA holds promising potential to be developed as a novel immune-enhancer for cancer treatment and prevention.
Collapse
|
6
|
Yu Y, Gao L, Wang Y, Xu B, Maswikiti EP, Li H, Zheng P, Tao P, Xiang L, Gu B, Lucas A, Chen H. A Forgotten Corner in Cancer Immunotherapy: The Role of Lipids. Front Oncol 2021; 11:751086. [PMID: 34722305 PMCID: PMC8551635 DOI: 10.3389/fonc.2021.751086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, cancer immunotherapy has achieved great success owing to the unravelling of unknown molecular forces in cancer immunity. However, it is critical that we address the limitations of current immunotherapy, including immune-related adverse events and drug resistance, and further enhance current immunotherapy. Lipids are reported to play important roles in modulating immune responses in cancer. Cancer cells use lipids to support their aggressive behaviour and allow immune evasion. Metabolic reprogramming of cancer cells destroys the equilibrium between lipid anabolism and catabolism, resulting in lipid accumulation within the tumour microenvironment (TME). Consequently, ubiquitous lipids, mainly fatty acids, within the TME can impact the function and phenotype of infiltrating immune cells. Determining the complex roles of lipids and their interactions with the TME will provide new insight for improving anti-tumour immune responses by targeting lipids. Herein, we present a review of recent literature that has demonstrated how lipid metabolism reprogramming occurs in cancer cells and influences cancer immunity. We also summarise the potential for lipid-based clinical translation to modify immune treatment.
Collapse
Affiliation(s)
- Yang Yu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunpeng Wang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ewetse Paul Maswikiti
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyuan Li
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng Zheng
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengxian Tao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Xiang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Baohong Gu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
7
|
The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers (Basel) 2021; 13:cancers13174426. [PMID: 34503236 PMCID: PMC8431622 DOI: 10.3390/cancers13174426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor cells can evade the immune system via multiple mechanisms, including the dysregulation of the immune checkpoint signaling. These signaling molecules are important factors that can either stimulate or inhibit tumor immune response. Under normal physiological conditions, the interaction between programmed cell death ligand 1 (PD-L1) and its receptor, programmed cell death 1 (PD-1), negatively regulates T cell function. In cancer cells, high expression of PD-L1 plays a key role in cancer evasion of the immune surveillance and seems to be correlated with clinical response to immunotherapy. As such, it is important to understand various mechanisms by which PD-L1 is regulated. In this review article, we provide an up-to-date review of the different mechanisms that regulate PD-L1 expression in cancer. We will focus on the roles of oncogenic signals (c-Myc, EML4-ALK, K-ras and p53 mutants), growth factor receptors (EGFR and FGFR), and redox signaling in the regulation of PD-L1 expression and discuss their clinical relevance and therapeutic implications. These oncogenic signalings have common and distinct regulatory mechanisms and can also cooperatively control tumor PD-L1 expression. Finally, strategies to target PD-L1 expression in tumor microenvironment including combination therapies will be also discussed.
Collapse
|
8
|
Xu Y, Song G, Xie S, Jiang W, Chen X, Chu M, Hu X, Wang ZW. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer. Mol Ther 2021; 29:1958-1969. [PMID: 33932597 DOI: 10.1016/j.ymthe.2021.04.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple studies have confirmed that programmed cell death 1/programmed cell death ligand-1 (PD-1/PD-L1) and immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 play pivotal roles in the treatment of numerous tumors. Patients suffering from cancer are provided hope in the form of immunotherapy. In this review, we discuss the finding that high PD-L1 expression is associated with poor clinical outcomes in prostate cancer patients. Some molecules exert their antitumor effects by downregulating PD-L1 expression in prostate cancer. Additionally, we discuss and summarize the important roles played by anti-PD-1/PD-L1 immunotherapy and its combination with other drugs, including chemotherapy and vaccines, in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yichi Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gendi Song
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
9
|
PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung. Cancer Immunol Immunother 2021; 70:2577-2587. [PMID: 33576873 PMCID: PMC8360842 DOI: 10.1007/s00262-020-02825-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Gene amplification is considered to be one responsible cause for upregulation of Programmed Death Ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) and to represent a specific molecular subgroup possibly associated with immunotherapy response. Our aim was to analyze the frequency of PD-L1 amplification, its relation to PD-L1 mRNA and protein expression, and to characterize the immune microenvironment of amplified cases. The study was based on two independent NSCLC cohorts, including 354 and 349 cases, respectively. Tissue microarrays were used to evaluate PD-L1 amplification by FISH and PD-L1 protein by immunohistochemistry. Immune infiltrates were characterized immunohistochemically by a panel of immune markers (CD3, CD4, CD8, PD-1, Foxp3, CD20, CD138, CD168, CD45RO, NKp46). Mutational status was determined by targeted sequencing. RNAseq data was available for 197 patients. PD-L1 amplification was detected in 4.5% of all evaluable cases. PD-L1 amplification correlated only weakly with mRNA and protein expression. About 37% of amplified cases were negative for PD-L1 protein. PD-L1 amplification did not show any association with the mutational status. In squamous cell cancer, PD-L1 amplified cases were enriched among patients with high tumoral immune cell infiltration and showed gene expression profiles related to immune exhaustion. In conclusion, PD-L1 amplification correlates with PD-L1 expression in squamous cell cancer and was associated with an immune cell rich tumor phenotype. The correlative findings help to understand the role of PD-L1 amplification as an important immune escape mechanism in NSCLC and suggest the need to further evaluate PD-L1 amplification as predictive biomarker for checkpoint inhibitor therapy.
Collapse
|
10
|
Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation. Eur J Med Chem 2021; 213:113170. [PMID: 33454550 DOI: 10.1016/j.ejmech.2021.113170] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has made great progress in recent years. In the tumor microenvironment, the binding of PD-1 and its ligand PD-L1 can promote tumor immune escape and tumor survival. Clinical studies have indicated that antibodies blocking PD-1 and PD-L1 have reliable effects on many advanced malignant tumors. However, no small-molecule inhibitors have been approved so far, indicating that the development of marketable small-molecules PD-1/PD-L1 targeted therapy drugs is a challenging process. Small-molecule inhibitors can overcome the limitations of monoclonal antibodies, including poor oral bioavailability, high cost, poor tissue and tumor penetration and long half-life, which prompt researchers to turn their attention to the development of peptide molecules and small-molecule inhibitors modulating PD-1/PD-L1 to overcome some disadvantages of monoclonal antibodies or targeting PD-L1 protein degradation as potential alternatives or supplements. In this review, we will focus on the peptide-based and nonpeptidic molecules against PD-1/PD-L1 base on the structural classification. More importantly, we also focus on the latest research progress of small-molecules mediated PD-L1 degradation mechanism.
Collapse
|
11
|
Yao H, Li C, He F, Song T, Brosseau JP, Wang H, Lu H, Fang C, Shi H, Lan J, Fang JY, Xu J. A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions. RSC Chem Biol 2020; 2:192-205. [PMID: 34458782 PMCID: PMC8341464 DOI: 10.1039/d0cb00157k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) is a crucial anticancer target, but the relatively low response rate and acquired resistance to existing antibody drugs highlight an urgent need to develop alternative targeting strategies. Here, we report the palmitoylation of PD-1, discover the main DHHC enzyme for this modification, reveal the mechanism of its effect on PD-1 protein stability, and rationally develop a peptide for targeting PD-1 expression. Palmitoylation promoted the trafficking of PD-1 to the recycling endosome, thus preventing its lysosome-dependent degradation. Palmitoylation of PD-1, but not of PD-L1, promoted mTOR signaling and tumor cell proliferation, and targeting palmitoylation displayed significant anti-tumor effects in a three-dimensional culture system. A peptide was designed to competitively inhibit PD-1 palmitoylation and expression, opening a new route for developing PD-1 inhibitors and combinatorial cancer immunotherapy. We show for the first time that PD-1 is palmitoylated, identify DHHC9 as the predominant enzyme for its palmitoylation, and reveal the molecular mechanisms underlying its effects on PD-1 stability and functions. Importantly, we also designed PD1-PALM, a competitive inhibitor of PD-1 palmitoylation, and this first-in-class molecule may inspire the development of new checkpoint inhibitors.![]()
Collapse
Affiliation(s)
- Han Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Chushu Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Fang He
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| | - Teng Song
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| | - Jean-Philippe Brosseau
- Department of Biochemistry and functional Genomics, University of Sherbrooke 3001 Jean-Mignault Sherbrooke J1E4K8 Canada
| | - Huanbin Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University Shanghai China
| | - Caiyun Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University Shanghai China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu China
| | - Jiang Lan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Jie Xu
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| |
Collapse
|
12
|
Wang Y, Deng S, Xu J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biol Med 2020; 17:583-598. [PMID: 32944392 PMCID: PMC7476092 DOI: 10.20892/j.issn.2095-3941.2020.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy harness the body’s immune system to eliminate cancer, by using a broad panel of soluble and membrane proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these molecules’ modes of action, target-binding “warheads”, lysosomal sorting signals, and linker design should facilitate their rational design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.
Collapse
Affiliation(s)
- Yungang Wang
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng 224006, China
| | - Shouyan Deng
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
JAK2/PD-L1/PD-L2 (9p24.1) amplifications in renal cell carcinomas with sarcomatoid transformation: implications for clinical management. Mod Pathol 2019; 32:1344-1358. [PMID: 30996253 PMCID: PMC7189735 DOI: 10.1038/s41379-019-0269-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Amplifications of JAK2, PD-L1, and PD-L2 at 9p24.1 lead to constitutive expression of PD-L1. This, coupled with JAK2-activation dependent upregulation of PD-L1 and adaptive/induced expression leads to higher tumor PD-L1 expression and immune evasion. Renal tumors were therefore evaluated for 9p24.1 amplifications. A combination of next generation sequencing-based copy number analysis, fluorescence in situ hybridization for JAK2/INSL6 and PD-L1/PD-L2 and immunohistochemistry for phospho-STAT3 (downstream target of JAK2), PD-L1, PD-L2, and PD-1 was performed. In this study we interrogated a "Discovery" cohort of 593 renal tumors, a "Validation" cohort of 398 high-grade renal tumors, The Cancer Genome Atlas (879 cases) and other public datasets (846 cases). 9p24.1 amplifications were significantly enriched in renal tumors with sarcomatoid transformation (5.95%, 15/252) when compared to all histologic subtypes in the combined "Discovery", "Validation" and public datasets (16/2636, 0.6%, p < 0.00001). Specifically, 9p24.1 amplifications amongst sarcomatoid tumors in public datasets, the "Discovery" and "Validation" cohorts were 7.7% (6/92), 15.1% (5/33), and 3.1% (4/127), respectively. Herein, we describe 13 cases and amplification status for these was characterized using next generation sequencing (n = 9) and/or fluorescence in situ hybridization (n = 10). Correlation with PD-L1 immunohistochemistry (n = 10) revealed constitutive expression (mean H-score: 222/300, n = 10). Analysis of outcomes based on PD-L1 expression in tumor cells performed on 282 cases ("Validation" cohort) did not reveal a significant prognostic effect and was likely reflective of advanced disease. A high incidence of constitutive PD-L1 expression in tumor cells in the "Validation" cohort (H-Score ≥250/300) was noted amongst 83 rhabdoid (6%) and 127 sarcomatoid renal tumors (7.1%). This suggests additional mechanisms of constitutive expression other than amplification events. Importantly, two patients with 9p24.1-amplified sarcomatoid renal tumors showed significant response to immunotherapy. In summary, a subset of renal tumors with sarcomatoid transformation exhibits constitutive PD-L1 overexpression and these patients should be evaluated for enhanced response to immunotherapy.
Collapse
|
14
|
Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 2019; 3:306-317. [PMID: 30952982 DOI: 10.1038/s41551-019-0375-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.
Collapse
|
15
|
Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan PK, Manne S, Kraya AA, Wubbenhorst B, Dorfman L, D'Andrea K, Wenz BM, Liu S, Chilukuri L, Kozlov A, Carberry M, Giles L, Kier MW, Quagliarello F, McGettigan S, Kreider K, Annamalai L, Zhao Q, Mogg R, Xu W, Blumenschein WM, Yearley JH, Linette GP, Amaravadi RK, Schuchter LM, Herati RS, Bengsch B, Nathanson KL, Farwell MD, Karakousis GC, Wherry EJ, Mitchell TC. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med 2019; 25:454-461. [PMID: 30804515 PMCID: PMC6699626 DOI: 10.1038/s41591-019-0357-y] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Immunologic responses to anti-PD-1 therapy in melanoma patients occur rapidly with pharmacodynamic T cell responses detectable in blood by 3 weeks. It is unclear, however, whether these early blood-based observations translate to the tumor microenvironment. We conducted a study of neoadjuvant/adjuvant anti-PD-1 therapy in stage III/IV melanoma. We hypothesized that immune reinvigoration in the tumor would be detectable at 3 weeks and that this response would correlate with disease-free survival. We identified a rapid and potent anti-tumor response, with 8 of 27 patients experiencing a complete or major pathological response after a single dose of anti-PD-1, all of whom remain disease free. These rapid pathologic and clinical responses were associated with accumulation of exhausted CD8 T cells in the tumor at 3 weeks, with reinvigoration in the blood observed as early as 1 week. Transcriptional analysis demonstrated a pretreatment immune signature (neoadjuvant response signature) that was associated with clinical benefit. In contrast, patients with disease recurrence displayed mechanisms of resistance including immune suppression, mutational escape, and/or tumor evolution. Neoadjuvant anti-PD-1 treatment is effective in high-risk resectable stage III/IV melanoma. Pathological response and immunological analyses after a single neoadjuvant dose can be used to predict clinical outcome and to dissect underlying mechanisms in checkpoint blockade.
Collapse
Affiliation(s)
- Alexander C Huang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert J Orlowski
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosemarie Mick
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangeeth M George
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | - Patrick K Yan
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam A Kraya
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liza Dorfman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon M Wenz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shujing Liu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Kozlov
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Carberry
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Giles
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie W Kier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Quagliarello
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Stem Cell Technologies, Vancouver, British Columbia, Canada
| | - Suzanne McGettigan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Kreider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Qing Zhao
- Merck Research Laboratories, Kenilworth, NJ, USA
| | - Robin Mogg
- Merck Research Laboratories, Kenilworth, NJ, USA
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Wei Xu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Gerald P Linette
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin S Herati
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bertram Bengsch
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Freiburg, Germany
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tara C Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Gupta S, Vanderbilt CM, Cotzia P, Arias-Stella JA, Chang JC, Zehir A, Benayed R, Nafa K, Razavi P, Hyman DM, Baselga J, Berger MF, Ladanyi M, Arcila ME, Ross DS. Next-Generation Sequencing-Based Assessment of JAK2, PD-L1, and PD-L2 Copy Number Alterations at 9p24.1 in Breast Cancer: Potential Implications for Clinical Management. J Mol Diagn 2019; 21:307-317. [PMID: 30576871 PMCID: PMC6432425 DOI: 10.1016/j.jmoldx.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Genomic amplification at 9p24.1, including the loci for JAK2, PD-L1, and PD-L2, has recently been described as a mechanism of resistance in postchemotherapy, triple-negative breast cancer. This genomic signature holds significant promise as a prognostic biomarker and has implications for targeted therapy with JAK2 inhibitors, as well as with immunotherapy. To guide future screening strategies, the frequency of these alterations was determined. A total of 5399 cases were included in the study. This encompassed 2890 institutional cases tested by the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets assay and 2509 cases from The Cancer Genome Atlas (TCGA). The combined incidence of 9p24.1 amplifications in both the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and TCGA cohorts was 1.0% (56/5399 cases) and showed a >10-fold higher incidence in triple-negative breast cancer (triple-negative: 5.1%; non-triple-negative: 0.5%). Tumor mutation burden and stromal tumor infiltrating lymphocytes, parameters used to assess response to immunotherapy, were not significantly higher for these cases. The significance of genomic losses at 9p24.1 is unclear, and further studies are needed. Herein, we studied the spectrum of copy number alterations in breast cancer cases within our institutional clinical sequencing cohort and those profiled by TCGA to determine the frequency of genomic alterations that may predict response or resistance to JAK2 inhibitors and/or immunotherapy.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Cotzia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedouja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - José Baselga
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
17
|
Devereaux KA, Charu V, Zhao S, Charville GW, Bangs CD, van de Rijn M, Cherry AM, Natkunam Y. Immune checkpoint blockade as a potential therapeutic strategy for undifferentiated malignancies. Hum Pathol 2018; 82:39-45. [PMID: 30539796 DOI: 10.1016/j.humpath.2018.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
Undifferentiated malignancies (UMs) encompass a diverse set of aggressive tumors that pose not only a diagnostic challenge but also a challenge for clinical management. Most tumors in this category are currently treated empirically with nonspecific chemotherapeutic agents that yield extremely poor clinical response. Given that UMs are inherently genetically unstable neoplasms with the potential for immune dysregulation and increased neoantigen production, they are likely to be particularly amenable to immune checkpoint inhibitors, which target programmed cell death protein 1 (PD-1) or its ligands, PD-L1 and PD-L2, to promote T-cell antitumor activity. Aberrant expression of PD-L1 and, more recently, chromosomal 9p24.1/CD274(PD-L1)/PDCD1LG2(PD-L2) alterations can be used as biomarkers to predict responsiveness to checkpoint inhibitors. Here we evaluated 93 cases previously diagnosed as an "undifferentiated" malignancy and found that 56% (52/93) of UMs moderately to strongly express PD-L1 by immunohistochemistry (IHC). Concurrent CD274(PD-L1) and PDCD1LG2(PD-L2) fluorescence in situ hybridization (FISH) was performed on 24 of these cases and demonstrates a genetic gain at both loci in 62.5% of UMs. Genetic alterations at the CD274(PD-L1) and PDCD1LG2(PD-L2) loci were found to be completely concordant by FISH. Overall, we found that a significant proportion of UMs express PD-L1 and provide molecular support for using checkpoint inhibitors as a treatment approach for this class of tumors.
Collapse
Affiliation(s)
- Kelly A Devereaux
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles D Bangs
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Athena M Cherry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Barrett MT, Lenkiewicz E, Malasi S, Basu A, Yearley JH, Annamalai L, McCullough AE, Kosiorek HE, Narang P, Wilson Sayres MA, Chen M, Anderson KS, Pockaj BA. The association of genomic lesions and PD-1/PD-L1 expression in resected triple-negative breast cancers. Breast Cancer Res 2018; 20:71. [PMID: 29996881 PMCID: PMC6042255 DOI: 10.1186/s13058-018-1004-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Elevated PD-L1 expression on tumor cells, a context associated with an adaptive immune response, has been linked to the total burden of copy number variants (CNVs) in aneuploid tumors, to microsatellite instability (MSI), and to specific genomic driver lesions, including loss of PTEN, MYC amplification, and activating mutations in driver oncogenes such as KRAS and PIK3CA. Triple-negative breast cancers (TNBCs) typically have high levels of CNVs and diverse driver lesions in their genomes. Thus, there is significant interest in exploiting genomic data to develop predictive immunotherapy biomarkers for patients with TNBC. Methods Whole tissue samples from 55 resected TNBCs were screened by immunohistochemistry (IHC) for PD-1 and PD-L1 by using validated antibodies and established scoring methods for staining of tumor and non-tumor cells. In parallel, we interrogated biopsies from each resection with DNA content flow cytometry and sorted the nuclei of diploid, tetraploid, and aneuploid cell populations. CNVs were mapped with CNV oligonucleotide arrays by using purified (>95%) tumor populations. We generated whole exome data for 12 sorted tumor samples to increase the resolution within loci of interest and to incorporate somatic mutations into our genomic signatures. Results and Conclusions PD-L1 staining was detected on tumor cells in 29 out of 54 (54%) evaluable cases and was associated with increased overall survival (P = 0.0024). High levels of PD-1 and PD-L1 (IHC ≥4) were present in 11 out of 54 (20%) and 20 out of 54 (37%) cases with staining of PD-L1 primarily on tumor cells for 17 out of 20 (85%) cases. The latter included tumors with both high (>50) and low (<20) numbers of CNVs. Notably, homozygous deletion of PTEN (n = 6) or activating mutation in PIK3CA (n = 1) was not associated with increased expression of either immune checkpoint activator in TNBC. In contrast, two treatment-naïve cases with EGFR driver amplicons had high PD-L1 tumor staining. High mutational load and predicted neoepitopes were observed in MSI+ and high CNV burden TNBCs but were not associated with high PD-L1 expression on tumor cells. Our results challenge current models of genomic-based immunotherapy signatures yet suggest that discrete genomic lesions may complement existing biomarkers to advance immune checkpoint therapies for patients with TNBC. Electronic supplementary material The online version of this article (10.1186/s13058-018-1004-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael T Barrett
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| | - Elizabeth Lenkiewicz
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Smriti Malasi
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Anamika Basu
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | | | | | - Ann E McCullough
- Department of Pathology and Laboratory Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Heidi E Kosiorek
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Pooja Narang
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Meixuan Chen
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Karen S Anderson
- Biodesign Institute, Arizona State University, Tempe, AZ, USA.,Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Barbara A Pockaj
- Division of General Surgery, Section of Surgical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| |
Collapse
|
19
|
Chen M, Pockaj B, Andreozzi M, Barrett MT, Krishna S, Eaton S, Niu R, Anderson KS. JAK2 and PD-L1 Amplification Enhance the Dynamic Expression of PD-L1 in Triple-negative Breast Cancer. Clin Breast Cancer 2018; 18:e1205-e1215. [PMID: 29933930 DOI: 10.1016/j.clbc.2018.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/25/2018] [Accepted: 05/20/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Activation of the JAK/STAT pathway is common in triple-negative breast cancer (TNBC) and affects the expression of genes controlling immune signaling. A subset of TNBC cases will have somatic amplification of chromosome 9p24.1, encoding PD-L1, PD-L2, and JAK2, which has been associated with decreased survival. MATERIALS AND METHODS Eleven TNBC cell lines were evaluated using array comparative genomic hybridization. A copy number gain was defined as an array comparative genomic hybridization log2 ratio of ≥ 1. Cell surface expression of programmed cell death ligand 1 (PD-L1) was detected using flow cytometry and compared with the median fluorescence intensity of isotype control immunoglobulin. To selectively inhibit JAK2, lentiviral vectors encoding 2 different short hairpin RNA (shRNA) were generated. JAK2, STAT1, STAT3, phosphorylated (p) STAT1, and pSTAT3 expression were measured by immunoblot. Statistical significance was defined as P < .05. RESULTS The cell line HCC70 had 9p24.1 copy number amplification that was associated with both increased JAK2 and pSTAT3; however, knockdown of JAK2 inhibited cell growth independently of 9p24.1 copy number status. In TNBC cell lines with 9p24.1 gain or amplification, PD-L1 expression rapidly and strikingly increased 5- to 38-fold with interferon-γ (P < .05), and inducible PD-L1 expression was completely blocked by JAK2 knockdown and the JAK1/2 inhibitor ruxolitinib. In tumor tissue, expression of interferon-γ-related genes correlated with 9p24.1 copy number status. CONCLUSION These data suggest that the JAK2/STAT1 pathway in TNBC might regulate the dynamic expression of PD-L1 that is induced in the setting of an inflammatory response. Inhibition of JAK2 might provide a synergistic therapy when combined with other immunotherapies in the subset of TNBC with 9p24.1 amplification.
Collapse
Affiliation(s)
- Meixuan Chen
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | | | | | | | - Sri Krishna
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Seron Eaton
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Karen S Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ; Department of Medicine, Mayo Clinic, Phoenix, AZ.
| |
Collapse
|
20
|
Owen D, Chu B, Lehman AM, Annamalai L, Yearley JH, Shilo K, Otterson GA. Expression Patterns, Prognostic Value, and Intratumoral Heterogeneity of PD-L1 and PD-1 in Thymoma and Thymic Carcinoma. J Thorac Oncol 2018; 13:1204-1212. [PMID: 29702286 DOI: 10.1016/j.jtho.2018.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) including thymoma and thymic carcinoma are rare tumors with little data available to guide treatment. Immunotherapy with checkpoint blockade has shown promising activity, but data regarding the expression patterns and prognostic implications of programmed death 1 (PD-1) and its ligand (PD-L1) in TETs have yielded conflicting results. Intratumoral heterogeneity of PD-1/L1 expression has been shown in other cancers, but has not been described in the TET literature. METHODS We performed a retrospective single-center review of 35 patients with resected TET. PD-1/L1 expression was assessed by immunohistochemistry using PD-1 clone: NAT105 and PD-L1 clone: 22C3. Tumor samples from 35 patients were evaluated including 32 patients with thymoma and 3 patients with thymic carcinoma. RESULTS PD-L1 expression was detected in 83% (29 of 35) tumor samples, including 100% (3 of 3) of thymic carcinoma patients and 81% (26 of 32) of thymoma patients. PD-1 expression was detected in 77% (27 of 35), including 33% (1 of 3) of thymic carcinoma patients and 81% (26 of 32) thymoma patients. High PD-1 expression was associated with lower grade tumors. Unlike prior studies, PD-L1 expression was not associated with higher grade tumors or higher stage. Neither PD-L1 nor PD-1 expression was significantly associated with survival. Three patients with thymoma had multiple tumor sections evaluated for expression of PD-1/L1, with differing expression patterns of both PD-L1 and PD-1 observed in two patients. CONCLUSIONS This study confirms high expression of PD-L1 and PD-1 in TET and shows for the first time intratumoral heterogeneity of PD-L1 and PD-1 in thymoma patients.
Collapse
Affiliation(s)
- Dwight Owen
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Benjamin Chu
- Helen and Gary Gray Cancer Center, Hartford Hospital, and University of Connecticut School of Medicine, Hartford, Connecticut
| | - Amy M Lehman
- Center for Biostatistics, Ohio State University, Columbus, Ohio
| | | | | | - Konstantin Shilo
- Department of Pathology, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Gregory A Otterson
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
21
|
Chang A, Schlafer D, Flowers CR, Allen PB. Investigational PD-1 inhibitors in HL and NHL and biomarkers for predictors of response and outcome. Expert Opin Investig Drugs 2018; 27:55-70. [PMID: 29228840 PMCID: PMC5762391 DOI: 10.1080/13543784.2018.1416091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inhibitors against the PD-1/PD-L1 pathway are revolutionizing the treatment and management of malignancies. AREAS COVERED We summarize our current understanding of the function of PD-1, its role in immune evasion, the clinical data available that support the use of PD-1 antagonist in Hodgkin and non-Hodgkin lymphomas, and potential predictors of response. EXPERT OPINION We anticipate that in the next 10 years, agents that modulate the immune system such as PD-1 antagonists will be increasingly used in favor over traditional cytotoxic chemotherapeutic agents. PD-1 antagonists will be combined with future immunotherapies or used as adjuncts to cellular therapy to boost tumor-specific immune responses.
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Danielle Schlafer
- Department of Pharmaceutical Services, Emory Healthcare, Atlanta, GA 30322
| | - Christopher R. Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Pamela B. Allen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|