1
|
Yamashita M, Piaseczna N, Takahashi A, Kiyozawa D, Tatsumoto N, Kaneko S, Zurek N, Gertych A. AI-driven glomerular morphology quantification: a novel pipeline for assessing basement membrane thickness and podocyte foot process effacement in kidney diseases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 268:108842. [PMID: 40354728 DOI: 10.1016/j.cmpb.2025.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND AND OBJECTIVE Measuring the thickness of the glomerular basement membrane (GBM) and assessing the percentage of podocyte foot process effacement (%PFPE) are important for diagnosing non-neoplastic kidney diseases. However, when performed manually by nephropathologists using electron microscopy (EM) images, these assessments are hindered by the lack of universally standardized guidelines, leading to technical challenges. We have developed a novel deep learning (DL)-based pipeline which has the potential to reduce human error and enhance the consistency and efficiency of GBMs and %PFPE quantifications. METHODS This study utilized 196 EM images from kidney biopsies (representing 21 different kidney diseases from 83 subjects) which were manually annotated by consensus of 3 nephrologists and 2 nephropathologist providing ground truth (GT) masks of GBMs, podocytes, red blood cells and other glomerular ultrastructures. Of these, 165 images were used to develop two DL models (DeepLabV3+ and U-Net architectures) for EM image segmentation. Subsequently, the models were evaluated on the remaining 31 images and compared for segmentation accuracy, and the predicted GBM and podocyte masks were analyzed by algorithms in the pipeline which automatically measured the corrected harmonic mean of GBM thickness (cmGBM) and estimated the %PFPE. The automated measurements were statistically compared to the corresponding cmGBM measured and %PFPE estimated using the consensus GBM and podocyte GT masks. The goal was to identify differences between measurements provided by these three methods. Statistical evaluations were carried out using the intraclass correlation coefficient (ICC), and the Bland-Altman plots estimating the bias and limits of agreement (LoAs) between the GT and DL mask-based measurements. RESULTS In the 31 test set images, the DeepLabV3+ model achieved a global accuracy (gACC) of 92.8 % and a weighted intersection over union (wIoU) of 0.869, outperforming the U-Net model, which recorded a gACC of 88.9 % and a wIoU of 0.800. For GBM thickness measurements, the cmGBM derived from DeepLabV3+ masks exhibited excellent agreement with GT-masks based measurements (ICC = 0.991, p < 0.001), whereas the U-Net model showed good agreement (ICC = 0.881, p < 0.001). The %PFPE estimates obtained using the DL-generated podocyte masks were highly consistent with those based on GT, with ICC values of 0.926 and 0.928 for DeepLabV3+ and U-Net, respectively. The Bland-Altman plots revealed a positive bias in the cmGBM and %PFPE obtained from the masks generated by the DeepLabV3+ model, and negative bias in the cmGBM and %PFPE obtained from the masks generated by the U-Net model. However, the DeepLabV3+ masks provided narrower LoA ranges than the U-Net masks for measuring cmGBM. CONCLUSIONS This study highlights the potential of AI to address the limitations of manual assessments of glomerular ultrastructures in EM images by providing comprehensive, objective and accurate measurements of GBM thickness and %PFPE estimates. Our pipeline with DeepLabV3+ demonstrated robust EM image segmentation efficiency and excellent reliability of measurements when compared to expert ground truth. Further refinement of this AI-driven method for advancing the diagnostic capabilities and standardization of AI in nephropathology is warranted.
Collapse
Affiliation(s)
- Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Natalia Piaseczna
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland; Innovation Centre for Digital Medicine, National Information Processing Institute, Warsaw, Poland
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Narihito Tatsumoto
- Diabetes Thyroid Endocrinology Center, Shinkoga Hospital, Fukuoka, Japan
| | - Shohei Kaneko
- Department of Nephrology, Saitama Citizens Medical Center, Saitama, Japan
| | - Natalia Zurek
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Zhu W, Liu Q, Liu F, Jiao C, Zhang L, Xie H. High remnant cholesterol as a risk factor for developing chronic kidney disease in patients with prediabetes and type 2 diabetes: a cross-sectional study of a US population. Acta Diabetol 2024; 61:735-743. [PMID: 38436703 PMCID: PMC11101368 DOI: 10.1007/s00592-024-02249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
AIMS To examine any potential links between remnant cholesterol (RC) and comorbid chronic kidney disease (CKD) in individuals with prediabetes and type 2 diabetes mellitus (T2DM). METHODS We used data from 2709 American people aged > 20 years from the National Health and Nutrition Examination Survey (NHANES) during 2011-2018. Subjects were categorized according to whether they had comorbid CKD. Logistic regression models and smoothed curve fitting methods were employed to assess the association of RC with comorbid CKD in patients with prediabetes and T2DM. RESULTS The 2709 participants included 1473 patients with T2DM and 1236 with prediabetes [impaired glucose tolerance (IGT) and impaired fasting glucose (IFG)], of whom 744 (27.46%) had comorbid CKD. In multivariate-adjusted analysis, both RC and triglycerides (TG) were significantly associated with an increased risk of comorbid CKD, and a 1 mmol/L elevation of RC increased the risk by 38.1% [OR (95% CI) 1.636 (1.242, 2.156)], which was higher than the risk associated with a 1 mmol/L increase in TG [1.255 (1.106, 1.424)]. Additionally, those in the highest quartile of RC had a 43.6% higher risk of concomitant renal damage than those in the lowest quartile. RC was linearly and positively associated with the incidence of comorbid CKD in this population. CONCLUSIONS RC is an independent risk factor for comorbid CKD in patients with prediabetes and T2DM. This finding provides a novel insight into the management and early detection of renal disease in patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Wenting Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical Univerisity, Nanjing, 210016, China
| | - Qiushi Liu
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Fang Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical Univerisity, Nanjing, 210016, China
| | - Chenfeng Jiao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical Univerisity, Nanjing, 210016, China
| | - Lihua Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical Univerisity, Nanjing, 210016, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical Univerisity, Nanjing, 210016, China.
| |
Collapse
|
3
|
Khalil MAM, Sadagah NM, Tan J, Syed FO, Chong VH, Al-Qurashi SH. Pros and cons of live kidney donation in prediabetics: A critical review and way forward. World J Transplant 2024; 14:89822. [PMID: 38576756 PMCID: PMC10989475 DOI: 10.5500/wjt.v14.i1.89822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 01/16/2024] [Indexed: 03/15/2024] Open
Abstract
There is shortage of organs, including kidneys, worldwide. Along with deceased kidney transplantation, there is a significant rise in live kidney donation. The prevalence of prediabetes (PD), including impaired fasting glucose and impaired glucose tolerance, is on the rise across the globe. Transplant teams frequently come across prediabetic kidney donors for evaluation. Prediabetics are at risk of diabetes, chronic kidney disease, cardiovascular events, stroke, neuropathy, retinopathy, dementia, depression and nonalcoholic liver disease along with increased risk of all-cause mortality. Unfortunately, most of the studies done in prediabetic kidney donors are retrospective in nature and have a short follow up period. There is lack of prospective long-term studies to know about the real risk of complications after donation. Furthermore, there are variations in recommendations from various guidelines across the globe for donations in prediabetics, leading to more confusion among clinicians. This increases the responsibility of transplant teams to take appropriate decisions in the best interest of both donors and recipients. This review focuses on pathophysiological changes of PD in kidneys, potential complications of PD, other risk factors for development of type 2 diabetes, a review of guidelines for kidney donation, the potential role of diabetes risk score and calculator in kidney donors and the way forward for the evaluation and selection of prediabetic kidney donors.
Collapse
Affiliation(s)
- Muhammad Abdul Mabood Khalil
- Center of Renal Diseases and Transplantation, King Fahad Armed Forces Hospital Jeddah, Jeddah 23311, Saudi Arabia
| | - Nihal Mohammed Sadagah
- Center of Renal Diseases and Transplantation, King Fahad Armed Forces Hospital Jeddah, Jeddah 23311, Saudi Arabia
| | - Jackson Tan
- Department of Nephrology, RIPAS Hospital Brunei Darussalam, Brunei Muara BA1710, Brunei Darussalam
| | - Furrukh Omair Syed
- Center of Renal Diseases and Transplantation, King Fahad Armed Forces Hospital Jeddah, Jeddah 23311, Saudi Arabia
| | - Vui Heng Chong
- Division of Gastroenterology and Hepatology, Department of Medicine, Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan BA1710, Brunei Darussalam
| | - Salem H Al-Qurashi
- Center of Renal Diseases and Transplantation, King Fahad Armed Forces Hospital Jeddah, Jeddah 23311, Saudi Arabia
| |
Collapse
|
4
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
5
|
Luo J, Tan J, Zhao J, Wang L, Liu J, Dai X, Sun Y, Kuang Q, Hui J, Chen J, Kuang G, Chen S, Wang Y, Ge C, Xu M. Cynapanoside A exerts protective effects against obesity-induced diabetic nephropathy through ameliorating TRIM31-mediated inflammation, lipid synthesis and fibrosis. Int Immunopharmacol 2022; 113:109395. [PMID: 36375322 DOI: 10.1016/j.intimp.2022.109395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a major predictive factor for the diabetic nephropathy (DN). However, the precise mechanism and therapeutic approach still require to be investigated. Cynapanosides A (CPS-A) is a glycoside derived from the Chinese drug Cynanchum paniculatum that has numerous pharmacological activities, but its regulatory function on obesity-induced kidney disease is still obscure. In the present study, we attempted to explore the renoprotective effects of CPS-A on the established DN in high fat diet (HFD)-fed mice, and the underlying mechanisms. We initially found that CPS-A significantly ameliorated the obesity and metabolic syndrome in mice with HFD feeding. Mice with HFD-induced DN exerted renal dysfunctions, indicated by the elevated functional parameters, including up-regulated blood urea nitrogen (BUN), urine albumin and creatinine, which were significantly attenuated by CPS-A in obese mice. Moreover, histological changes including glomerular enlargement, sclerosis index and collagen deposition in kidney of obese mice were detected, while being strongly ameliorated by CPS-A. Additionally, podocyte loss induced by HFD was also markedly mitigated in mice with CPS-A supplementation. HFD feeding also led to lipid deposition and inflammatory response in renal tissues of obese mice, whereas being considerably attenuated after CPS-A consumption. Intriguingly, we found that tripartite motif-containing protein 31 (TRIM31) signaling might be a crucial mechanism for CPS-A to perform its renoprotective functions in mice with DN. The anti-inflammatory, anti-fibrotic and anti-dyslipidemia capacities of CPS-A were confirmed in the mouse podocytes under varying metabolic stresses, which were however almost abolished upon TRIM31 ablation. These data elucidated that TRIM31 expression was largely required for CPS-A to perform its renoprotective effects. Collectively, our study is the first to reveal that CPS-A may be a promising therapeutic strategy for the treatment of obesity-induced DN or associated kidney disease.
Collapse
Affiliation(s)
- Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jin Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Junmin Hui
- Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jinfeng Chen
- Experiment Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaocheng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Yangli Wang
- Chongqing Institute for Food and Drug Control & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 401121, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
6
|
The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci U S A 2021; 118:1921828118. [PMID: 33579817 DOI: 10.1073/pnas.1921828118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.
Collapse
|
7
|
Effects of Environmental Conditions on Nephron Number: Modeling Maternal Disease and Epigenetic Regulation in Renal Development. Int J Mol Sci 2021; 22:ijms22084157. [PMID: 33923831 PMCID: PMC8073167 DOI: 10.3390/ijms22084157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.
Collapse
|
8
|
Ichikawa H, Shimada M, Narita M, Narita I, Kimura Y, Tanaka M, Osanai T, Okumura K, Tomita H. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc 2020; 8:e012195. [PMID: 30957622 PMCID: PMC6507187 DOI: 10.1161/jaha.119.012195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background An enhanced renin‐angiotensin system causes hypertensive renal damage. Factor Xa not only functions in the coagulation cascade but also activates intracellular signaling through protease‐activated receptors (PAR). We investigated the effects of rivaroxaban, a factor Xa inhibitor, on hypertensive renal damage in hypertensive mice overexpressing renin (Ren‐TG). Methods and Results The 12‐ to 16‐week‐old Ren‐TG and wild‐type mice were orally administered with or without 6 or 12 mg/kg of rivaroxaban for 1 or 4 months. Plasma factor Xa was significantly increased in the Ren‐TG compared with the wild‐type mice and was reduced by 12 mg/kg of rivaroxaban (P<0.05). Urinary albumin excretion (UAE) was higher in the nontreated 8‐month‐old Ren‐TG than in the wild‐type mice (69.6±29 versus 20.1±8.2 μg/day; P<0.01). Treatment with 12 mg/kg of rivaroxaban for 4 months decreased the UAE to 38.1±13.2 μg/day (P<0.01). Moreover, rivaroxaban treatment attenuated histologic changes of glomerular hypertrophy, mesangial matrix expansion, effacement of the podocyte foot process, and thickened glomerular basement membrane in the Ren‐TG. The renal expression of PAR‐2 was increased in the Ren‐TG, but was inhibited with rivaroxaban treatment. In vitro study using the human podocytes showed that the expressions of PAR‐2 and inflammatory genes and nuclear factor–‐κB activation were induced by angiotensin II stimulation, but were inhibited by rivaroxaban. PAR‐2 knockdown by small interfering RNA also attenuated the PAR‐2‐related inflammatory gene expressions. Conclusions These findings indicate that rivaroxaban exerts protective effects against angiotensin II–induced renal damage, partly through inhibition of the PAR‐2 signaling‐mediated inflammatory response.
Collapse
Affiliation(s)
- Hiroaki Ichikawa
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Michiko Shimada
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masato Narita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Ikuyo Narita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshihiro Kimura
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Makoto Tanaka
- 2 Department of Stroke and Cerebrovascular Medicine Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomohiro Osanai
- 3 Department of Nursing Science Hirosaki University Graduate School of Health Sciences Hirosaki Japan
| | - Ken Okumura
- 4 Division of Cardiology Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Hirofumi Tomita
- 1 Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan.,2 Department of Stroke and Cerebrovascular Medicine Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
9
|
Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2978340. [PMID: 32655765 PMCID: PMC7327579 DOI: 10.1155/2020/2978340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 01/13/2023]
Abstract
Recently, studies have shown that renal dysfunction is associated not only with overt diabetes but also with the preceding stage known as prediabetes. Diet and pharmacological interventions are the therapeutic approaches to managing prediabetes, but the compliance in combining the two interventions is low. Hence, the efficacy of pharmacological intervention is reduced without diet modification. In our previous study, we established that bredemolic acid (BA) ameliorated glucose homeostasis via increased GLUT 4 expression in the skeletal muscle of prediabetic rats in the absence of diet intervention. However, the effects of bredemolic acid on renal function in prediabetic condition are unknown. Therefore, this study was aimed at investigating the ameliorative effects of bredemolic acid on renal dysfunction in a diet-induced prediabetic rat model. Thirty-six Sprague-Dawley male rats (150-180 g) were divided into two groups: the nonprediabetic (n = 6) and prediabetic (n = 30) groups which were fed normal diet (ND) and high-fat high-carbohydrate (HFHC) diet, respectively, for 20 weeks. After the 20th week, the prediabetic groups were subdivided into prediabetic control (PD) and 4 other prediabetic groups which were treated with either BA (80 mg/kg) or metformin (MET, 500 mg/kg) for further 12 weeks (21st to 32nd). Plasma, urine, and kidney samples were collected for biochemical analysis. The untreated prediabetic (PD) rats presented increased fluid intake and urine output; increased creatinine, urea, and uric acid plasma concentrations; albuminuria; proteinuria; sodium retention; potassium loss; increased aldosterone and kidney injury molecule (KIM-1) concentration; and increased urinary podocin mRNA expression. However, BA administration attenuated the renal markers and oxidative stress and decreased the urinary podocin mRNA expression. In conclusion, BA administration, regardless of diet modification, attenuates renal dysfunction in an experimentally induced prediabetic state.
Collapse
|
10
|
Sun ZJ, Wang JW, Chang DY, Chen SH, Zhang HF, Wu SL, He K, Zhang LX, Chen M, Zhao MH. Unstably controlled systolic blood pressure trajectories are associated with markers for kidney damage in prediabetic population: results from the INDEED cohort study. J Transl Med 2020; 18:194. [PMID: 32398098 PMCID: PMC7216344 DOI: 10.1186/s12967-020-02361-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/02/2020] [Indexed: 12/27/2022] Open
Abstract
Background The association between blood pressure change and kidney damage in patients with abnormal blood glucose remains unclear. The current study aimed to identify systolic blood pressure (SBP) trajectories among the prediabetic population and to determine their association with kidney damage after a long-term follow-up. Methods The incidence, development, and prognosis of diabetic kidney disease (INDEED) study is nested in the Kailuan cohort study with a focus on population with diabetes and prediabetes. We screened out people with prediabetes in 2006 and with more than three SBP records from 2006 to 2014 biennially. We used the latent mixture modeling to fit five groups of trajectories of SBP. In 2016, estimated glomerular filtration rate (eGFR), urinary albumin creatinine ratio (uACR), and urinary α1-microglobulin (α1MG), transferrin and α1-acid glycoprotein were measured, and the association between SBP trajectories and these markers was analyzed by linear regression and logistic regression models. Results Totally, 1451 participants with prediabetes and without kidney damage were identified in 2006. Five heterogeneous SBP trajectories were detected based on the longitudinal data from 2006 to 2014, as low-stable group (n = 323), moderate-stable group (n = 726), moderate-increasing group (n = 176), moderate-decreasing group (n = 181), and high-stable group (n = 45). Linear regression analysis showed that the moderate and high SBP groups had lower eGFR, higher uACR, higher urinary α1MG, higher transferrin, and higher α1-acid glycoprotein than the low-stable group. Multivariable analysis attenuated the association but did not change the statistical significance. Conclusions Prediabetic patients with persistent high-level SBP trajectory or gradually increased SBP trajectory had severer kidney damage during follow-up.
Collapse
Affiliation(s)
- Zi-Jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jin-Wei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Shuo-Hua Chen
- Health Care Center of Kailuan Group, Tangshan, 063000, China
| | - Hui-Fen Zhang
- Laboratory Department of Kailuan General Hospital, Tangshan, 063000, China
| | - Shou-Ling Wu
- Department of Cardiology, Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, 063000, China
| | - Kevin He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| |
Collapse
|
11
|
Niu M, Liu Y, Xiang L, Zhao Y, Yuan J, Jia Y, Dai X, Chen H. Long-term case study of a Wuzhishan miniature pig with diabetes. Animal Model Exp Med 2020; 3:22-31. [PMID: 32318656 PMCID: PMC7167240 DOI: 10.1002/ame2.12098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Miniature pigs are attractive animal models for exploring diabetes because they are similar to humans in terms of physiological structure and metabolism. However, little is known about the complications of diabetes in pigs. METHODS In this study, a 28-month observation of a Wuzhishan miniature pig with streptozotocin (STZ)-induced (120 mg/kg) diabetes was conducted, to investigate diabetes-related complications and the possibility of self-recovery in miniature pigs. Blood glucose, serum and urinary biochemistry was measured, and histopathologic examinations of eyes, kidney and pancreas were made. RESULTS During the observation, diabetic complications of eyes and kidney were observed. The eye complications included bilateral cataracts in the 15th month and degeneration of inner retina and microaneurysm in the 28th month. Kidney complications included glomerular mesangial expansion, focal segmental glomerular sclerosis, and renal tubular epithelial degeneration, but no proteinuria was observed. By 28 months after the application of STZ, with no treatment given, blood glucose had recovered and the number of pancreatic islet beta-cells had increased significantly. CONCLUSIONS We showed that the STZ-induced diabetes model in miniature pigs could accurately mimic the pathological changes of human diabetes, and that pancreatic islet beta-cell regeneration did occur in an adult miniature pig, providing a new means for exploring diabetic complications and pancreatic islet beta-cell regeneration.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yaqian Liu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Lei Xiang
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Jifang Yuan
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Xin Dai
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingPR China
| |
Collapse
|
12
|
Balmer LA, Whiting R, Rudnicka C, Gallo LA, Jandeleit KA, Chow Y, Chow Z, Richardson KL, Forbes JM, Morahan G. Genetic characterization of early renal changes in a novel mouse model of diabetic kidney disease. Kidney Int 2019; 96:918-926. [PMID: 31420193 DOI: 10.1016/j.kint.2019.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 01/13/2023]
Abstract
Genetic factors influence susceptibility to diabetic kidney disease. Here we mapped genes mediating renal hypertrophic changes in response to diabetes. A survey of 15 mouse strains identified variation in diabetic kidney hypertrophy. Strains with greater (FVB/N(FVB)) and lesser (C57BL/6 (B6)) responses were crossed and diabetic F2 progeny were characterized. Kidney weights of diabetic F2 mice were broadly distributed. Quantitative trait locus analyses revealed diabetic mice with kidney weights in the upper quartile shared alleles on chromosomes (chr) 6 and 12; these loci were designated as Diabetic kidney hypertrophy (Dkh)-1 and -2. To confirm these loci, reciprocal congenic mice were generated with defined FVB chromosome segments on the B6 strain background (B6.Dkh1/2f) or vice versa (FVB.Dkh1/2b). Diabetic mice of the B6.Dkh1/2f congenic strain developed diabetic kidney hypertrophy, while the reciprocal FVB.Dkh1/2b congenic strain was protected. The chr6 locus contained the candidate gene; Ark1b3, coding aldose reductase; the FVB allele has a missense mutation in this gene. Microarray analysis identified differentially expressed genes between diabetic B6 and FVB mice. Thus, since the two loci identified by quantitative trait locus mapping are syntenic with regions identified for human diabetic kidney disease, the congenic strains we describe provide a valuable new resource to study diabetic kidney disease and test agents that may prevent it.
Collapse
Affiliation(s)
- Lois A Balmer
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, the University of Western Australia, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, Western Australia, Australia
| | - Rhiannon Whiting
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, the University of Western Australia, Perth, Western Australia, Australia
| | - Caroline Rudnicka
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, the University of Western Australia, Perth, Western Australia, Australia
| | - Linda A Gallo
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Yan Chow
- Glenferrie Private Hospital, Ramsay Health Care, Donvale, Victoria, Australia
| | - Zenia Chow
- ENT Doctors, Northpark Private Hospital, Bundoora, Victoria, Australia
| | - Kirsty L Richardson
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Josephine M Forbes
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Mater Clinical School, University of Queensland, Brisbane, Queensland, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, the University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Huang F, Sheng XX, Zhang HJ. DUSP26 regulates podocyte oxidative stress and fibrosis in a mouse model with diabetic nephropathy through the mediation of ROS. Biochem Biophys Res Commun 2019; 515:410-416. [PMID: 31155289 DOI: 10.1016/j.bbrc.2019.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of renal failure worldwide. Unfortunately, the pathogenetic mechanism of DN is far from to be understood. Dual-specificity phosphatase 26 (DUSP26) is a member of the Dusp protein family, and is suggested to be involved in divers biological and pathological processes, such as cell growth, differentiation, inflammation and apoptosis. However, its role in the development of DN is still vague. In this study, we found that DUSP26 expression was increased in kidney of DN patients. Then, the wild type (DUSP26+/+) and gene knockout (DUSP26-/-) mice were used to further explore the effects of DUSP26 on DN development induced by streptozotocin (STZ). DUSP26 deficiency accelerated renal injury and dysfunction, as evidenced by the elevated glomerulosclerosis, reduced expression of Nephrin and promoted glomerular basement membrane thickness. In addition, STZ treatment resulted in reactive oxygen species (ROS) accumulation, H2O2 overproduction and superoxide dismutase (SOD) reduction in renal cortex or glomeruli of mice. The ROS production caused the activation of mitogen-activated protein kinase (MAPKs) signaling in kidney glomeruli of STZ-induced mice. These in vivo pathological processes were further confirmed in the differentiated podocytes stimulated by glucose (GLU). Intriguingly, we found that STZ-induced DN as mentioned above was further accelerated by DUSP26-/- in mice following STZ injection. Moreover, STZ-induced fibrosis in kidney glomeruli of DN mice was markedly prolonged in DUSP26-knockout mice through potentiating transforming growth factor-β1 (TGF-β1) expression. More importantly, reducing ROS generation could significantly abolish DUSP26 knockdown-exacerbated TGF-β1 expression and MAPKs activation, thereby protecting podocytes from GLU-induced podocyte injury. Thus, DUSP26-regulated DN development was largely dependent on ROS generation. Taken together, we concluded that DUSP26 might be a promising therapeutic target for developing effective treatments against DN progression.
Collapse
Affiliation(s)
- Feng Huang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Xu-Xiang Sheng
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Hong-Juan Zhang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China.
| |
Collapse
|
14
|
Yang L, Xue J, Meng X, Wang Y, Wu L, Lv C, Liu T, Bai Y. Effects of total flavonoids from Oxytropis falcata Bunge on the SOCS/JAK/STAT inflammatory signaling pathway in the kidneys of diabetic nephropathy model mice. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219861877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the effects of total flavonoids from Oxytropis falcata Bunge on the inflammatory signaling pathway suppressor of cytokine signaling (SOCS)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) in diabetic nephropathy KK-Ay mice. KK-Ay mice were used to establish a diabetic nephropathy model. The general condition of the mice treated with different concentrations of total flavonoids from O. falcata was monitored, respectively. Body weight, blood glucose, 24-h urinary albumin (UAlb), serum creatinine (Cre), blood urea nitrogen (BUN), and uric acid (UA) levels were measured at different time points. Hematoxylin and eosin staining quantitative reverse transcription-polymerase chain reaction and western blotting were used to detect changes in renal tissues and glomerular mesangial cells. Four weeks after model establishment, body weight, blood glucose, and 24 h UAlb significantly increased in KK-Ay mice compared with that in control C57BL/6j mice ( P < 0.05). Compared with non-treated model mice, mice treated with total flavonoids from O. falcata for 4 weeks had significantly decreased serum Cre, BUN, and UA; monocyte chemoattractant protein-1(MCP-1), nuclear factor(NF)-κB, interleukin(IL)-6, and transforming growth factor(TGF)-β1, JAK 1, STAT 3 and STAT 4 mRNA levels; and p-JAK2 and p-STAT1 protein levels and significantly increased SOCS-1 and SOCS-3 protein levels in the kidneys. The treatment effects were dose-dependent and same to in vitro. Our results reflected that total flavonoids from O. falcata relieved renal tissue inflammation in diabetic mice by reducing blood glucose levels and inhibiting JAK/STAT signaling, thereby protecting against the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Lixia Yang
- Gansu Province Academy of Chinese Medicine, Lanzhou, China
| | - Jianjun Xue
- Department of Anesthesiology, Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Xiangyun Meng
- Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Yongsheng Wang
- Gansu Province Hospital of Chinese Medicine, Lanzhou, China
| | - Lili Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Cuiyan Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Tonghua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing
| | - Yu Bai
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
He J, Gao HX, Yang N, Zhu XD, Sun RB, Xie Y, Zeng CH, Zhang JW, Wang JK, Ding F, Aa JY, Wang GJ. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin 2019; 40:86-97. [PMID: 29930278 DOI: 10.1038/s41401-018-0043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Epalrestat is an inhibitor of aldose reductase in the polyol pathway and is used for the management of diabetic neuropathy clinically. Our pilot experiments and accumulated evidences showed that epalrestat inhibited polyol pathway and reduced sorbitol production, and suggested the potential renal protection effects of epalrestat on diabetic nephropathy (DN). To evaluate the protective effect of epalrestat, the db/db mice were used and exposed to epalrestat for 8 weeks, both the physiopathological condition and function of kidney were examined. For the first time, we showed that epalrestat markedly reduced albuminuria and alleviated the podocyte foot process fusion and interstitial fibrosis of db/db mice. Metabolomics was employed, and metabolites in the plasma, renal cortex, and urine were profiled using a gas chromatography-mass spectrometry (GC/MS)-based metabolomic platform. We observed an elevation of sorbitol and fructose, and a decrease of myo-inositol in the renal cortex of db/db mice. Epalrestat reversed the renal accumulation of the polyol pathway metabolites of sorbitol and fructose, and increased myo-inositol level. Moreover, the upregulation of aldose reductase, fibronectin, collagen III, and TGF-β1 in renal cortex of db/db mice was downregulated by epalrestat. The data suggested that epalrestat has protective effects on DN, and the inhibition of aldose reductase and the modulation of polyol pathway in nephritic cells be a potentially therapeutic strategy for DN.
Collapse
|
16
|
The safety profile of new antidiabetic xanthine derivatives and their chitosan based formulations. Eur J Pharm Sci 2018; 127:71-78. [PMID: 30339870 DOI: 10.1016/j.ejps.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
The safety profile of new antidiabetic xanthine derivatives with thiazolidine‑4‑one scaffold (6, 7) and their new chitosan based formulations (CS-6, CS-7), administrated to diabetic rats, have been evaluated in terms of biochemical markers of liver and kidney function as well as of hematological markers. The effect on lipid profile and clinic parameters (body weight, food and water intake) has been also evaluated. The treatment of diabetic rats with xanthine derivatives (6, 7) and chitosan based formulations (CS-6, CS-7) was associated with lower liver enzymes (AST, ALT, LDH) and bilirubin (direct, total) values compared to the non-treated diabetic rats, that means the tested derivatives/formulations have improved the liver function injured in diabetes mellitus conditions. Also the kidney biochemical markers (creatinine, uric acid, urea) were significantly decreased in diabetic rats treated with 6, 7 and chitosan microparticles (CS-6, CS-7). The values of biochemical markers of liver and kidney functions were even better than the values recorded for pioglitazone, used as standard antidiabetic drug. The improving effect on kidney function was proved by the histopathological study. Moreover, the xanthine derivatives and their chitosan based formulation were associated with improved hematological markers compared to the non-treated diabetic rats which mean the improving of the hemorheological state. These results support the safety profile of new xanthine derivatives with thiazolidine‑4‑one scaffold (6, 7) and their new chitosan based formulations (CS-6, CS-7) and their potential applications for the treatment of diabetes mellitus syndrome.
Collapse
|
17
|
Heinz-Taheny KM, Harlan SM, Qi Z, Heuer JG. Synopsis of Sweet! Mouse Models of Diabetic Kidney Disease. Toxicol Pathol 2018; 46:970-975. [DOI: 10.1177/0192623318799995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetes mellitus (types 1 and 2) is the leading cause of glomerular disease and end-stage renal disease in most developed countries, with estimates that one-third of people living with diabetes will develop diabetic kidney disease (DKD). The current standard of care medications slow but do not arrest progression of kidney disease, and therefore, therapy for DKD is a highly unmet medical need for patients. To discover and test novel and durable new therapies, it is necessary to develop animal models of human DKD, which authentically recapitulate the human disease state and provide translatable efficacy to human patients. Here, we review selected mouse models of human DKD, which demonstrate many of the features of type 2 human DKD.
Collapse
Affiliation(s)
| | | | - Zhonghua Qi
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
18
|
Wu W, Hu W, Han WB, Liu YL, Tu Y, Yang HM, Fang QJ, Zhou MY, Wan ZY, Tang RM, Tang HT, Wan YG. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy. Front Pharmacol 2018; 9:443. [PMID: 29881349 PMCID: PMC5976825 DOI: 10.3389/fphar.2018.00443] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro, murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro, the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro, and provided the first evidence that HKC directly contributes to the prevention of the early DN.
Collapse
Affiliation(s)
- Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Hu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Bei Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjng, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mo-Yi Zhou
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Ren-Mao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Hai-Tao Tang
- Institute of Huanghui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
19
|
Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Br J Nutr 2017; 119:22-29. [PMID: 29208058 DOI: 10.1017/s0007114517003208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney disease. We aimed to investigate the effect of the low-protein diets (LPD) supplemented with ketoacids (LPD+KA) in KKAy mice, an early type 2 DN model. KKAy mice were treated with normal protein diet (NPD), LPD or LPD+KA from 12 to 24 weeks of age. A period of 12-week treatment with LPD significantly reduced albuminuria as compared with that observed after NPD treatment. Treatment with LPD+KA further reduced albuminuria as compared with that observed with LPD treatment alone. Moreover, LPD treatment reduced mesangial expansion, thickness of glomerular basement membrane and the severity of the podocyte foot process effacement in KKAy mice; these effects were more pronounced in KKAy mice treated with LPD+KA. Both LPD and LPD+KA treatments slightly reduced total body weight, but had no significant effect on kidney weight and blood glucose concentrations when compared with NPD-treated KKAy mice. LPD treatment slightly attenuated oxidative stress in kidneys as compared with that observed in NPD-treated KKAy mice; however, LPD+KA treatment remarkably ameliorated oxidative stress in diabetic kidneys as shown by decreased malondialdehyde concentrations, protein carbonylation, nitrotyrosine expression and increased superoxide dismutase expression. Nutritional therapy using LPD+KA confers additional renal benefits as compared with those of LPD treatment alone in early type 2 DN through inhibition of oxidative stress.
Collapse
|
20
|
Futrakul N, Futrakul P. Biomarker for early renal microvascular and diabetic kidney diseases. Ren Fail 2017; 39:505-511. [PMID: 28494191 PMCID: PMC6014362 DOI: 10.1080/0886022x.2017.1323647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
Recognition of early stage of diabetic kidney disease, under common practice using biomarkers, namely microalbuminuria, serum creatinine level above 1 mg/dL and accepted definition of diabetic kidney disease associated with creatinine clearance value below 60 mL/min/1.73 m2, is unlikely. This would lead to delay treatment associated with therapeutic resistance to vasodilator due to a defective vascular homoeostasis. Other alternative biomarkers related to the state of microalbuminuria is not sensitive to screen for early diabetic kidney disease (stages I, II). In this regard, a better diagnostic markers to serve for this purpose are creatinine clearance, fractional excretion of magnesium (FE Mg), cystatin C. Recently, renal microvascular disease and renal ischemia have been demonstrated to correlate indirectly with the development of diabetic kidney disease and its function. Among these are angiogenic and anti-angiogenic factors, namely VEGF, VEGF receptors, angiopoietins and endostatin. With respect to therapeutic prevention, implementation of treatment at early stage of diabetic and nondiabetic kidney disease is able to restore renal perfusion and function.
Collapse
Affiliation(s)
- Narisa Futrakul
- Department of Physiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Futrakul
- Academy of Science, The Royal Institute of Thailand and Bhumirajanagarindra Kidney Institute, Bangkok, Thailand
| |
Collapse
|
21
|
Echouffo-Tcheugui JB, Narayan KM, Weisman D, Golden SH, Jaar BG. Association between prediabetes and risk of chronic kidney disease: a systematic review and meta-analysis. Diabet Med 2016; 33:1615-1624. [PMID: 26997583 DOI: 10.1111/dme.13113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 01/02/2023]
Abstract
AIMS To assess the effect of prediabetes (impaired fasting glucose and/or impaired glucose tolerance) on the incidence of chronic kidney disease. METHODS PubMed and EMBASE were searched (for studies published up to March 2015). Effects estimated from cohort studies reporting the relationship of prediabetes to incident chronic kidney disease [kidney damage (microalbuminuria, albuminuria or proteinuria) and/or decreased glomerular filtration rate] were pooled using a random-effects model meta-analysis. RESULTS Nine cohort studies with a total of 185 452, mainly Asian and white, participants were followed for a total of 835 146 person-years. In eight cohort studies defining impaired fasting glucose as fasting glucose 6.1-6.9 mmol/l, the summary relative risk of chronic kidney disease after adjustment for established risk factors was 1.11 (95% CI 1.02-1.21). When a study defining impaired fasting glucose as fasting glucose 5.6-6.9 mmol/dl was added, the overall relative risk of chronic kidney disease was 1.12 (95% CI 1.02-1.21). Exclusion of the only study with information on impaired glucose tolerance did not change the relative risk (1.12; 95% CI 1.02-1.21). There was no evidence of publication bias (P value for Egger test = 0.12). CONCLUSION Prediabetes is modestly associated with an increase in chronic kidney disease risk, but this remains to be robustly confirmed. Chronic kidney disease screening among people with prediabetes, and aggressive management of prediabetes in those with chronic kidney disease may be warranted.
Collapse
Affiliation(s)
- J B Echouffo-Tcheugui
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - K M Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - D Weisman
- Department of Medicine, MedStar Health System, Baltimore, MD, USA
| | - S H Golden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Welch Prevention Center, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - B G Jaar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Nephrology Center of Maryland, Baltimore, MD, USA
| |
Collapse
|
22
|
Sun H, Wang W, Han P, Shao M, Song G, Du H, Yi T, Li S. Astragaloside IV ameliorates renal injury in db/db mice. Sci Rep 2016; 6:32545. [PMID: 27585918 PMCID: PMC5009300 DOI: 10.1038/srep32545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023] Open
Abstract
Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways.
Collapse
Affiliation(s)
- Huili Sun
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenjing Wang
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Heng Du
- Department of Biological Sciences, the University of Texas at Dallas, Richardson, Texas, USA
| | - Tiegang Yi
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
23
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
24
|
Jha JC, Thallas-Bonke V, Banal C, Gray SP, Chow BSM, Ramm G, Quaggin SE, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 2016; 59:379-89. [PMID: 26508318 PMCID: PMC6450410 DOI: 10.1007/s00125-015-3796-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage. METHODS Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin. RESULTS Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice. CONCLUSIONS/INTERPRETATION Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Vicki Thallas-Bonke
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Claudine Banal
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Stephen P Gray
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Bryna S M Chow
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Georg Ramm
- Monash Micro-imaging, Monash University, Melbourne, VIC, Australia
| | | | - Mark E Cooper
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, the Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J Diabetes Res 2016; 2016:7047238. [PMID: 27525285 PMCID: PMC4971321 DOI: 10.1155/2016/7047238] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
The increase in the prevalence of diabetes mellitus (DM) and the secondary kidney damage produces diabetic nephropathy (DN). Early nephropathy is defined as the presence of microalbuminuria (30-300 mg/day), including normal glomerular filtration rate (GFR) or a mildly decreased GFR (60-89 mL/min/1.73 m(2)), with or without overt nephropathy. The earliest change caused by DN is hyperfiltration with proteinuria. The acceptable excretion rate of albumin in urine is <30 mg/day. Albuminuria represents the excretion of >300 mg/day. Chronic kidney disease (CKD) is characterized by abnormalities in renal function that persist for >3 months with health implications. Alterations in the redox state in DN are caused by the persistent state of hyperglycemia and the increase in advanced glycation end products (AGEs) with ability to affect the renin-angiotensin system and the transforming growth factor-beta (TGF-β), producing chronic inflammation and glomerular and tubular hypertrophy and favoring the appearance of oxidative stress. In DN imbalance between prooxidant/antioxidant processes exists with an increase in reactive oxygen species (ROS). The overproduction of ROS diminishes expression of the antioxidant enzymes (manganese superoxide dismutase, glutathione peroxidase, and catalase). The early detection of CKD secondary to DN and the timely identification of patients would permit decreasing its impact on health.
Collapse
Affiliation(s)
- Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Health Sciences Centre (Centro Universitario de Ciencias de la Salud), University of Guadalajara, 44150 Guadalajara, JAL, Mexico
- *Alejandra Guillermina Miranda-Díaz:
| | | | | | - Jorge Andrade-Sierra
- Nephrology Service, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| |
Collapse
|
26
|
López-Revuelta K, Abreu AAM, Gerrero-Márquez C, Stanescu RI, Marín MIM, Fernández EP. Diabetic Nephropathy without Diabetes. J Clin Med 2015; 4:1403-1427. [PMID: 26239683 PMCID: PMC4519797 DOI: 10.3390/jcm4071403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy without diabetes (DNND), previously known as idiopathic nodular glomerulosclerosis, is an uncommon entity and thus rarely suspected; diagnosis is histological once diabetes is discarded. In this study we describe two new cases of DNND and review the literature. We analyzed all the individualized data of previous publications except one series of attached data. DNND appears to be favored by recognized cardiovascular risk factors. However, in contrast with diabetes, apparently no factor alone has been demonstrated to be sufficient to develop DNND. Other factors not considered as genetic and environmental factors could play a role or interact. The most plausible hypothesis for the occurrence of DNND would be a special form of atherosclerotic or metabolic glomerulopathy than can occur with or without diabetes. The clinical spectrum of cardiovascular risk factors and histological findings support this theory, with hypertension as one of the characteristic clinical features.
Collapse
Affiliation(s)
- Katia López-Revuelta
- Unidad de Nefrología, Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Madrid, Spain.
| | - Angel A Méndez Abreu
- Unidad de Nefrología, Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Madrid, Spain.
| | - Carmen Gerrero-Márquez
- Unidad de Anatomía Patológica, Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Madrid, Spain.
| | - Ramona-Ionela Stanescu
- Unidad de Anatomía Patológica, Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Madrid, Spain.
| | | | - Elia Pérez Fernández
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Madrid, Spain.
| |
Collapse
|
27
|
Filippone EJ, Gupta A, Farber JL. Normoglycemic diabetic nephropathy: the role of insulin resistance. CASE REPORTS IN NEPHROLOGY AND UROLOGY 2014; 4:137-43. [PMID: 25076962 PMCID: PMC4107385 DOI: 10.1159/000364901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathophysiology of diabetic nephropathy (DN) is complex and incompletely understood. Whereas hyperglycemia is clearly important, the role of insulin resistance (IR) is increasingly recognized. We present the case of a normotensive non-smoking obese woman with nephrotic syndrome who was found to have DN by biopsy. All measures of glucose metabolism, including fasting glucose, glycosylated hemoglobin, and oral glucose tolerance testing, were repeatedly normal with little exception. IR was documented, however, based on the presence of the metabolic syndrome and an elevated homeostasis model assessment of IR. We posit that this IR is central to the pathogenesis of our patient's lesion, and this may explain other cases of DN with normoglycemia. The literature supporting this concept is discussed.
Collapse
Affiliation(s)
- Edward J Filippone
- Division of Nephrology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, Pa., USA
| | - Astha Gupta
- Division of Nephrology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, Pa., USA
| | - John L Farber
- Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, Pa., USA
| |
Collapse
|
28
|
|
29
|
Signaling mechanisms in the regulation of renal matrix metabolism in diabetes. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:749812. [PMID: 22454628 PMCID: PMC3290898 DOI: 10.1155/2012/749812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023]
Abstract
Renal hypertrophy and accumulation of extracellular matrix proteins are among cardinal manifestations of diabetic nephropathy. TGF beta system has been implicated in the pathogenesis of these manifestations. Among signaling pathways activated in the kidney in diabetes, mTOR- (mammalian target of rapamycin-)regulated pathways are pivotal in orchestrating high glucose-induced production of ECM proteins leading to functional and structural changes in the kidney culminating in adverse outcomes. Understanding signaling pathways that influence individual matrix protein expression could lead to the development of new interventional strategies. This paper will highlight some of the diverse components of the signaling network stimulated by hyperglycemia with an emphasis on extracellular matrix protein metabolism in the kidney in diabetes.
Collapse
|
30
|
Affiliation(s)
- Eberhard Ritz
- Department of Internal Medicine, Nierenzentrum, Im Neuenheimer Feld, Heidelberg, Germany.
| |
Collapse
|
31
|
Ritz E. Drug of choice in the management of hypertension in diabetes and diabetic nephropathy: angiotensin-converting enzyme inhibitors. J Clin Hypertens (Greenwich) 2011; 13:285-9. [PMID: 21466627 DOI: 10.1111/j.1751-7176.2011.00448.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is common in patients with diabetes mellitus and is a main cause of renal and cardiovascular complications. There has been recent controversy on what should be considered the optimal blood pressure goal and the optimal antihypertensive agent. It has become apparent that one blood pressure does not fit all in diabetic patients. Major confounders are preexisting cardiovascular disease and presence or absence of proteinuric kidney disease. In proteinuric diabetic nephropathy, renin-angiotensin system blockade is clearly indicated, but monotherapy is practically always insufficient to achieve target blood pressure values.
Collapse
Affiliation(s)
- Eberhard Ritz
- Division of Nephrology, Department of Internal Medicine, Nierenzentrum, Heidelberg, Germany.
| |
Collapse
|
32
|
Sato S, Sasaki Y, Adachi A, Ghazizadeh M. Validation of glomerular basement membrane thickness changes with aging in minimal change disease. Pathobiology 2011; 77:315-9. [PMID: 21266830 DOI: 10.1159/000321961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022] Open
Abstract
Measurement of the normal range of glomerular basement membrane (GBM) thickness by electron microscopy is required for the diagnosis of thin basement membrane disease or diabetic nephropathy; however, this measurement is influenced by aging. The aim of this study was to introduce a simple histogram plotting method for the validation of the results of the GBM thickness measurements by the accepted arithmetic mean ± SD method. We examined renal biopsy specimens obtained from 19 patients (10 males and 9 females) with minimal change disease, ranging in age from 3 to 70 years. Renal tissue samples obtained at autopsy from a male baby (3 months old) with no renal disease were also examined. For each case, GBM thicknesses at 10-15 evenly distributed points per glomerular loop were directly measured and the arithmetic mean ± SD was calculated. Subsequently, the arithmetic mean ± SD for each group of cases classified by age into 4 groups, i.e. babyhood (3 months old), childhood (3-11 years old), adulthood (12-57 years old), and old age (60-70 years old), was determined. On the other hand, a histogram of the frequency of GBM points measured against thickness was plotted to determine the distribution pattern and the range of measurements in each age group. The histogram plot showed 4 clearly divided modes for GBM thickness. Comparison of the results obtained by the 2 methods revealed a significant correlation indicating the feasibility of the histogram plotting method as a useful adjunct to validate GBM thickness measurements.
Collapse
Affiliation(s)
- Shigeru Sato
- Central Institute for Electron Microscopic Researches, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Szeto CC, Mac-Moune Lai F, Kwan BCH, Leung CB, Choi PCL, Pang WF, Chow KM, Lai KB, Wang G, Li PKT. The width of the basement membrane does not influence clinical presentation or outcome of thin glomerular basement membrane disease with persistent hematuria. Kidney Int 2010; 78:1041-6. [DOI: 10.1038/ki.2010.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Wu HS, Dikman S. Segmentation and thickness measurement of glomerular basement membranes from electron microscopy images. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:409-418. [PMID: 20675608 DOI: 10.1093/jmicro/dfq060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An algorithm for segmentation and thickness measurement of the glomerular basement membranes (GBM) in electron microscopy kidney images is presented. Differences in intensities and variations between GBM and other components in the image are employed. Regions of extreme intensities such as the black area of blood cells and white areas of urinary spaces are pre-excluded. Areas of sharp edges are either at the GBM borders or unrelated to GBM regions. These non-GBM sharp edges, along with the pre-excluded regions, are used as barriers limiting the size of the fitting circles centered at a location in the image domain to form a two-dimensional function, proportional to the radius of the largest fitting circle, at the location. A local peak in the radius function corresponds to the largest circle in the local area. The set of the combined peaks in two perpendicular directions is calculated before a thinning procedure is applied. After removing the unwanted branches, a centerline of the GBM is produced. The segmentation of the GBM is then straightforward from expanding each point in the centerline to a circle of radius defined by the radius function. The average of the diameters of the circles gives the average GBM thickness. Results of the real GBM images are provided. Visual comparisons from the superimposed GBM boundaries show that the algorithm provides accurate GBM segmentation. The evaluations of the average GBM thicknesses are also compared to those from the manual tracing method.
Collapse
Affiliation(s)
- Hai-Shan Wu
- Department of Pathology, Box 1194, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
35
|
Wu HS, Dikman S, Gil J. A semi-automatic algorithm for measurement of basement membrane thickness in kidneys in electron microscopy images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 97:223-231. [PMID: 19646774 DOI: 10.1016/j.cmpb.2009.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
In this paper, we present a semi-automatic algorithm for measurement of the glomerular basement membrane thickness in electron microscopy kidney images. A string of sparsely spaced points are manually inputted along the central line of the basement membrane (lamina densa) to be measured. The gaps between successive input points are lineally interpolated. A nonlinear mapping is applied to straighten the curved central line. Two distance functions of edges to the central line are constructed. The smooth envelope lines are obtained by repetitive applications of a linear low-pass filtering followed by a comparing and selecting process. The boundaries of the glomerular basement membrane are obtained from the inverse mapping of the envelope functions. The average basement membrane thickness is estimated as the ratio of the basement membrane area to the length of the central line.
Collapse
Affiliation(s)
- Hai-Shan Wu
- Department of Pathology, Box 1194, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
36
|
Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noël LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21:556-63. [PMID: 20167701 DOI: 10.1681/asn.2010010010] [Citation(s) in RCA: 1089] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
Collapse
Affiliation(s)
- Thijs W Cohen Tervaert
- Department of Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang J, Singh AK, Magee CC, Pendergrass ML, Ahmed SB. A potential living kidney donor with prediabetes. Kidney Int 2009; 76:673-7. [PMID: 19177151 DOI: 10.1038/ki.2008.664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jiao Yang
- Department of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
38
|
Lai FMM, To KF, Lung Choi PC. “Journey to the West”: Fact and Fiction. On the Chronicity-based Grading of IgA Nephropathy Model and Thick GCBM as Marker for a Syndrome. Int J Organ Transplant Med 2008. [DOI: 10.1016/s1561-5413(08)60021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Abstract
The oxidation process is one of the most important natural processes. Oxidative change in diabetes is believed to be an important process in the pathogenesis. Here, the author determines the oxidation flux change in diabetic nephropathy. A simulation test to determine the oxidation flux change based on nano medicine technique is used. An increase in oxidation flux in the diabetic nephropathy can be derived. Therefore, this work can support the finding that the oxidation flux change plays an important role in the pathogenesis of diabetic nephropathy. Conclusively, the oxidative stress can bring glomerulus thickness, and the thickness glomerulus can further amplify the oxidative injuries.
Collapse
Affiliation(s)
- Viroj Wiwanitkit
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|