1
|
Hu L, Wu N, Wang J, Cai D. Network pharmacology combined with experimental verification for exploring the potential mechanism of phellodendrine against depression. Sci Rep 2025; 15:1958. [PMID: 39809809 PMCID: PMC11733132 DOI: 10.1038/s41598-024-84771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation. Multiple databases were used to predict the targets of PHE and MDD. The intersection targets between PHE and MDD were obtained to identify as targets for PHE against MDD, followed by protein-protein interaction network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Molecular docking was applied to further confirm the anti-MDD effects of PHE. The mitochondrial DNA (mtDNA) copy number, inflammatory cytokines and pathway-related mRNA expressions in PC12 cell were determined via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay to verify our finding. Thirty-eight intersection targets were obtained between PHE and MDD. PHE exerted an anti-MDD effect by regulating SLC6A4, SLC6A3, SLC6A2, MAOA and other targets through serotonergic synapse, salivary secretion, dopaminergic synapse, and cAMP signalling pathway. In vitro, PHE induced an increment in mtDNA copy number compared with the CORT group. PHE affected the levels of IL6 and IL1β with different concentrations. The mRNA levels of CHRM1, HTR1A and key targets of the PI3K/Akt signalling pathway were also influenced. Our research reveals novel mechanisms underlying the anti-MDD effects of PHE through network pharmacology and experiments, which provides a new direction for the development of antidepressants.
Collapse
Affiliation(s)
- Lili Hu
- College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China.
| | - Na Wu
- College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China
| | - Jue Wang
- College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China
| | - Donghui Cai
- College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China
| |
Collapse
|
2
|
Jin M, Ji L, Ran M, Wang Z, Bi Y, Zhang H, Tao Y, Xu H, Zou S, Zhang H, Yu T, Yin L. ABC Family Gene Polymorphisms and Cognitive Functions Interact to Influence Antidepressant Efficacy. PHARMACOPSYCHIATRY 2025; 58:25-32. [PMID: 39542023 DOI: 10.1055/a-2437-1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
INTRODUCTION The importance of identifying relevant indicators of antidepressant efficacy is highlighted by the low response rates to antidepressant treatment for depression. The ABC gene family, encoding ATP-dependent transport proteins facilitating the transport of psychotropic drugs, has drawn attention. This study delved into the relationship between antidepressant efficacy and seven single nucleotide polymorphisms of ABCB1 and ABCB6 genes. METHODS A total of 549 depressed patients participated in the study, and all completed a 6-week course of antidepressant treatment. Cognitive function was assessed at baseline and post-treatment. Patients were categorized based on post-treatment HAMD-17 scores (with HAMD≤7 indicating remission), and comparisons were made between different groups in terms of allelic gene frequencies and genotypes. Logistic regression was used to explore the interaction between cognitive function and genotype on efficacy. Dual-luciferase reporter assays were performed to compare the regulatory effects of rs1109866 allele variants on the ABCB6 promoter. RESULTS There were no notable differences in allelic gene frequencies and genotypes between the remission and non-remission groups. Nonetheless, a significant interaction was identified between the rs1109866 genotype and language fluency-related indicators concerning efficacy (p=0.029) before correction. The dual-luciferase reporter assays demonstrated markedly higher fluorescence intensity of rs1109866-C compared to that of rs1109866-T (p<0.001). DISCUSSION Relying solely on genetic polymorphisms of ABC family genes as predictors of antidepressant treatment response may not be sufficient. However, the interaction between the rs1109866 and cognition plays a pivotal role. The potentially enhanced transcriptional activity of rs1109866-C might offer insight into its impact on antidepressant efficacy.
Collapse
Affiliation(s)
- Meijiang Jin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Maojia Ran
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhujun Wang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuanmei Tao
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hanmei Xu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shoukang Zou
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Institute for System Genetics, Frontiers Science Center for Disease-related Molecular Networks, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
5
|
Santos M, Lima L, Carvalho S, Brandão A, Barroso F, Cruz A, Medeiros R. ABCB1 C1236T, G2677TA and C3435T Genetic Polymorphisms and Antidepressant Response Phenotypes: Results from a Portuguese Major Depressive Disorder Cohort. Int J Mol Sci 2024; 25:5112. [PMID: 38791151 PMCID: PMC11120659 DOI: 10.3390/ijms25105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
P-glycoprotein (P-GP) is a transporter molecule expressed on the apical surface of capillary endothelial cells of the Blood-Brain Barrier (BBB), whose activity heavily influences drug distribution, including antidepressants. This transporter is encoded by ABCB1 gene, and genetic variations within ABCB1 gene have been proposed to affect drug efflux and have been previously associated with depression. In this context, we aimed to evaluate the role of C1236T, G2677TA and C3435T ABCB1 genetic polymorphisms in antidepressant treatment phenotypes from a cohort of patients harboring Major Depressive Disorder. Patients enrolled in the study consisted of 80 individuals with Major Depressive Disorder, who took part in a 27-month follow-up study at HML, Portugal. To investigate the correlation between ABCB1 polymorphisms and antidepressant response phenotypes, DNA was extracted from peripheral blood, and C1236T, C3435T and G2677TA polymorphisms were genotyped with TaqMan® SNP Genotyping Assays. Despite the fact that the evaluated polymorphisms (C1236T, C3435T and G2677TA) were not associated with treatment resistant depression, or relapse, we observed that patients carrying TT genotype of the C3435T polymorphism remit earlier than the ones carrying CC or CT genotypes (10.2 weeks vs. 14.9 and 21.3, respectively, p = 0.028, Log-rank test). Since we found an association with C3435T and time to remission, and not to the absence of remission, we suggest that this polymorphism could have an impact on antidepressant drug distribution, and thus influence on the time to remission will occur, without influencing the risk of remission itself.
Collapse
Affiliation(s)
- Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal;
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, Centro Hospitalar Universitário de Santo António, 4149-003 Porto, Portugal;
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Agostinho Cruz
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
6
|
Zhang N, Li J, Dong Z, Hu Y, Zhong Z, Gong Q, Kuang W. The digestion and dietary carbohydrate pathway contains 100% gene mutations enrichment among 117 patients with major depressive disorder. Front Psychiatry 2024; 15:1362612. [PMID: 38742130 PMCID: PMC11089147 DOI: 10.3389/fpsyt.2024.1362612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is partially inheritable while its mechanism is still uncertain. Methods This cross-sectional study focused on gene pathways as a whole rather than polymorphisms of single genes. Deep sequencing and gene enrichment analysis based on pathways in Reactome database were obtained to reveal gene mutations. Results A total of 117 patients with MDD and 78 healthy controls were enrolled. The Digestion and Dietary Carbohydrate pathway (Carbohydrate pathway) was determined to contain 100% mutations in patients with MDD and 0 mutation in matched healthy controls. Discussion Findings revealed in the current study enable a better understanding of gene pathways mutations status in MDD patients, indicating a possible genetic mechanism of MDD development and a potential diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Yongbo Hu
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Zhong
- Laboratory of Non-human Primate Disease Modeling Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Singh P, Srivastava A, Guin D, Thakran S, Yadav J, Chandna P, Sood M, Chadda RK, Kukreti R. Genetic Landscape of Major Depressive Disorder: Assessment of Potential Diagnostic and Antidepressant Response Markers. Int J Neuropsychopharmacol 2023; 26:692-738. [PMID: 36655406 PMCID: PMC10586057 DOI: 10.1093/ijnp/pyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation. METHODS We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values. RESULTS A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response. CONCLUSIONS The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Puneet Chandna
- Indian Society of Colposcopy and Cervical Pathology (ISCCP), Safdarjung Hospital, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. MAPT rs17649553 T allele is associated with better verbal memory and higher small-world properties in Parkinson's disease. Neurobiol Aging 2023; 129:219-231. [PMID: 37413784 DOI: 10.1016/j.neurobiolaging.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Currently, over 90 genetic loci have been found to be associated with Parkinson's disease (PD) in genome-wide association studies, nevertheless, the effects of these genetic variants on the clinical features and brain structure of PD patients are largely unknown. This study investigated the effects of microtubule-associated protein tau (MAPT) rs17649553 (C>T), a genetic variant associated with reduced PD risk, on the clinical manifestations and brain networks of PD patients. We found MAPT rs17649553 T allele was associated with better verbal memory in PD patients. In addition, MAPT rs17649553 significantly shaped the topology of gray matter covariance network and white matter network. Both the network metrics in gray matter covariance network and white matter network were correlated with verbal memory, however, the mediation analysis showed that it was the small-world properties in white matter network that mediated the effects of MAPT rs17649553 on verbal memory. These results suggest that MAPT rs17649553 T allele is associated with higher small-world properties in structural network and better verbal memory in PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital Affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Lei C, Li N, Chen J, Wang Q. Hypericin Ameliorates Depression-like Behaviors via Neurotrophin Signaling Pathway Mediating m6A Epitranscriptome Modification. Molecules 2023; 28:molecules28093859. [PMID: 37175269 PMCID: PMC10179818 DOI: 10.3390/molecules28093859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Hypericin, one of the major antidepressant constituents of St. John's wort, was shown to exert antidepressant effects by affecting cerebral CYP enzymes, serotonin homeostasis, and neuroinflammatory signaling pathways. However, its exact mechanisms are unknown. Previous clinical studies reported that the mRNA modification N6-methyladenosine (m6A) interferes with the neurobiological mechanism in depressed patients, and it was also found that the antidepressant efficacy of tricyclic antidepressants (TCAs) is related to m6A modifications. Therefore, we hypothesize that the antidepressant effect of hypericin may relate to the m6A modification of epitranscriptomic regulation. We constructed a UCMS mouse depression model and found that hypericin ameliorated depressive-like behavior in UCMS mice. Molecular pharmacology experiments showed that hypericin treatment upregulated the expression of m6A-modifying enzymes METTL3 and WTAP in the hippocampi of UCMS mice. Next, we performed MeRIP-seq and RNA-seq to study m6A modifications and changes in mRNA expression on a genome-wide scale. The genome-wide m6A assay and MeRIP-qPCR results revealed that the m6A modifications of Akt3, Ntrk2, Braf, and Kidins220 mRNA were significantly altered in the hippocampi of UCMS mice after stress stimulation and were reversed by hypericin treatment. Transcriptome assays and qPCR results showed that the Camk4 and Arhgdig genes might be related to the antidepressant efficacy of hypericin. Further gene enrichment results showed that the differential genes were mainly involved in neurotrophic factor signaling pathways. In conclusion, our results show that hypericin upregulates m6A methyltransferase METTL3 and WTAP in the hippocampi of UCMS mice and stabilizes m6A modifications to exert antidepressant effects via the neurotrophin signaling pathway. This suggests that METTL3 and WTAP-mediated changes in m6A modifications may be a potential mechanism for the pathogenesis of depression and the efficacy of antidepressants, and that the neurotrophin signaling pathway plays a key role in this process.
Collapse
Affiliation(s)
- Chunguang Lei
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
10
|
Santos M, Lima L, Carvalho S, Mota-Pereira J, Pimentel P, Maia D, Correia D, Barroso MF, Gomes S, Cruz A, Medeiros R. The Impact of BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 Genetic Polymorphisms in Antidepressant Treatment Response Phenotypes. Int J Mol Sci 2023; 24:ijms24076758. [PMID: 37047730 PMCID: PMC10095078 DOI: 10.3390/ijms24076758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
This study aimed to investigate the influence of genetic variants in neuroplasticity-related genes on antidepressant treatment phenotypes. The BDNF-TrkB signaling pathway, as well as the downstream kinases Akt and ERK and the mTOR pathway, have been implicated in depression and neuroplasticity. However, clinicians still struggle with the unpredictability of antidepressant responses in depressed patients. We genotyped 26 polymorphisms in BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 in 80 patients with major depressive disorder treated according to the Texas Medical Algorithm for 27 months at Hospital Magalhães Lemos, Porto, Portugal. Our results showed that BDNF rs6265, PTEN rs12569998, and SYN1 rs1142636 SNP were associated with treatment-resistant depression (TRD). Additionally, MAPK1 rs6928 and GSK3B rs6438552 gene polymorphisms were associated with relapse. Moreover, we found a link between the rs6928 MAPK1 polymorphism and time to relapse. These findings suggest that the BDNF, PTEN, and SYN1 genes may play a role in the development of TRD, while MAPK1 and GSK3B may be associated with relapse. GO analysis revealed enrichment in synaptic and trans-synaptic transmission pathways and glutamate receptor activity with TRD-associated genes. Genetic variants in these genes could potentially be incorporated into predictive models of antidepressant response.
Collapse
Affiliation(s)
- Marlene Santos
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | | | - Paulo Pimentel
- Trás-os-Montes e Alto Douro Hospital Centre, 5000-508 Vila Real, Portugal
| | - Dulce Maia
- Trás-os-Montes e Alto Douro Hospital Centre, 5000-508 Vila Real, Portugal
| | - Diana Correia
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Sofia Gomes
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
| | - Agostinho Cruz
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (Norte), 4200-172 Porto, Portugal
| |
Collapse
|
11
|
Pharmacokinetic Markers of Clinical Outcomes in Severe Mental Illness: A Systematic Review. Int J Mol Sci 2023; 24:ijms24054776. [PMID: 36902205 PMCID: PMC10003720 DOI: 10.3390/ijms24054776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The term severe mental illness (SMI) encompasses those psychiatric disorders exerting the highest clinical burden and socio-economic impact on the affected individuals and their communities. Pharmacogenomic (PGx) approaches hold great promise in personalizing treatment selection and clinical outcomes, possibly reducing the burden of SMI. Here, we sought to review the literature in the field, focusing on PGx testing and particularly on pharmacokinetic markers. We performed a systematic review on PUBMED/Medline, Web of Science, and Scopus. The last search was performed on the 17 September 2022, and further augmented with a comprehensive pearl-growing strategy. In total, 1979 records were screened, and after duplicate removal, 587 unique records were screened by at least 2 independent reviewers. Ultimately, forty-two articles were included in the qualitative analysis, eleven randomized controlled trials and thirty-one nonrandomized studies. The observed lack of standardization in PGx tests, population selection, and tested outcomes limit the overall interpretation of the available evidence. A growing body of evidence suggests that PGx testing might be cost-effective in specific settings and may modestly improve clinical outcomes. More efforts need to be directed toward improving PGx standardization, knowledge for all stakeholders, and clinical practice guidelines for screening recommendations.
Collapse
|
12
|
Abstract
OBJECTIVE A better understanding of the genetic, molecular and cellular mechanisms of brain-derived neurotrophic factor (BDNF) and its association with neuroplasticity could play a pivotal role in finding future therapeutic targets for novel drugs in major depressive disorder (MDD). Because there are conflicting results regarding the exact role of BDNF polymorphisms in MDD still, we set out to systematically review the current evidence regarding BDNF-related mutations in MDD. METHODS We conducted a keyword-guided search of the PubMed and Embase databases, using 'BDNF' or 'brain-derived neurotrophic factor' and 'major depressive disorder' and 'single-nucleotide polymorphism'. We included all publications in line with our exclusion and inclusion criteria that focused on BDNF-related mutations in the context of MDD. RESULTS Our search yielded 427 records in total. After screening and application of our eligibility criteria, 71 studies were included in final analysis. According to present overall scientific data, there is a possibly major pathophysiological role for BDNF neurotrophic systems to play in MDD. However, on the one hand, the synthesis of evidence makes clear that likely no overall association of BDNF-related mutations with MDD exists. On the other hand, it can be appreciated that solidifying evidence emerged on specific significant sub-conditions and stratifications based on various demographic, clinico-phenotypical and neuromorphological variables. CONCLUSIONS Further research should elucidate specific BDNF-MDD associations based on demographic, clinico-phenotypical and neuromorphological variables. Furthermore, biomarker approaches, specifically combinatory ones, involving BDNF should be further investigated.
Collapse
|
13
|
Anderson DJ, Vazirnia P, Loehr C, Sternfels W, Hasoon J, Viswanath O, Kaye AD, Urits I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol Res 2022; 10:38956. [PMID: 36452903 PMCID: PMC9704723 DOI: 10.52965/001c.38956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is a common disorder that affects millions globally and is linked to reduced quality of life and mortality. Its pathophysiology is complex and there are several forms of treatment proposed in the literature with differing side effect profiles. Many patients do not respond to treatment which warrants augmentation with other treatments and the investigation of novel treatments. One of these treatments includes testosterone therapy which evidence suggests might improve depressed mood in older patients with low levels of testosterone and helps restore physical impairments caused by age-related hormonal changes. OBJECTIVE The objective of this review is to synthesize information regarding clinical depression, its treatment options, and the efficacy and safety of testosterone treatment for the treatment of depression. METHODS This review utilized comprehensive secondary and tertiary data analysis across many academic databases and published work pertaining to the topic of interest. RESULTS Within some subpopulations such as men with dysthymic disorder, treatment resistant depression, or low testosterone levels, testosterone administration yielded positive results in the treatment of depression. Additionally, rodent models have shown that administering testosterone to gonadectomized male animals reduces symptoms of depression. Conversely, some studies have found no difference in depressive symptoms after treatment with testosterone when compared with placebo. It was also noted that over administration of testosterone is associated with multiple adverse effects and complications. CONCLUSION The current evidence provides mixed conclusions on the effectiveness of testosterone therapy for treating depression. More research is needed in adult men to see if declining testosterone levels directly influence the development of depression.
Collapse
Affiliation(s)
| | | | - Catherine Loehr
- School of Medicine, Louisiana State University Health Sciences Center
| | - Whitney Sternfels
- School of Medicine, Louisiana State University Health Sciences Center
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix; Department of Anesthesiology, Creighton University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
14
|
Dai X, Yang Z, Zhang W, Liu S, Zhao Q, Liu T, Chen L, Li L, Wang Y, Shao R. Identification of diagnostic gene biomarkers related to immune infiltration in patients with idiopathic pulmonary fibrosis based on bioinformatics strategies. Front Med (Lausanne) 2022; 9:959010. [PMID: 36507532 PMCID: PMC9729277 DOI: 10.3389/fmed.2022.959010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The study aims to identify potential diagnostic markers of idiopathic pulmonary fibrosis (IPF) and analyze the significance of immune cell infiltration in this pathology. Materials and methods Download two publicly available gene expression profiles (GSE10667 and GSE24206 datasets) from the GEO database including 48 Idiopathic pulmonary fibrosis (IPF) samples and 21 human control samples and select for distinctly expressed genes (DEG) from them. Lasso regression model and support vector machine recursive feature elimination S,V,R,F analysis were used to check candidate biomarkers. The area under the subject's work characteristic curve (AUC) value is used to evaluate its recognition ability. The GSE53845 dataset (40 IPF patients and 8 controls) continue to validate the expression level and diagnostic value of biomarkers in IPF. Comprehensive analysis of immune infiltrated cells of IPF was performed using R software and immune cell infiltration estimation analysis tool- deconvolution algorithm (CIBERSORT). Results 43 DEGs were identified in total. The identified DEGs mostly involve pneumonia, lung disease, collagen disease, obstructive pulmonary disease and other diseases. The activation of IL-17 signaling pathways, amoebic disease, interaction of viral proteins with cytokines and cytokine receptors, protein digestion and absorption, and flaccid hormone signaling pathways in IPF were different from the control group. The expression degree of CRTAC1, COL10A1, COMP, RPS4Y1, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 in IPF tissue were prominently higher than the normal group. Immune cell infiltration analysis showed that CRTAC1, COL10A1, COMP, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 were associated with monocytes, plasma cells, neutrophils, and regulatory (treg) T cells. Conclusion CRTAC1, COL10A1, COMP, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 can be used as diagnostic markers for IPF, providing new ideas for the future study of IPF occurrence and molecular mechanisms.
Collapse
Affiliation(s)
- Xiangdong Dai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuai Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianru Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Yi Wang,
| | - Rui Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Rui Shao,
| |
Collapse
|
15
|
Panina YS, Domoratskaya EA, Paramonova AI, Dmitrenko DV. Study of the role of carriage of single nucleotide variants of the IL-1β, TNFA, BDNF, NTRK-2 genes in the development and clinical features of temporal lobe epilepsy. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-5-28-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Temporal lobe epilepsy (TE) is the most common form of focal epilepsy in adults with a high rate of drug-resistant course. In the Russian Federation studies of the contribution of the carriage of single nucleotide variants of genes (SNGs) encoding proteins of neuroinflammation and neurodegeneration to the development of TE have not been previously carried out.Objective: to study the association of SNGs rs16944 and rs1143634 of the IL-1β gene, rs1800629 of the TNFA gene, rs6265 of the BDNF gene, rs3780645 of the NTRK-2 gene with the risk of development, clinical and neuroimaging features of TE.Patients and methods. The study included 166 patients with TE and 203 healthy volunteers living in the Siberian Federal District. The study included clinical, neurophysiological, neuroradiological, and laboratory work-up. Investigation of the carriage of SNGs rs16944 (-511T/C) and rs1143634 (+3954C/T) of the IL-1β gene, rs1800629 (G-308A) of the TNFA gene, rs6265 (G/A) of the BDNF gene, rs3780645 (C/T) and rs2289656 (C/T) of the NTRK-2 gene was carried out by real-time polymerase chain reaction. Results and discussion. The prognostically unfavorable role of carriage of the A allele and the GA rs1800629 genotype of the TNFA gene in the development of TE, the GA rs6265 genotype of the BDNF gene in the development of TE with hippocampal sclerosis was established. Carrying the genotype AA rs1800629 of the TNFA gene in patients with TE reduces the risk of polytherapy with antiepileptic drugs.Conclusion. The study of neuroinflammation and neurodegeneration processes is important both from a physiological point of view and from the point of view of searching for the TE development markers, which make it possible to predict and evaluate the rate of disease progression, help to determine the tactics of treatment, and evaluate its effectiveness. In this regard, at present, the identification of potential genetic markers remains a task of high priority.
Collapse
Affiliation(s)
- Yu. S. Panina
- V.F. Voyno-Yasenetsky Krasnoyarsk Medical State University, Ministry of Health of Russia
| | - E. A. Domoratskaya
- V.F. Voyno-Yasenetsky Krasnoyarsk Medical State University, Ministry of Health of Russia
| | - A. I. Paramonova
- V.F. Voyno-Yasenetsky Krasnoyarsk Medical State University, Ministry of Health of Russia
| | - D. V. Dmitrenko
- V.F. Voyno-Yasenetsky Krasnoyarsk Medical State University, Ministry of Health of Russia
| |
Collapse
|
16
|
Zhao Y, Zhang H, Zhang Y, Fang Z, Xu C. Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats. ACS Chem Neurosci 2022; 13:2298-2308. [PMID: 35838172 DOI: 10.1021/acschemneuro.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Handi Zhang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Yinnan Zhang
- Rehabilitation Division, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Zeman Fang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Chongtao Xu
- Shantou University Mental Health Center, Shantou 515041, Guangdong, P. R. China
| |
Collapse
|
17
|
Giordano A, Clarelli F, Cannizzaro M, Mascia E, Santoro S, Sorosina M, Ferrè L, Leocani L, Esposito F. BDNF Val66Met Polymorphism Is Associated With Motor Recovery After Rehabilitation in Progressive Multiple Sclerosis Patients. Front Neurol 2022; 13:790360. [PMID: 35265024 PMCID: PMC8899087 DOI: 10.3389/fneur.2022.790360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background Rehabilitation is fundamental for progressive multiple sclerosis (MS), but predictive biomarkers of motor recovery are lacking, making patient selection difficult. Motor recovery depends on synaptic plasticity, in which the Brain-Derived Neurotrophic Factor (BDNF) is a key player, through its binding to the Neurotrophic-Tyrosine Kinase-2 (NTRK2) receptor. Therefore, genetic polymorphisms in the BDNF pathway may impact motor recovery. The most well-known polymorphism in BDNF gene (rs6265) causes valine to methionine substitution (Val66Met) and it influences memory and motor learning in healthy individuals and neurodegenerative diseases. To date, no studies have explored whether polymorphisms in BDNF or NTRK2 genes may impact motor recovery in MS. Objectives To assess whether genetic variants in BDNF and NTRK2 genes affect motor recovery after rehabilitation in progressive MS. Methods The association between motor recovery after intensive neurorehabilitation and polymorphisms in BDNF (rs6265) and NTKR2 receptor (rs2289656 and rs1212171) was assessed using Six-Minutes-Walking-Test (6MWT), 10-Metres-Test (10MT) and Nine-Hole-Peg-Test (9HPT) in 100 progressive MS patients. Results We observed greater improvement at 6MWT after rehabilitation in carriers of the BDNF Val66Met substitution, compared to BDNF Val homozygotes (p = 0.024). No significant association was found for 10MT and 9HPT. NTRK2 polymorphisms did not affect the results of motor function tests. Conclusion BDNF Val66Met was associated with walking function improvement after rehabilitation in progressive MS patients. This result is in line with previous evidence showing a protective effect of Val66Met substitution on brain atrophy in MS. Larger studies are needed to explore its potential as a predictive biomarker of rehabilitation outcome.
Collapse
Affiliation(s)
- Antonino Giordano
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Chronic Administration of 7,8-DHF Lessens the Depression-like Behavior of Juvenile Mild Traumatic Brain Injury Treated Rats at Their Adult Age. Pharmaceutics 2021; 13:pharmaceutics13122169. [PMID: 34959450 PMCID: PMC8704538 DOI: 10.3390/pharmaceutics13122169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among the global youth and commonly results in long-lasting sequelae, including paralysis, epilepsy, and a host of mental disorders such as major depressive disorder. Previous studies were mainly focused on severe TBI as it occurs in adults. This study explored the long-term adverse effect of mild TBI in juvenile animals (mTBI-J). Male Sprague Dawley rats received mTBI-J or sham treatment at six weeks old, then underwent behavioral, biochemical, and histological experiments three weeks later (at nine weeks old). TTC staining, H&E staining, and brain edema measurement were applied to evaluate the mTBI-J induced cerebral damage. The forced swimming test (FST) and sucrose preference test (SPT) were applied for measuring depression-like behavior. The locomotor activity test (LAT) was performed to examine mTBI-J treatment effects on motor function. After the behavioral experiments, the dorsal hippocampus (dHip) and ventral hippocampus (vHip) were dissected out for western blotting to examine the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB). Finally, a TrkB agonist 7,8-DHF was injected intraperitoneally to evaluate its therapeutic effect on the mTBI-J induced behavioral abnormalities at the early adult age. Results showed that a mild brain edema occurred, but no significant neural damage was found in the mTBI-J treated animals. In addition, a significant increase of depression-like behaviors was observed in the mTBI-J treated animals; the FST revealed an increase in immobility, and a decrease in sucrose consumption was found in the mTBI-J treated animals. There were no differences observed in the total distance traveled of the LAT and the fall latency of the rotarod test. The hippocampal BDNF expression, but not the TrkB, were significantly reduced in mTBI-J, and the mTBI-J treatment-induced depression-like behavior was lessened after four weeks of 7,8-DHF administration. Collectively, these results indicate that even a mild juvenile TBI treatment that did not produce motor deficits or significant histological damage could have a long-term adverse effect that could be sustained to adulthood, which raises the depression-like behavior in the adult age. In addition, chronic administration of 7,8-DHF lessens the mTBI-J treatment-induced depression-like behaviors in adult rats. We suggest the potential usage of 7,8-DHF as a therapeutic agent for preventing the long-term adverse effect of mTBI-J.
Collapse
|
19
|
Avdoshina V, Yumoto F, Mocchetti I, Letendre SL, Tractenberg RE. Race-Dependent Association of Single-Nucleotide Polymorphisms in TrkB Receptor in People Living with HIV and Depression. Neurotox Res 2021; 39:1721-1731. [PMID: 34613587 PMCID: PMC10880801 DOI: 10.1007/s12640-021-00406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus (HIV)-associated cognitive disorders (HAND) is characterized by impaired motor and intellectual functions, as well as mood disorders. Brain-derived neurotrophic factor and its receptor TrkB (or NTRK2) mediate the efficacy of antidepressant drugs. Genomic studies of BDNF/TrkB have implicated common single-nucleotide polymorphisms in the pathology of depression. In the current study, we investigated whether single-nucleotide polymorphisms (SNPs) (rs1212171, rs1439050, rs1187352, rs1778933, rs1443445, rs3780645, rs2378672, and rs11140800) in the NTRK2 has a functional impact on depression in HIV-positive subjects. We have utilized the Central Nervous System (CNS) HIV Antiretroviral Therapy Effects Research (CHARTER) cohort. Our methods explored the univariate associations of these SNPs with clinical (current and lifetime) diagnosis of depression via chi-square. The distribution of alleles was significantly different for African-Americans and Caucasians (non-Hispanic) for several SNPs, so our regression analyses included both "statistical controls" for race group and models for each group separately. Finally, we applied a method of simultaneous analysis of associations, estimating the mutually shared information across a system of variables, separately by race group. Our results indicate that there is no significant association between clinical diagnosis of major depression and these SNPs for either race group in any analysis. However, we identified that the SNP associations varied by race group and sex.
Collapse
Affiliation(s)
- Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | - Futoshi Yumoto
- Collaborative for Research on Outcomes and Metrics, Silver Spring, MD, USA
- Resonate, Inc., Reston, VA, USA
| | - Italo Mocchetti
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Scott L Letendre
- Department of Medicine, University of California, San Diego, CA, USA
| | - Rochelle E Tractenberg
- Collaborative for Research on Outcomes and Metrics, Silver Spring, MD, USA
- Department of Neurology; Biostatistics, Bioinformatics & Biomathematics; and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Hasan MA, Hakim FT, Islam Shovon MT, Islam MM, Islam MS, Islam MA. The investigation of nonsynonymous SNPs of human SLC6A4 gene associated with depression: An in silico approach. Heliyon 2021; 7:e07815. [PMID: 34466701 PMCID: PMC8384904 DOI: 10.1016/j.heliyon.2021.e07815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic polymorphism of the SLC6A4 gene is associated with several behavioral disorders, including depression. Since studying the total nonsynonymous single nucleotide polymorphisms (nsSNPs) of the SLC6A4 gene at the population level is a difficult task, we aim to utilize in silico approach to detect the most deleterious nsSNPs of the SLC6A4 gene. In our study, 7 computational tools were used in the initial stage, including SIFT, Polyphen-2, PROVEAN, SNAP2, PhD-SNP, PANTHER, and SNPs&GO to find out the most damaging nsSNPs. In the second phase, we performed structural, functional, and stability analysis of SLC6A4 protein by popular computation tools, including I-Mutant 2.0 and MutPred2. Also, the ConSurf server was utilized to find the conserved region of the SLC6A4 protein to determine the relationship between these conserved regions with high-risk nsSNPs. Based on these analyses, 5 high-risk mutations of the SLC6A4 protein were selected. Then, we carried out comparative modeling by using the Robetta server and aligned the mutant protein model with the native protein structure. Later, we performed the post-translational modification and functional domain analysis of the SLC6A4 protein. This study concludes that Arginine → Tryptophan at position 79 and Arginine → Cysteine at position 104 are the two significant mutations in SLC6A4 protein which might play an essential role in causing diseases. Future studies should take these high-risk nsSNPs (rs1221448303, rs200953188) into consideration while exploring diseases related to the SLC6A4 gene. Besides, our research is the first-ever comprehensive in silico investigation of the SLC6A4 gene. Thus, the findings of this study could be beneficial for developing precision medicines against diseases caused by SLC6A4 malfunction. Furthermore, extensive wet-lab research and experiments on various model organisms might be helpful to investigate the precise role of these damaging nsSNPs of the SLC6A4 gene.
Collapse
Affiliation(s)
- Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Fuad Taufiqul Hakim
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Tanjil Islam Shovon
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Mirajul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Md. Samiul Islam
- RT-PCR Laboratory, Department of Microbiology, Rangpur Medical College, Rangpur-5403, Bangladesh
| | - Md. Asadul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| |
Collapse
|
21
|
Wu N, Liu L, Ren D, Yuan F, Bi Y, Guo Z, Hou B, Ji L, Han K, Feng M, Su K, Yu T, Li X, Yang F, Sun X, Dong Z, Yu S, Yi Z, Xu Y, He L, Wu S, Zhao L, Changqun C, Shi Y, He G. No Association Between SLC6A4 Gene Polymorphisms With Treatment Remission to Venlafaxine in Han Chinese Depressive Patients. Clin Neuropharmacol 2021; 44:53-56. [PMID: 33480616 DOI: 10.1097/wnf.0000000000000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a heterogeneous psychiatric disorder and considered to be one of the most common mental diseases worldwide. The antidepressant venlafaxine, as a serotonin noradrenaline reuptake inhibitor, is applied to MDD relief. Solute carrier family 6 member 4 (SLC6A4) has been reported to promote the reuptake of serotonin and to be closely correlated to depression. The present study examined whether rs6354 and rs1487971 in SLC6A4 are associated with remission after venlafaxine treatment in MDD patients. METHODS This study consisted of 195 Han Chinese patients with MDD, who accepted a 6-week treatment with venlafaxine. Two SLC6A4 single-nucleotide polymorphisms (SNPs) were selected from database of SNP and genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometer in MassARRAY Analyzer 4 platforms. The 17-item Hamilton Depression Scale was used to access the severity of major depression. Allele and genotype frequencies between patients in remission and nonremission were calculated with online software SHEsis. RESULTS No significant differences in allele or genotype frequencies were observed in rs6354 and rs1487971. There were no significant associations between 2 SNPs and venlafaxine treatment outcome. CONCLUSIONS It suggested that rs6354 or rs1487971 within SLC6A4 appears not to be involved in the venlafaxine treatment outcome in Han Chinese patients with MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xueli Sun
- Psychological Center, West China Hospital, Sichuan University, Sichuan
| | - Zaiquan Dong
- Psychological Center, West China Hospital, Sichuan University, Sichuan
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai
| | | | | | | | | | | | | |
Collapse
|
22
|
Wong ML, Arcos-Burgos M, Liu S, Licinio AW, Yu C, Chin EWM, Yao WD, Lu XY, Bornstein SR, Licinio J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J Affect Disord 2021; 279:491-500. [PMID: 33128939 PMCID: PMC7953425 DOI: 10.1016/j.jad.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION ClinicalTrials.gov NCT00265291.
Collapse
Affiliation(s)
- Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sha Liu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Alice W Licinio
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Chenglong Yu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Eunice W M Chin
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Hospital, Dresden University of Technology, Dresden, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| |
Collapse
|
23
|
Purves KL, Coleman JRI, Meier SM, Rayner C, Davis KAS, Cheesman R, Bækvad-Hansen M, Børglum AD, Wan Cho S, Jürgen Deckert J, Gaspar HA, Bybjerg-Grauholm J, Hettema JM, Hotopf M, Hougaard D, Hübel C, Kan C, McIntosh AM, Mors O, Bo Mortensen P, Nordentoft M, Werge T, Nicodemus KK, Mattheisen M, Breen G, Eley TC. A major role for common genetic variation in anxiety disorders. Mol Psychiatry 2020; 25:3292-3303. [PMID: 31748690 PMCID: PMC7237282 DOI: 10.1038/s41380-019-0559-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023]
Abstract
Anxiety disorders are common, complex psychiatric disorders with twin heritabilities of 30-60%. We conducted a genome-wide association study of Lifetime Anxiety Disorder (ncase = 25 453, ncontrol = 58 113) and an additional analysis of Current Anxiety Symptoms (ncase = 19 012, ncontrol = 58 113). The liability scale common variant heritability estimate for Lifetime Anxiety Disorder was 26%, and for Current Anxiety Symptoms was 31%. Five novel genome-wide significant loci were identified including an intergenic region on chromosome 9 that has previously been associated with neuroticism, and a locus overlapping the BDNF receptor gene, NTRK2. Anxiety showed significant positive genetic correlations with depression and insomnia as well as coronary artery disease, mirroring findings from epidemiological studies. We conclude that common genetic variation accounts for a substantive proportion of the genetic architecture underlying anxiety.
Collapse
Affiliation(s)
- Kirstin L Purves
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Jonathan R I Coleman
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Sandra M Meier
- Child and Adolescent Mental Health Centre-Mental Health Services Capital Region, Copenhagen Region, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
| | - Christopher Rayner
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Katrina A S Davis
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
- King's College London; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Rosa Cheesman
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus C, Denmark
| | - Shing Wan Cho
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - J Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Héléna A Gaspar
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - John M Hettema
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew Hotopf
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
- King's College London; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - David Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christopher Hübel
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Carol Kan
- King's College London; Psychological Medicine; Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- MRC Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus C, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus C, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristin K Nicodemus
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Gerome Breen
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK.
| | - Thalia C Eley
- King's College London; Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK.
| |
Collapse
|
24
|
Ramoz N, Hoertel N, Nobile B, Voegeli G, Nasr A, Le Strat Y, Courtet P, Gorwood P. Corticotropin releasing hormone receptor CRHR1 gene is associated with tianeptine antidepressant response in a large sample of outpatients from real-life settings. Transl Psychiatry 2020; 10:378. [PMID: 33154348 PMCID: PMC7644692 DOI: 10.1038/s41398-020-01067-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022] Open
Abstract
Polymorphisms of genes involved in the hypothalamic-pituitary-adrenocortical (HPA) axis have been associated with response to several antidepressant treatments in patients suffering of depression. These pharmacogenetics findings have been reported from independent cohorts of patients mostly treated with selective serotonin reuptake inhibitors, tricyclic antidepressant, and mirtazapine. Tianeptine, an atypical antidepressant, recently identified as a mu opioid receptor agonist, which prevents and reverses the stress induced by glucocorticoids, has been investigated in this present pharmacogenetics study. More than 3200 Caucasian outpatients with a major depressive episode (MDE) from real-life settings were herein analyzed for clinical response to tianeptine, a treatment initiated from 79.5% of the subjects, during 6-8 weeks follow-up, assessing polymorphisms targeting four genes involved in the HPA axis (NR3C1, FKPB5, CRHR1, and AVPR1B). We found a significant association (p < 0.001) between CRHR1 gene variants rs878886 and rs16940665, or haplotype rs878886*C-rs16940665*T, and tianeptine antidepressant response and remission according to the hospital anxiety and depression scale. Analyses, including a structural equation model with simple mediation, suggest a moderate effect of sociodemographic characteristics and depressive disorder features on treatment response in individuals carrying the antidepressant responder allele rs8788861 (allele C). These findings suggest direct pharmacological consequences of CRHR1 polymorphisms in the antidepressant tianeptine response and remission, in MDE patients. This study replicates the association of the CRHR1 gene, involved in the HPA axis, with (1) a specificity attributed to treatment response, (2) a lower risk of chance finding, and in (3) an ecological situation.
Collapse
Affiliation(s)
- Nicolas Ramoz
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014, Paris, France.
| | - Nicolas Hoertel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014 Paris, France ,grid.50550.350000 0001 2175 4109Assistance Publique-Hôpitaux de Paris (APHP), Corentin Celton Hospital, Department of Psychiatry, 92130 Issy-les-Moulineaux, France ,grid.10988.380000 0001 2173 743XUniversity of Paris, Paris, France
| | - Bénédicte Nobile
- grid.121334.60000 0001 2097 0141Department of Emergency Psychiatry and Acute Care, CHU Montpellier, INSERM U1061, Montpellier University, Montpellier, France
| | - Géraldine Voegeli
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014 Paris, France ,grid.414435.30000 0001 2200 9055GHU Paris Psychiatrie et Neurosciences, Clinique des Maladies Mentales et de l’Encéphale (CMME), Centre Hospitalier Sainte-Anne, Paris, France
| | - Ariane Nasr
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014 Paris, France
| | - Yann Le Strat
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014 Paris, France ,grid.50550.350000 0001 2175 4109Service de Psychiatrie, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France
| | - Philippe Courtet
- grid.121334.60000 0001 2097 0141Department of Emergency Psychiatry and Acute Care, CHU Montpellier, INSERM U1061, Montpellier University, Montpellier, France
| | - Philip Gorwood
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, 75014 Paris, France ,grid.414435.30000 0001 2200 9055GHU Paris Psychiatrie et Neurosciences, Clinique des Maladies Mentales et de l’Encéphale (CMME), Centre Hospitalier Sainte-Anne, Paris, France
| |
Collapse
|
25
|
Du D, Tang Q, Han Q, Zhang J, Liang X, Tan Y, Liu K, Xiang B. Association between genetic polymorphism and antidepressants in major depression: a network meta-analysis. Pharmacogenomics 2020; 21:963-974. [PMID: 32819202 DOI: 10.2217/pgs-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This network meta-analysis was conducted to compare the predictive value of eight SNPs on the efficacy of antidepressants in major depressive disorder (MDD), including 5-HTTLPR, 5HTR2A (rs6311, rs6314, rs7997012 and rs6313), 5HTR2A (rs6295), BDNF (rs6265) and 5HTTSTin2. Databases were searched for related studies published up to December 2019. A total of 16 studies were included in this study. The predictive value were evaluated by the use of the odd ratios (OR) and drawing surface under the cumulative ranking curves (SUCRA). The pairwise meta-analysis indicated that in terms of overall response ratio, the SNPs were not associated with the efficacy of antidepressants in MDD. The result of this network meta-analysis suggested that there was no significant difference in predictive value of eight SNPs on the efficacy of antidepressants in MDD. More research is needed to explore the relationship between SNPs and antidepressant response.
Collapse
Affiliation(s)
- Dan Du
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qiong Tang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qiong Han
- Department of Breast Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jin Zhang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| | - Xuemei Liang
- Geriatrics Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Youguo Tan
- Zigong Mental Health Center, Zigong, 643020, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Bo Xiang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| |
Collapse
|
26
|
Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, Arakawa R, Okubo Y. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin Neurosci 2020; 74:424-430. [PMID: 32363761 DOI: 10.1111/pcn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
AIM Dysfunction of dopaminergic neurons in the central nervous system is considered to be related to major depressive disorder (MDD). Especially, MDD in geriatric patients is characterized by anhedonia, which is assumed to be associated with reduced dopamine neurotransmission in the reward system. Dopamine transporter (DAT) is considered to reflect the function of the dopamine nerve system. However, previous DAT imaging studies using single photon emission computed tomography or positron emission tomography (PET) have shown inconsistent results. The radioligand [18 F]FE-PE2I for PET enables more precise evaluation of DAT availability. Hence, we aimed to evaluate the DAT availability in geriatric patients with MDD using [18 F]FE-PE2I. METHODS Eleven geriatric patients with severe MDD and 27 healthy controls underwent PET with [18 F]FE-PE2I, which has high affinity and selectivity for DAT. Binding potentials (BPND ) in the striatum (caudate and putamen), nucleus accumbens (NAc), and substantia nigra were calculated. BPND values were compared between MDD patients and healthy controls. RESULTS MDD patients showed significantly lower DAT BPND in the NAc (P = 0.009), and there was a trend of lower BPND in the putamen (P = 0.032) compared to controls. CONCLUSION We found low DAT in the NAc and putamen in geriatric patients with severe MDD, which could be related to dysregulation of the reward system.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mikael Tiger
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro Masuoka
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
27
|
A Systematic Analysis Revealed the Potential Gene Regulatory Processes of ATRA-Triggered Neuroblastoma Differentiation and Identified a Novel RA Response Sequence in the NTRK2 Gene. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6734048. [PMID: 32149119 PMCID: PMC7053487 DOI: 10.1155/2020/6734048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Retinoic acid- (RA-) triggered neuroblastoma cell lines are widely used cell modules of neuronal differentiation in neurodegenerative disease studies, but the gene regulatory mechanism underlying differentiation is unclear now. In this study, system biological analysis was performed on public microarray data from three neuroblastoma cell lines (SK-N-SH, SH-SY5Y-A, and SH-SY5Y-E) to explore the potential molecular processes of all-trans retinoic acid- (ATRA-) triggered differentiation. RT-qPCR, functional genomics analysis, western blotting, chromatin immunoprecipitation (ChIP), and homologous sequence analysis were further performed to validate the gene regulation processes and identify the RA response element in a specific gene. The potential disturbed biological pathways (111 functional GO terms in 14 interactive functional groups) and gene regulatory network (10 regulators and 71 regulated genes) in neuroblastoma differentiation were obtained. 15 of the 71 regulated genes are neuronal projection-related. Among them, NTRK2 is the only one that was dramatically upregulated in the RT-qPCR test that we performed on ATRA-treated SH-SY5Y-A cells. We further found that the overexpression of the NTRK2 gene can trigger differentiation-like changes in SH-SY5Y-A cells. Functional genomic analysis and western blotting assay suggested that, in neuroblastoma cells, ATRA may directly regulate the NTRK2 gene by activating the RA receptor (RAR) that binds in its promoter region. A novel RA response DNA element in the NTRK2 gene was then identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assay. The novel element is sequence conservation and position variation among different species. Our study systematically provided the potential regulatory information of ATRA-triggered neuroblastoma differentiation, and in the NTRK2 gene, we identified a novel RA response DNA element, which may contribute to the differentiation in a human-specific manner.
Collapse
|
28
|
Shan XX, Qiu Y, Xie WW, Wu RR, Yu Y, Wu HS, Li LH. ABCB1 Gene Is Associated With Clinical Response to SNRIs in a Local Chinese Han Population. Front Pharmacol 2019; 10:761. [PMID: 31333472 PMCID: PMC6620233 DOI: 10.3389/fphar.2019.00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The relation between the ATP-binding cassette subfamily B member 1 (ABCB1) gene and major depressive disorder (MDD) has been studied in a local Chinese Han population. MDD is associated with the rs2032582 (G2677T) and rs1128503 (C1236T) single-nucleotide polymorphisms (SNPs) of ABCB1 but not with rs1045642, rs2032583, rs2235040, and rs2235015. This study aims to explore the potential correlations of therapeutic responses with selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) in a local Chinese Han population. Methods: The study population included 292 patients with MDD. All patients were assessed at baseline and at first, second, fourth, and sixth weeks according to the 17-item Hamilton Rating Scale for Depression (HAM-D17) to determine their therapeutic responses to SSRIs and SNRIs. Results: In the SSRI therapy group, the genotype or allele distribution of six SNPs was not significantly different between responders and nonresponders. In the SNRI therapy group, only rs2032583 was associated with a therapeutic response to SNRIs. The C allele of the ABCB1 rs2032583 polymorphism was negatively correlated with therapeutic responses according to logistic regression analysis. Conclusion: The ABCB1 gene polymorphisms may not be associated with therapeutic responses to SSRIs but not with SNRIs. The TT genotype of rs2032583 could be a predictive factor of improved treatment responses to SNRIs in the Chinese population. These findings should be replicated in future studies with larger patient groups.
Collapse
Affiliation(s)
- Xiao-Xiao Shan
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Wei-Wei Xie
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Ren-Rong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Yu
- The People's Hospital of Hunan Province, Changsha, China
| | - Hai-Shan Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Le-Hua Li
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
29
|
Abstract
The human dopamine transporter gene SLC6A3 is involved in substance use disorders (SUDs) among many other common neuropsychiatric illnesses but allelic association results including those with its classic genetic markers 3'VNTR or Int8VNTR remain mixed and unexplainable. To better understand the genetics for reproducible association signals, we report the presence of recombination hotspots based on sequencing of the entire 5' promoter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European Americans (EAs). Recombination rate was the highest near the transcription start site (TSS) in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60 and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of European ancestry, from the 1000 Genome Project, confirmed the promoter recombination hotspots and also revealed several additional ones in non-coding regions only. These findings provide an explanation for the mixed results as well as guidance for selection of effective markers to be used in next generation association validation (NGAV), facilitating the delineation of pathogenic variation in this critical neuropsychiatric gene.
Collapse
|
30
|
Keselman D, Singh R, Cohen N, Fefer Z. De Novo Interstitial Deletion of 9q in a Pediatric Patient With Global Developmental Delay. Child Neurol Open 2019; 6:2329048X19844920. [PMID: 31106228 PMCID: PMC6506918 DOI: 10.1177/2329048x19844920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cytogenomic microarray (CMA) methodologies, including array comparative genomic
hybridization (aCGH) and single-nucleotide polymorphism-detecting arrays (SNP-array), are
recommended as the first-tier test for the evaluation of imbalances associated with
intellectual disability, autism, and multiple congenital anomalies. The authors report on
a child with global developmental delay (GDD) and a de novo interstitial
7.0 Mb deletion of 9q21.33q22.31 detected by aCGH. The patient that the authors report
here is noteworthy in that she presented with GDD and her interstitial deletion is not
inclusive of the 9q22.32 locus that includes the PTCH1 gene, which is
implicated in Gorlin syndrome, or basal cell nevus syndrome (BCNS), has not been
previously reported among patients with a similar or smaller size of the deletion in this
locus suggesting that the genomic contents in the identified deletion on 9q21.33q22.31 is
critical for the phenotype.
Collapse
Affiliation(s)
- Dennis Keselman
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Ram Singh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, a Mount Sinai Venture, Stamford, CT, USA
| | - Ninette Cohen
- Division of Cytogenetics and Molecular Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, USA
| | - Zipora Fefer
- Department of Pediatric Neurology, Cohen Children's Medical Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| |
Collapse
|
31
|
Schlauch KA, Kulick D, Subramanian K, De Meirleir KL, Palotás A, Lombardi VC. Single-nucleotide polymorphisms in a cohort of significantly obese women without cardiometabolic diseases. Int J Obes (Lond) 2019; 43:253-262. [PMID: 30120429 PMCID: PMC6365206 DOI: 10.1038/s41366-018-0181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/10/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is an important risk factor for the development of diseases such as diabetes mellitus, hypertension, and dyslipidemia; however, a small number of individuals with long-standing obesity do not present with these cardiometabolic diseases. Such individuals are referred to as metabolically healthy obese (MHO) and potentially represent a subgroup of the general population with a protective genetic predisposition to obesity-related diseases. We hypothesized that individuals who were metabolically healthy, but significantly obese (BMI ≥ 35 kg/m2) would represent a highly homogenous subgroup, with which to investigate potential genetic associations to obesity. We further hypothesized that such a cohort may lend itself well to investigate potential genotypes that are protective with respect to the development of cardiometabolic disease. SUBJECTS/METHODS In the present study, we implemented this novel selection strategy by screening 892 individuals diagnosed as Class 2 or Class 3 obese and identified 38 who presented no manifestations of cardiometabolic disease. We then assessed these subjects for single-nucleotide polymorphisms (SNPs) that associated with this phenotype. RESULTS Our analysis identified 89 SNPs that reach statistical significance (p < 1 × 10-5), some of which are associated with genes of biological pathways that influences dietary behavior; others are associated with genes previously linked to obesity and cardiometabolic disease as well as neuroimmune disease. This study, to the best of our knowledge, represents the first genetic screening of a cardiometabolically healthy, but significantly obese population.
Collapse
Affiliation(s)
- Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, USA
- Desert Research Institute, Reno, NV, USA
| | | | | | | | - András Palotás
- Asklepios-Med, Szeged, Hungary.
- Kazan Federal University, Kazan, Russian Federation.
| | - Vincent C Lombardi
- Nevada Center for Biomedical Research, Reno, NV, USA.
- Department of Pathology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|
32
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
33
|
Fischer S, Gardini ES, Haas F, Cleare AJ. Polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis and antidepressant response - Systematic review. Neurosci Biobehav Rev 2018; 96:182-196. [PMID: 30465786 DOI: 10.1016/j.neubiorev.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/10/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Around 50% of depressed patients do not respond to antidepressants. Evidence from familial studies suggests a genetic component to this. This study investigated whether patients with polymorphisms in genes related to the hypothalamic-pituitary-adrenal (HPA) axis were less likely to respond to antidepressants. METHOD EMBASE, MEDLINE, PsycINFO, and the Cochrane Library were searched. Inclusionary criteria were: 1) patients with depression, 2) study of HPA axis-related candidate genes, 3) at least four weeks of antidepressants, and 4) assessment of depressive symptoms dividing patients into non-responders and responders. RESULTS Nineteen studies were identified. Non-responders and responders did not differ in single nucleotide polymorphisms (SNPs) in genes encoding arginine vasopressin. Findings were equivocal regarding genes encoding the FK506 binding protein 5 and glucocorticoid and mineralocorticoid receptors. Specific SNPs and haplotypes within genes related to corticotropin-releasing hormone (CRHBP, CRHR1) and melanocortins (POMC) predicted non-responder status. CONCLUSIONS Replication studies and additional investigations exploring gene x environment and drug x environment interactions are necessary before pharmacological treatments may be adjusted based on a patient's genetic profile.
Collapse
Affiliation(s)
- Susanne Fischer
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland.
| | - Elena S Gardini
- University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland; University of Zurich, University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland
| | - Florence Haas
- University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland
| | - Anthony J Cleare
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, SE5 8AZ, United Kingdom
| |
Collapse
|
34
|
Deflesselle E, Colle R, Rigal L, David DJ, Vievard A, Martin S, Becquemont L, Verstuyft C, Corruble E. The TRKB rs2289656 genetic polymorphism is associated with acute suicide attempts in depressed patients: A transversal case control study. PLoS One 2018; 13:e0205648. [PMID: 30308049 PMCID: PMC6181406 DOI: 10.1371/journal.pone.0205648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Suicide Attempts (SA) are the main complications of Major Depressive Episodes (MDE) and are difficult to predict. Suicide is associated with the expression of Receptor Tyrosin-Kinase B (TRKB), the receptor of the Brain Derived Neurotrophic Factor (BDNF) involved in MDE. However, the impact of its genetic polymorphisms as predictive factors of SA should be clarified. Our main aim is to assess the association of 8 TRKB genetic polymorphisms and SA in depressed patients. MATERIAL AND METHODS In 624 patients currently experiencing an MDE in the context of Major Depressive Disorder (MDD) (METADAP study), we assessed the association between 8 TRKB genetic polymorphisms (rs1778933, rs1187352, rs2289658, rs2289657, rs2289656, rs3824519, rs56142442 and rs1439050) and acute (previous month) or past (older than one month) SA. Bonferroni corrections and multivariate analysis adjusted for age, sex, level of education, marital status, Hamilton Depression Rating Scale score and previous MDE were used. RESULTS The rs2289656 was associated with acute SA (CC = 28.5%, CT = 15.0% and TT = 11.5%, p = 0.0008). However, the other SNPs were not. Patients with the CC genotype had a higher rate of acute SA (28.5%) as compared to T carriers (14.6%) (adjusted OR = 2.2, CI95% [1.4; 3.5], p<0.0001). CONCLUSION The TRKB rs2289656 CC genotype is associated with a 2.2 fold higher risk of acute SA in depressed patients. If this result could be confirmed, this TRKB SNP may be assessed to contribute to the prediction of SA in depressed patients.
Collapse
Affiliation(s)
- Eric Deflesselle
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Département de Médecine Générale, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Romain Colle
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Laurent Rigal
- Département de Médecine Générale, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Denis J. David
- INSERM UMR-S1178, Université Paris-Sud, Faculté de Pharmacie, CESP, Université Paris-Saclay, Chatenay-Malabry, France
| | - Albane Vievard
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Séverine Martin
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- Centre de Ressources Biologiques Paris Sud, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR_S1178, Equipe “Dépression et Antidépresseurs”, Faculté de Médecine, CESP, Université Paris-Sud, Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
35
|
Voegeli G, Cléry-Melin ML, Ramoz N, Gorwood P. Progress in Elucidating Biomarkers of Antidepressant Pharmacological Treatment Response: A Systematic Review and Meta-analysis of the Last 15 Years. Drugs 2018; 77:1967-1986. [PMID: 29094313 DOI: 10.1007/s40265-017-0819-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Antidepressant drugs are widely prescribed, but response rates after 3 months are only around one-third, explaining the importance of the search of objectively measurable markers predicting positive treatment response. These markers are being developed in different fields, with different techniques, sample sizes, costs, and efficiency. It is therefore difficult to know which ones are the most promising. OBJECTIVE Our purpose was to compute comparable (i.e., standardized) effect sizes, at study level but also at marker level, in order to conclude on the efficacy of each technique used and all analyzed markers. METHODS We conducted a systematic search on the PubMed database to gather all articles published since 2000 using objectively measurable markers to predict antidepressant response from five domains, namely cognition, electrophysiology, imaging, genetics, and transcriptomics/proteomics/epigenetics. A manual screening of the abstracts and the reference lists of these articles completed the search process. RESULTS Executive functioning, theta activity in the rostral Anterior Cingular Cortex (rACC), and polysomnographic sleep measures could be considered as belonging to the best objectively measured markers, with a combined d around 1 and at least four positive studies. For inter-category comparisons, the approaches that showed the highest effect sizes are, in descending order, imaging (combined d between 0.703 and 1.353), electrophysiology (0.294-1.138), cognition (0.929-1.022), proteins/nucleotides (0.520-1.18), and genetics (0.021-0.515). CONCLUSION Markers of antidepressant treatment outcome are numerous, but with a discrepant level of accuracy. Many biomarkers and cognitions have sufficient predictive value (d ≥ 1) to be potentially useful for clinicians to predict outcome and personalize antidepressant treatment.
Collapse
Affiliation(s)
- G Voegeli
- CMME, Hôpital Sainte-Anne, Université Paris Descartes, 100 rue de la Santé, 75014, Paris, France.
- Centre de Psychiatrie et Neuroscience (INSERM UMR 894), 2 ter rue d'Alésia, 75014, Paris, France.
| | - M L Cléry-Melin
- CMME, Hôpital Sainte-Anne, Université Paris Descartes, 100 rue de la Santé, 75014, Paris, France
- Centre de Psychiatrie et Neuroscience (INSERM UMR 894), 2 ter rue d'Alésia, 75014, Paris, France
| | - N Ramoz
- CMME, Hôpital Sainte-Anne, Université Paris Descartes, 100 rue de la Santé, 75014, Paris, France
- Centre de Psychiatrie et Neuroscience (INSERM UMR 894), 2 ter rue d'Alésia, 75014, Paris, France
| | - P Gorwood
- CMME, Hôpital Sainte-Anne, Université Paris Descartes, 100 rue de la Santé, 75014, Paris, France
- Centre de Psychiatrie et Neuroscience (INSERM UMR 894), 2 ter rue d'Alésia, 75014, Paris, France
| |
Collapse
|
36
|
Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J Affect Disord 2018; 233:3-14. [PMID: 28709695 PMCID: PMC5815949 DOI: 10.1016/j.jad.2017.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In recent years, we have accomplished a deeper understanding about the pathophysiology of major depressive disorder (MDD). Nevertheless, this improved comprehension has not translated to improved treatment outcome, as identification of specific biologic markers of disease may still be crucial to facilitate a more rapid, successful treatment. Ongoing research explores the importance of screening biomarkers using neuroimaging, neurophysiology, genomics, proteomics, and metabolomics measures. RESULTS In the present review, we highlight the biomarkers that are differentially expressed in MDD and treatment response and place a particular emphasis on the most recent progress in advancing technology which will continue the search for blood-based biomarkers. LIMITATIONS Due to space constraints, we are unable to detail all biomarker platforms, such as neurophysiological and neuroimaging markers, although their contributions are certainly applicable to a biomarker review and valuable to the field. CONCLUSIONS Although the search for reliable biomarkers of depression and/or treatment outcome is ongoing, the rapidly-expanding field of research along with promising new technologies may provide the foundation for identifying key factors which will ultimately help direct patients toward a quicker and more effective treatment for MDD.
Collapse
|
37
|
Yu C, Arcos-Burgos M, Baune BT, Arolt V, Dannlowski U, Wong ML, Licinio J. Low-frequency and rare variants may contribute to elucidate the genetics of major depressive disorder. Transl Psychiatry 2018; 8:70. [PMID: 29581422 PMCID: PMC5913271 DOI: 10.1038/s41398-018-0117-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/01/2017] [Accepted: 12/30/2017] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder (MDD) is a common but serious psychiatric disorder with significant levels of morbidity and mortality. Recent genome-wide association studies (GWAS) on common variants increase our understanding of MDD; however, the underlying genetic basis remains largely unknown. Many studies have been proposed to explore the genetics of complex diseases from a viewpoint of the "missing heritability" by considering low-frequency and rare variants, copy-number variations, and other types of genetic variants. Here we developed a novel computational and statistical strategy to investigate the "missing heritability" of MDD. We applied Hamming distance on common, low-frequency, and rare single-nucleotide polymorphism (SNP) sets to measure genetic distance between two individuals, and then built the multi-dimensional scaling (MDS) pictures. Whole-exome genotyping data from a Los Angeles Mexican-American cohort (203 MDD and 196 controls) and a European-ancestry cohort (473 MDD and 497 controls) were examined using our proposed methodology. MDS plots showed very significant separations between MDD cases and healthy controls for low-frequency SNP set (P value < 2.2e-16) and rare SNP set (P value = 7.681e-12). Our results suggested that low-frequency and rare variants may play more significant roles in the genetics of MDD.
Collapse
Affiliation(s)
- Chenglong Yu
- Centre for Population Health Research, School of Health Sciences and Sansom Institute of Health Research, University of South Australia, Adelaide, SA, Australia.
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| | - Mauricio Arcos-Burgos
- GENIUROS group, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Bernhard T Baune
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Departments of Psychiatry, Pharmacology and Medicine, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Departments of Psychiatry, Pharmacology and Medicine, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
38
|
Busch Y, Menke A. Blood-based biomarkers predicting response to antidepressants. J Neural Transm (Vienna) 2018; 126:47-63. [PMID: 29374800 DOI: 10.1007/s00702-018-1844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Major depressive disorder is a common, serious and in some cases, life-threatening condition and affects approximately 350 million people globally. Although there is effective treatment available for it, more than 50% of the patients fail to respond to the first antidepressant they receive. The selection of a distinct treatment is still exclusively based on clinical judgment without incorporating lab-derived objective measures. However, there is growing evidence of biomarkers that it helps to improve diagnostic processes and treatment algorithms. Here genetic markers and blood-based biomarkers of the monoamine pathways, inflammatory pathways and the hypothalamic-pituitary-adrenal (HPA) axis are reviewed. Promising findings arise from studies investigating inflammatory pathways and immune markers that may identify patients suitable for anti-inflammatory based treatment regimes. Next, an early normalization of a disturbed HPA axis or depleted neurotrophic factors may predict stable treatment response. Genetic markers within the serotonergic system may identify patients who are vulnerable because of stressful life events, but evidence for guiding treatment regimes still is inconsistent. Therefore, there is still a great need for studies investigating and validating biomarkers for the prediction of treatment response to facilitate the treatment selection and shorten the time to remission and thus provide personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Yasmin Busch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Am Schwarzenberg 15, 97080, Würzburg, Germany.
| |
Collapse
|
39
|
Liang J, Yue Y, Jiang H, Geng D, Wang J, Lu J, Li S, Zhang K, Wu A, Yuan Y. Genetic variations in the p11/tPA/BDNF pathway are associated with post stroke depression. J Affect Disord 2018; 226:313-325. [PMID: 29028593 DOI: 10.1016/j.jad.2017.09.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/20/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The effects of BDNF on post stroke depression (PSD) may be influenced by genetic variations in intracellular signal transduction pathways, such as the p11/tPA/BDNF pathway. In this study, we aimed to determine the association of polymorphisms in candidate genes of the gene transduction pathway with PSD, as well as the effects of the interactions between genes in our Chinese sample. METHODS Two-hundred-fifty-four Chinese samples with acute ischaemic stroke included 122 PSD patients and 132 nonPSD patients. Sixty-five single nucleotide polymorphisms (SNPs) in six genes (p11, tPA, PAI-1, BDNF, TrkB and p75NTR) of the p11/tPA/BDNF pathway with minor allele frequencies > 5% were successfully genotyped from an initial series of 76 SNPs. The severity of depressive symptoms was assessed by the 17-item Hamilton Depression Rating scale score. Environmental factors were measured with the life events scale and social support rating scale for all patients. SNP and haplotype associations were analysed using gPLINK software. Gene-gene interactions were evaluated with generalized multifactor dimensionality reduction software. RESULTS The results showed that TrkB polymorphisms (rs11140793AC genotype, rs7047042CG genotype, rs1221CT genotype, rs2277193TC genotype and rs2277192AG genotype) were significantly associated with PSD. Three haplotypes (AT, GG, and AAT) of TrkB were significantly associated with PSD. Seven haplotypes (GC, AG, ACG, CGC, GCT, ACGC and ACAT) of BDNF were significantly correlated with PSD. We identified significant gene-gene interactions between the p11 (rs11204922 SNP), tPA (rs8178895, rs2020918 SNPs) and BDNF (rs6265, rs2049046, rs16917271, rs727155 SNPs) genes in the PSD group. We also identified significant gene-gene interactions between the BDNF (rs2049046, rs7931247 SNPs) and TrkB (rs7816 SNP) genes with increased occurrence of PSD and sig gene-gene interactions between the BDNF gene (rs6265, rs56164415, rs2049046, rs4923468, rs2883187, rs16917271, rs1491850, rs727155, rs2049048 SNPs) and p75NTR gene (rs2072446, rs11466155) in the PSD group. CONCLUSION These findings provides evidence that the TrkB gene, BDNF and TrkB haplotypes, and gene-gene interactions between p11, tPA and BDNF are all associated with PSD, which suggests that genetic variations in the p11/tPA/BDNF pathway may play a central role in regulating the underlying mechanism of PSD.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, PR China
| | - Jun Wang
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, PR China
| | - Jianxin Lu
- Department of Neurology, The Peoples' Hospital of Gaochun County, Nanjing 211300, PR China
| | - Shenghua Li
- Department of Neurology, Jiangning Nanjing hospital, Nanjing 211100, PR China
| | - Kezhong Zhang
- Department of Neurology, the Affiliated First hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Aiqin Wu
- Department of Psychosomatics, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
40
|
Amare AT, Schubert KO, Tekola-Ayele F, Hsu YH, Sangkuhl K, Jenkins G, Whaley RM, Barman P, Batzler A, Altman RB, Arolt V, Brockmöller J, Chen CH, Domschke K, Hall-Flavin DK, Hong CJ, Illi A, Ji Y, Kampman O, Kinoshita T, Leinonen E, Liou YJ, Mushiroda T, Nonen S, Skime MK, Wang L, Kato M, Liu YL, Praphanphoj V, Stingl JC, Bobo WV, Tsai SJ, Kubo M, Klein TE, Weinshilboum RM, Biernacka JM, Baune BT. Association of the Polygenic Scores for Personality Traits and Response to Selective Serotonin Reuptake Inhibitors in Patients with Major Depressive Disorder. Front Psychiatry 2018; 9:65. [PMID: 29559929 PMCID: PMC5845551 DOI: 10.3389/fpsyt.2018.00065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Studies reported a strong genetic correlation between the Big Five personality traits and major depressive disorder (MDD). Moreover, personality traits are thought to be associated with response to antidepressants treatment that might partly be mediated by genetic factors. In this study, we examined whether polygenic scores (PGSs) derived from the Big Five personality traits predict treatment response and remission in patients with MDD who were prescribed selective serotonin reuptake inhibitors (SSRIs). In addition, we performed meta-analyses of genome-wide association studies (GWASs) on these traits to identify genetic variants underpinning the cross-trait polygenic association. The PGS analysis was performed using data from two cohorts: the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS, n = 529) and the International SSRI Pharmacogenomics Consortium (ISPC, n = 865). The cross-trait GWAS meta-analyses were conducted by combining GWAS summary statistics on SSRIs treatment outcome and on the personality traits. The results showed that the PGS for openness and neuroticism were associated with SSRIs treatment outcomes at p < 0.05 across PT thresholds in both cohorts. A significant association was also found between the PGS for conscientiousness and SSRIs treatment response in the PGRN-AMPS sample. In the cross-trait GWAS meta-analyses, we identified eight loci associated with (a) SSRIs response and conscientiousness near YEATS4 gene and (b) SSRI remission and neuroticism eight loci near PRAG1, MSRA, XKR6, ELAVL2, PLXNC1, PLEKHM1, and BRUNOL4 genes. An assessment of a polygenic load for personality traits may assist in conjunction with clinical data to predict whether MDD patients might respond favorably to SSRIs.
Collapse
Affiliation(s)
- Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Hsiang Hsu
- HSL Institute for Aging Research, Harvard Medical School, Boston, MA, United States.,Program for Quantitative Genomics, Harvard School of Public Health, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Katrin Sangkuhl
- Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Gregory Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, NY, United States
| | - Ryan M Whaley
- Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Poulami Barman
- Department of Health Sciences Research, Mayo Clinic, Rochester, NY, United States
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, NY, United States
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Göttingen, Göttingen, Germany
| | - Chia-Hui Chen
- Department of Psychiatry, Taipei Medical University-Shuangho Hospital, New Taipei City, Taiwan
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel K Hall-Flavin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, NY, United States
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ari Illi
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Yuan Ji
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Rochester, Rochester, MN, United States
| | - Olli Kampman
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | | | - Esa Leinonen
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Michelle K Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, NY, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Rochester, Rochester, MN, United States
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Verayuth Praphanphoj
- Center for Medical Genetics Research, Rajanukul Institute, Department of Mental Health, Ministry of Public Health Bangkok, Bangkok, Thailand
| | - Julia C Stingl
- Research Division Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - William V Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, NY, United States
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Teri E Klein
- Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Rochester, Rochester, MN, United States
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, NY, United States.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, NY, United States
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
41
|
Abstract
The standard of care for antidepressant treatment in major depressive disorder (MDD) is a trial-and-error approach. Patients often have to undergo multiple medication trials for weeks to months before finding an effective treatment. Clinical factors such as severity of baseline symptoms and the presence of specific individual (anhedonia or insomnia) or cluster (atypical, melancholic, or anxious) of symptoms are commonly used without any evidence of their utility in selecting among currently available antidepressants. Genomic and proteomic biomarker have gained recent attention for their potential in informing antidepressant medication selection. In this report, we have reviewed some of the major pharmacogenomics studies along with individual genetic and proteomic biomarker of antidepressant response. Additionally, we have reviewed the blood-based protein biomarkers that can inform selection of one antidepressant over another. Among all currently available biomarkers, C-reactive protein (CRP) appears to be the most promising and pragmatic choice. Low CRP (<1 mg/L) in patients with MDD predicts better response to escitalopram while higher levels are associated with better response to noradrenergic/dopaminergic antidepressants. Future studies are needed to demonstrate the superiority of a CRP-based treatment assignment over high-quality measurement-based care in real-world clinical practices.
Collapse
Affiliation(s)
- Manish K Jha
- University of Texas Southwestern, Dallas, TX, USA.
| | | |
Collapse
|
42
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
43
|
Investigation of copy number variation in subjects with major depression based on whole-genome sequencing data. J Affect Disord 2017; 220:38-42. [PMID: 28578134 DOI: 10.1016/j.jad.2017.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/26/2017] [Accepted: 05/28/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite recent intensive research using genome-wide association studies, the underlying biological basis of major depressive disorder (MDD) still remains unknown. In contrast to genotyping platforms which identify specific variations, whole-genome sequencing (WGS) allows us to detect all private genetic variations within an individual. So far there have been no studies investigating copy number variations (CNVs) in subjects with MDD using WGS data. METHODS We obtained complete WGS paired-end reads data of 15 MDD patients and 10 ethnically matched healthy controls. We performed alignments for the sequencing reads and used GASV package to call CNVs including deletion, inversion, translocation and divergence for those subjects. RESULTS Our results show that, in the Mexican-American sample, deletion CNVs were significantly richer in MDD cases than healthy controls on each of 23 chromosomes. However, other types of CNVs failed to reach any significance. In the Australian sample, there was no statistically significant difference of CNVs between MDD cases and controls. Furthermore, we found that the Australian group had significantly more deletion CNVs than the Mexican-American group. LIMITATIONS High quality WGS costs limited obtaining larger datasets. The GASV package does not currently support duplication or insertion CNVs. CONCLUSIONS To our knowledge this is the first time that CNVs detected by WGS data are used to study major depression. The conclusion that deletion CNVs are significantly richer in MDD cases than healthy controls is consistent with the previous finding about recurrent depressive disorder by genome-wide association analysis of CNVs on a large genotyping microarray data.
Collapse
|
44
|
Gong L, He C, Yin Y, Wang H, Ye Q, Bai F, Yuan Y, Zhang H, Lv L, Zhang H, Zhang Z, Xie C. Mediating Role of the Reward Network in the Relationship between the Dopamine Multilocus Genetic Profile and Depression. Front Mol Neurosci 2017; 10:292. [PMID: 28959185 PMCID: PMC5603675 DOI: 10.3389/fnmol.2017.00292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
Multiple genetic loci in the dopamine (DA) pathway have been associated with depression symptoms in patients with major depressive disorder (MDD). However, the neural mechanisms underlying the polygenic effects of the DA pathway on depression remain unclear. We used an imaging genetic approach to investigate the polygenic effects of the DA pathway on the reward network in MDD. Fifty-three patients and 37 cognitively normal (CN) subjects were recruited and underwent resting-state functional magnetic resonance imaging (R-fMRI) scans. Multivariate linear regression analysis was employed to measure the effects of disease and multilocus genetic profile scores (MGPS) on the reward network, which was constructed using the nucleus accumbens (NAc) functional connectivity (NAFC) network. DA-MGPS was widely associated within the NAFC network, mainly in the inferior frontal cortex, insula, hypothalamus, superior temporal gyrus, and occipital cortex. The pattern of DA-MGPS effects on the fronto-striatal pathway differed in MDD patients compared with CN subjects. More importantly, NAc-putamen connectivity mediates the association between DA MGPS and anxious depression traits in MDD patients. Our findings suggest that the DA multilocus genetic profile makes a considerable contribution to the reward network and anxious depression in MDD patients. These results expand our understanding of the pathophysiology of polygenic effects underlying brain network abnormalities in MDD.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Yingying Yin
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Hui Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Yonggui Yuan
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Haisan Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| |
Collapse
|
45
|
Torres CM, Siebert M, Bock H, Mota SM, Krammer BR, Duarte JÁ, Bragatti JA, Castan JU, de Castro LA, Saraiva-Pereira ML, Bianchin MM. NTRK2 (TrkB gene) variants and temporal lobe epilepsy: A genetic association study. Epilepsy Res 2017; 137:1-8. [PMID: 28863320 DOI: 10.1016/j.eplepsyres.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The NTRK2 gene encodes a member of the neurotrophic tyrosine kinase receptor family known as TrkB. It is a membrane-associated receptor with signaling and cellular differentiation properties that has been involved in neuropsychiatric disorders, including epilepsy. We report here the frequencies of NTRK2 allele variants in patients with temporal lobe epilepsy (TLE) compared to controls without epilepsy and explore the impact of these polymorphisms on major clinical variables in TLE. METHODS A case-control study comparing the frequencies of the NTRK2 gene polymorphisms beween 198 TLE Caucasian patients and 200 matching controls without epilepsy. In a second step, the impact of allelic variation on major clinical and electroencephalographic epilepsy variables was evaluated in the group of TLE patients. The following polymorphisms were determined by testing different regions of the NTRK2 gene: rs1867283, rs10868235, rs1147198, rs11140800, rs1187286, rs2289656, rs1624327, rs1443445, rs3780645, and rs2378672. To correct for multiple correlations the level of significance was set at p<0.01. RESULTS Patients with TLE showed a statistical trend for increase of the T/T genotype in rs10868235 compared to control (O.R.=1.90; 95%CI=1.17-3.09; p=0.01). Homozygous patients for the A allele in rs1443445 had earlier mean age at onset of seizures, p=0.009 (mean age of 16.6 versus 22.4years). We also observed that the T allele in rs3780645 was more frequent in patients who needed polytheraphy for seizure control than in patients on monotherapy, (O.R.=4.13; 95%CI=1.68-10.29; p=0.001). This finding may reflect an increased difficulty to obtain seizure control in this group of patients. No additional differences were observed in this study. CONCLUSIONS Patients with epilepsy showed a trend for a difference in rs10868235 allelic distribution compared to controls without epilepsy. NTRK2 variability influenced age at seizure onset and the pharmacological response to seizure control. As far as we know, this is the first study showing an association between NTKR2 allelic variants in human epilepsy. We believe that further studies in this venue will shade some light on the molecular mechanisms involved in epileptogenesis and in the clinical characteristics of epilepsy.
Collapse
Affiliation(s)
- Carolina Machado Torres
- Graduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil; Division of Neurology, Hospital de Clínicas de Porto Alegre, Brazil
| | - Marina Siebert
- Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Hugo Bock
- Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Suelen Mandelli Mota
- Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Bárbara Reis Krammer
- Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Juliana Ávila Duarte
- Graduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil
| | - José Augusto Bragatti
- Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil; Division of Neurology, Hospital de Clínicas de Porto Alegre, Brazil
| | - Juliana Unis Castan
- Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil; Division of Neurology, Hospital de Clínicas de Porto Alegre, Brazil
| | - Luiza Amaral de Castro
- Graduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Maria Luiza Saraiva-Pereira
- Graduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil; Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Marino Muxfeldt Bianchin
- Graduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil; Division of Neurology, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
46
|
Wong ML, Arcos-Burgos M, Liu S, Vélez JI, Yu C, Baune BT, Jawahar MC, Arolt V, Dannlowski U, Chuah A, Huttley GA, Fogarty R, Lewis MD, Bornstein SR, Licinio J. The PHF21B gene is associated with major depression and modulates the stress response. Mol Psychiatry 2017; 22:1015-1025. [PMID: 27777418 PMCID: PMC5461220 DOI: 10.1038/mp.2016.174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 12/04/2022]
Abstract
Major depressive disorder (MDD) affects around 350 million people worldwide; however, the underlying genetic basis remains largely unknown. In this study, we took into account that MDD is a gene-environment disorder, in which stress is a critical component, and used whole-genome screening of functional variants to investigate the 'missing heritability' in MDD. Genome-wide association studies (GWAS) using single- and multi-locus linear mixed-effect models were performed in a Los Angeles Mexican-American cohort (196 controls, 203 MDD) and in a replication European-ancestry cohort (499 controls, 473 MDD). Our analyses took into consideration the stress levels in the control populations. The Mexican-American controls, comprised primarily of recent immigrants, had high levels of stress due to acculturation issues and the European-ancestry controls with high stress levels were given higher weights in our analysis. We identified 44 common and rare functional variants associated with mild to moderate MDD in the Mexican-American cohort (genome-wide false discovery rate, FDR, <0.05), and their pathway analysis revealed that the three top overrepresented Gene Ontology (GO) processes were innate immune response, glutamate receptor signaling and detection of chemical stimulus in smell sensory perception. Rare variant analysis replicated the association of the PHF21B gene in the ethnically unrelated European-ancestry cohort. The TRPM2 gene, previously implicated in mood disorders, may also be considered replicated by our analyses. Whole-genome sequencing analyses of a subset of the cohorts revealed that European-ancestry individuals have a significantly reduced (50%) number of single nucleotide variants compared with Mexican-American individuals, and for this reason the role of rare variants may vary across populations. PHF21b variants contribute significantly to differences in the levels of expression of this gene in several brain areas, including the hippocampus. Furthermore, using an animal model of stress, we found that Phf21b hippocampal gene expression is significantly decreased in animals resilient to chronic restraint stress when compared with non-chronically stressed animals. Together, our results reveal that including stress level data enables the identification of novel rare functional variants associated with MDD.
Collapse
Affiliation(s)
- M-L Wong
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - M Arcos-Burgos
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
- University of Rosario International
Institute of Translational Medicine, Bogotá,
Colombia
| | - S Liu
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - J I Vélez
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
- Universidad del Norte,
Barranquilla, Colombia
| | - C Yu
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - B T Baune
- Discipline of Psychiatry, University of
Adelaide, Adelaide, SA, Australia
| | - M C Jawahar
- Discipline of Psychiatry, University of
Adelaide, Adelaide, SA, Australia
| | - V Arolt
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
| | - U Dannlowski
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
- Department of Psychiatry and
Psychotherapy, University of Marburg, Marburg,
Germany
| | - A Chuah
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
| | - G A Huttley
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
| | - R Fogarty
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
| | - M D Lewis
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - S R Bornstein
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
- Medical Clinic III, Carl Gustav Carus
University Hospital, Dresden University of Technology, Dresden,
Germany
| | - J Licinio
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| |
Collapse
|
47
|
Bozorgmehr A, Ghadirivasfi M, Shahsavand Ananloo E. Obsessive–compulsive disorder, which genes? Which functions? Which pathways? An integrated holistic view regarding OCD and its complex genetic etiology. J Neurogenet 2017; 31:153-160. [DOI: 10.1080/01677063.2017.1336236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Bozorgmehr
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Ghadirivasfi
- Research Center for Addiction and Risky Behavior (ReCARB), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Esmaeil Shahsavand Ananloo
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
48
|
Torres CM, Siebert M, Bock H, Mota SM, Castan JU, Scornavacca F, de Castro LA, Saraiva-Pereira ML, Bianchin MM. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy. Epilepsy Behav 2017; 71:65-72. [PMID: 28550723 DOI: 10.1016/j.yebeh.2017.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/07/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Psychiatric comorbidities are highly prevalent in epilepsy, adding an important burden to the disease and profoundly affecting the quality of life of these individuals. Patients with temporal lobe epilepsy (TLE) are especially at risk to develop depression and several lines of evidence suggest that the association of depression with epilepsy might be related to common biological substrates. In this study, we test whether NTRK2 allele variants are associated with mood disorders or depressive disorders in patients with TLE. METHODS An association study of 163 patients with TLE. The NTRK2 variants studied were rs1867283, rs10868235, rs1147198, rs11140800, rs1187286, rs2289656, rs1624327, rs1443445, rs3780645, and rs2378672. All patients were submitted to the Structured Clinical Interview for DSM-IV (SCID) and epilepsy patients with mood disorders or depressive disorders were compared to epilepsy patients without mood disorders or depressive disorders. RESULTS In our TLE cohort, 76 patients (46.6%) showed mood disorders. After logistic regression, independent risk factors for mood disorders in TLE were female sex, presence of concomitant anxiety disorders, and genetic variations in rs1867283 and rs10868235 NTRK2 variants. Depressive disorders accounted for this results and independent variables associated with depressive disorders in TLE were female sex (OR=2.59; 95%CI=1.15-5.82; p=0.021), presence of concomitant anxiety disorders (OR=3.72; 95%CI=1.71-8.06; p=0.001) or psychotic disorders (OR=3.86; 95%CI=1.12-13.25; p=0.032), A/A genotype in the rs1867283 NTRK2 gene (OR=3.06; 95%CI=1.25-7.50; p=0.015) and C/C genotype in the rs10868235 NTRK2 gene (OR=3.54; 1.55-8.08; p=0.003). Similarly, these genotypes also remained independently and significantly associated with depressive disorders when patients with depressive disorders were compared to TLE patients without any psychiatric comorbidity. CONCLUSION In the present study, female sex, presence of concomitant anxiety or psychotic disorders, and specific allelic variations in the NTRK2 gene were independently associated with mood disorders or depressive disorders in TLE. If our results were confirmed, variants in the NTRK2 gene could be considered as risk factors or biomarkers for depressive disorders in patients with TLE.
Collapse
Affiliation(s)
- Carolina Machado Torres
- Medical Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina Siebert
- Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Hugo Bock
- Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Suelen Mandelli Mota
- Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Juliana Unis Castan
- Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Luiza Amaral de Castro
- Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Maria Luiza Saraiva-Pereira
- Laboratory of Genetic Identification, Experimental Research Centre, Hospital de Clinicas de Porto Alegre, Brazil
| | - Marino Muxfeldt Bianchin
- Medical Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Basic Research and Advanced Investigations in Neurology (BRAIN), Experimental Research Centre, Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
49
|
Yu C, Baune BT, Licinio J, Wong ML. Whole-genome single nucleotide variant distribution on genomic regions and its relationship to major depression. Psychiatry Res 2017; 252:75-79. [PMID: 28258043 PMCID: PMC5730269 DOI: 10.1016/j.psychres.2017.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/06/2017] [Accepted: 02/19/2017] [Indexed: 11/22/2022]
Abstract
Recent advances in DNA technologies have provided unprecedented opportunities for biological and medical research. In contrast to current popular genotyping platforms which identify specific variations, whole-genome sequencing (WGS) allows for the detection of all private mutations within an individual. Major depressive disorder (MDD) is a chronic condition with enormous medical, social and economic impacts. Genetic analysis, by identifying risk variants and thereby increasing our understanding of how MDD arises, could lead to improved prevention and the development of new and more effective treatments. Here we investigated the distributions of whole-genome single nucleotide variants (SNVs) on 12 different genomic regions for 25 human subjects using the symmetrised Kullback-Leibler divergence to measure the similarity between their SNV distributions. We performed cluster analysis for MDD patients and ethnically matched healthy controls. The results showed that Mexican-American controls grouped closer; in contrast depressed Mexican-American participants grouped away from their ethnically matched controls. This implies that whole-genome SNV distribution on the genomic regions may be related to major depression.
Collapse
Affiliation(s)
- Chenglong Yu
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Medicine, Flinders University, Bedford Park, SA 5042, Australia.
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
50
|
Yu C, Arcos-Burgos M, Licinio J, Wong ML. A latent genetic subtype of major depression identified by whole-exome genotyping data in a Mexican-American cohort. Transl Psychiatry 2017; 7:e1134. [PMID: 28509902 PMCID: PMC5534938 DOI: 10.1038/tp.2017.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Identifying data-driven subtypes of major depressive disorder (MDD) is an important topic of psychiatric research. Currently, MDD subtypes are based on clinically defined depression symptom patterns. Although a few data-driven attempts have been made to identify more homogenous subgroups within MDD, other studies have not focused on using human genetic data for MDD subtyping. Here we used a computational strategy to identify MDD subtypes based on single-nucleotide polymorphism genotyping data from MDD cases and controls using Hamming distance and cluster analysis. We examined a cohort of Mexican-American participants from Los Angeles, including MDD patients (n=203) and healthy controls (n=196). The results in cluster trees indicate that a significant latent subtype exists in the Mexican-American MDD group. The individuals in this hidden subtype have increased common genetic substrates related to major depression and they also have more anxiety and less middle insomnia, depersonalization and derealisation, and paranoid symptoms. Advances in this line of research to validate this strategy in other patient groups of different ethnicities will have the potential to eventually be translated to clinical practice, with the tantalising possibility that in the future it may be possible to refine MDD diagnosis based on genetic data.
Collapse
Affiliation(s)
- C Yu
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia
| | - M Arcos-Burgos
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- University of Rosario International Institute of Translational Medicine, Bogota, Colombia
| | - J Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia
- South Ural State University Biomedical School, Chelyabinsk, Russia
| | - M-L Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia
| |
Collapse
|