1
|
Li SS, Qu SL, Xie J, Li D, Zhao PJ. Secondary metabolites and their bioactivities from Paecilomyces gunnii YMF1.00003. Front Microbiol 2024; 15:1347601. [PMID: 38444802 PMCID: PMC10913189 DOI: 10.3389/fmicb.2024.1347601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Four new polyketides (1-4) and seven known compounds (5-11) including three polyketides and four sterols were isolated from the fermented extracts of Paecilomyces gunnii YMF1.00003. The new chemical structures were determined through the analysis of the nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and their configurations were subsequently confirmed by nuclear overhauser effect spectroscopy, the calculated electronic circular dichroism (ECD) spectra, and quantum chemical calculations of the NMR data (qcc NMR). Based on the results of pre-activity screening and compound structure target prediction, certain metabolites were assayed to evaluate their cytotoxic and protein kinase Cα inhibitory activities. Results indicated that 3β-hydroxy-7α-methoxy-5α,6α-epoxy-8(14),22E-dien-ergosta (8) exhibited potent cytotoxic activity, with half-maximal inhibitory concentration values of 3.00 ± 0.27 to 15.69 ± 0.61 μM against five tumor cells, respectively. The new compound gunniiol A (1) showed weak cytotoxic activity at a concentration of 40 μM. At a concentration of 20 μg/mL, compounds 1, 6, and 7 exhibited protein kinase Cα inhibition by 43.63, 40.93, and 57.66%, respectively. This study is the first to report steroids demonstrating good cytotoxicity and polyketides exhibiting inhibitory activity against protein kinase Cα from the extracts of P. gunnii.
Collapse
Affiliation(s)
- Su-Su Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- The Maternal and Child Health Hospital of Qianxinan, Xingyi, Guizhou, China
| | - Shuai-Ling Qu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Juan Xie
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Dong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Hu H, Long Y, Song G, Chen S, Xu Z, Li Q, Wu Z. Dysfunction of Prkcaa Links Social Behavior Defects with Disturbed Circadian Rhythm in Zebrafish. Int J Mol Sci 2023; 24:ijms24043849. [PMID: 36835261 PMCID: PMC9961154 DOI: 10.3390/ijms24043849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Protein kinase Cα (PKCα/PRKCA) is a crucial regulator of circadian rhythm and is associated with human mental illnesses such as autism spectrum disorders and schizophrenia. However, the roles of PRKCA in modulating animal social behavior and the underlying mechanisms remain to be explored. Here we report the generation and characterization of prkcaa-deficient zebrafish (Danio rerio). The results of behavioral tests indicate that a deficiency in Prkcaa led to anxiety-like behavior and impaired social preference in zebrafish. RNA-sequencing analyses revealed the significant effects of the prkcaa mutation on the expression of the morning-preferring circadian genes. The representatives are the immediate early genes, including egr2a, egr4, fosaa, fosab and npas4a. The downregulation of these genes at night was attenuated by Prkcaa dysfunction. Consistently, the mutants demonstrated reversed day-night locomotor rhythm, which are more active at night than in the morning. Our data show the roles of PRKCA in regulating animal social interactions and link the social behavior defects with a disturbed circadian rhythm.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaoxiong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhengli Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| |
Collapse
|
3
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2236-2261. [DOI: 10.1093/hmg/ddac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
|
4
|
Zhu L, Wu X, Xu B, Zhao Z, Yang J, Long J, Su L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci Lett 2020; 745:135596. [PMID: 33359735 DOI: 10.1016/j.neulet.2020.135596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a highly heritable mental disorder with a substantial disease burden. Machine learning (ML) method can be used to identify individuals with SCZ on the basis of blood gene expression data with high accuracy. METHODS This study aimed to differentiate patients with SCZ from healthy individuals by using the messenger RNA expression level in peripheral blood of 48 patients with SCZ and 50 controls via ML algorithms, namely, artificial neural networks, extreme gradient boosting, support vector machine (SVM), decision tree, and random forest. The expression of six mRNAs was detected using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The relative expression levels of GNAI1 (P < 0.001), PRKCA (P < 0.001), and PRKCB (P = 0.021) increased in the SCZ group, whereas those of FYN (P < 0.001), LYN (P = 0.022), and YWHAZ (P < 0.001) decreased in the SCZ group. We generated models with various combinations of genes based on five ML algorithms. The SVM model with six factors (GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN genes) was the best model for distinguishing patients with SCZ from healthy individuals (AUC = 0.993, sensitivity = 1.000, specificity = 0.895, and Youden index = 0.895). CONCLUSIONS This study suggested that the combination of genes using the ML method is better than the use of a single gene to discriminate patients with SCZ from healthy individuals. The combination of GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN under the SVM model can be used as a diagnostic biomarker for SCZ.
Collapse
Affiliation(s)
- Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyi Xu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi Zhao
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Han H, Xia X, Zheng H, Zhao C, Xu Y, Tao J, Wang X. The Gene Polymorphism of VMAT2 Is Associated with Risk of Schizophrenia in Male Han Chinese. Psychiatry Investig 2020; 17:1073-1078. [PMID: 33099987 PMCID: PMC7711117 DOI: 10.30773/pi.2020.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the association between gene polymorphism of vesicular monoamine transporter type 2(VMAT2) and schizophrenia in Han Chinese population. METHODS 430 patients with schizophrenia and 470 age-sex matched controls were recruited from four mental health centers. All patients were diagnosed by two psychiatrists based on the Structured Clinical Interview for DSM Disorders (SCID). The ligase detection reactions (LDR) method was used to assess the polymorphism of the two SNPs (rs363371 and rs363324) of VMAT2. RESULTS No associations of two SNPs with schizophrenia was found. When we stratified males and females for the analysis, we found that that in the recessive model of rs363371, there was an obvious significant association between rs363371 and schizophrenia in males (OR=0.564, 95% CI=0.357-0.892, p=0.014) but not females. For the association between rs363324 and schizophrenia, no association was found in either males or females. No association was found when stratifying early-onset schizophrenia and late-onset schizophrenia. CONCLUSION Our findings indicate that both rs363371 and rs363324 were not associated with schizophrenia, while it seemed that the AA genotype of rs363371 plays a protective effect in male Chinese in developing schizophrenia.
Collapse
Affiliation(s)
- Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Xia
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Affiliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Chongbang Zhao
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Tao
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianglan Wang
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Feltrin AS, Tahira AC, Simões SN, Brentani H, Martins DC. Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders. PLoS One 2019; 14:e0210431. [PMID: 30645614 PMCID: PMC6333352 DOI: 10.1371/journal.pone.0210431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Psychiatric disorders involve both changes in multiple genes as well different types of variations. As such, gene co-expression networks allowed the comparison of different stages and parts of the brain contributing to an integrated view of genetic variation. Two methods based on co-expression networks presents appealing results: Weighted Gene Correlation Network Analysis (WGCNA) and Network-Medicine Relative Importance (NERI). By selecting two different gene expression databases related to schizophrenia, we evaluated the biological modules selected by both WGCNA and NERI along these databases as well combining both WGCNA and NERI results (WGCNA-NERI). Also we conducted a enrichment analysis for the identification of partial biological function of each result (as well a replication analysis). To appraise the accuracy of whether both algorithms (as well our approach, WGCNA-NERI) were pointing to genes related to schizophrenia and its complex genetic architecture we conducted the MSET analysis, based on a reference gene list of schizophrenia database (SZDB) related to DNA Methylation, Exome, GWAS as well as copy number variation mutation studies. The WGCNA results were more associated with inflammatory pathways and immune system response; NERI obtained genes related with cellular regulation, embryological pathways e cellular growth factors. Only NERI were able to provide a statistical meaningful results to the MSET analysis (for Methylation and de novo mutations data). However, combining WGCNA and NERI provided a much more larger overlap in these two categories and additionally on Transcriptome database. Our study suggests that using both methods in combination is better for establishing a group of modules and pathways related to a complex disease than using each method individually. NERI is available at: https://bitbucket.org/sergionery/neri.
Collapse
Affiliation(s)
- Arthur Sant’Anna Feltrin
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
- * E-mail: (ASF); (DCMJ)
| | - Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sérgio Nery Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, ES, Brazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), São Paulo, SP, Brazil
| | - David Corrêa Martins
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
- * E-mail: (ASF); (DCMJ)
| |
Collapse
|
7
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
8
|
A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder. Int J Mol Sci 2017; 18:ijms18122763. [PMID: 29257106 PMCID: PMC5751362 DOI: 10.3390/ijms18122763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022] Open
Abstract
Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS) has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs) with p < 0.01 were sifted out from Wellcome Trust Case Control Consortium (WTCCC) dataset and mapped to 2045 genes, which are then compared with the protein–protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes (FBXL13, WDFY2, bFGF, and MTHFD1L) were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.
Collapse
|
9
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Li L, Zhang L, Binkley PF, Sadee W, Wang D. Regulatory Variants Modulate Protein Kinase C α (PRKCA) Gene Expression in Human Heart. Pharm Res 2017; 34:1648-1657. [PMID: 28120175 PMCID: PMC7315374 DOI: 10.1007/s11095-017-2102-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Protein kinase C α (PRKCA) is involved in multiple functions and has been implicated in heart failure risks and treatment outcomes. This study aims to identify regulatory variants affecting PRKCA expression in human heart, and evaluate attributable risk of heart disease. METHODS mRNA expression quantitative trait loci (eQTLs) were extracted from the Genotype and Tissue Expression Project (GTEx). Allelic mRNA ratios were measured in 51 human heart tissues to identify cis-acting regulatory variants. Potential regulatory regions were tested with luciferase reporter gene assays and further evaluated in GTEx and genome-wide association studies. RESULTS Located in a region with robust enhancer activity in luciferase reporter assays, rs9909004 (T > C, minor allele frequency =0.47) resides in a haplotype displaying strong eQTLs for PRKCA in heart (p = 1.2 × 10-23). The minor C allele is associated with both decreased PRKCA mRNA expression and decreased risk of phenotypes characteristic of heart failure in GWAS analyses (QT interval p = 3.0 × 10-14). While rs9909004 is the likely regulatory variant, other variants in high linkage disequilibrium cannot be excluded. Distinct regulatory variants appear to affect expression in other tissues. CONCLUSIONS The haplotype carrying rs9909004 influences PRKCA expression in the heart and is associated with traits linked to heart failure, potentially affecting therapy of heart failure.
Collapse
Affiliation(s)
- Liang Li
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Lizhi Zhang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Philip F Binkley
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA.
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.
| |
Collapse
|
11
|
Paraboschi EM, Cardamone G, Rimoldi V, Duga S, Soldà G, Asselta R. miR-634 is a Pol III-dependent intronic microRNA regulating alternative-polyadenylated isoforms of its host gene PRKCA. Biochim Biophys Acta Gen Subj 2017; 1861:1046-1056. [PMID: 28212793 DOI: 10.1016/j.bbagen.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The protein kinase C alpha (PRKCA) gene, coding for a Th17-cell-selective kinase, shows a complex splicing pattern, with at least 2 stable alternative transcripts characterized by an alternative upstream polyadenylation site. Polymorphisms in this gene were associated with several conditions, including multiple sclerosis, asthma, schizophrenia, and cancer. The presence of a microRNA (miRNA), i.e. miR-634, within intron 15 of the PRKCA gene, suggests the intriguing possibility that this miRNA might play a role in the susceptibility to these pathologies. METHODS Here, we characterized miR-634 expression profile and searched for its putative targets using a combination of RT-PCR and gene reporter assays. RESULTS The quantitative analysis of PRKCA and miR-634 transcripts in a panel of human tissues and cell lines revealed discordant expression profiles, suggesting the presence of an independent miR-634 promoter and/or a possible direct role of miR-634 in modulating PRKCA expression. Functional studies demonstrated the existence of a miRNA-specific promoter, which was shown to be Pol-III-dependent. Furthermore, transfection experiments showed that miR-634 is able to target its host gene by specifically down-regulating the shorter alternative-polyadenylated isoforms. CONCLUSIONS MiR-634 is a Pol III-dependent intronic miRNA, which could target its host gene through a "first-order" negative feedback. GENERAL SIGNIFICANCE MiR-634 is one of the few characterized examples of Pol-III-dependent intronic miRNAs. Its independent transcription from the host gene suggests caution in using expression profiles of host genes as proxies for the expression of the corresponding intronic miRNAs.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
12
|
Apalasamy YD, Mohamed Z. Obesity and genomics: role of technology in unraveling the complex genetic architecture of obesity. Hum Genet 2015; 134:361-74. [PMID: 25687726 DOI: 10.1007/s00439-015-1533-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 01/15/2023]
Abstract
Obesity is a complex and multifactorial disease that occurs as a result of the interaction between "obesogenic" environmental factors and genetic components. Although the genetic component of obesity is clear from the heritability studies, the genetic basis remains largely elusive. Successes have been achieved in identifying the causal genes for monogenic obesity using animal models and linkage studies, but these approaches are not fruitful for polygenic obesity. The developments of genome-wide association approach have brought breakthrough discovery of genetic variants for polygenic obesity where tens of new susceptibility loci were identified. However, the common SNPs only accounted for a proportion of heritability. The arrival of NGS technologies and completion of 1000 Genomes Project have brought other new methods to dissect the genetic architecture of obesity, for example, the use of exome genotyping arrays and deep sequencing of candidate loci identified from GWAS to study rare variants. In this review, we summarize and discuss the developments of these genetic approaches in human obesity.
Collapse
Affiliation(s)
- Yamunah Devi Apalasamy
- Department of Pharmacology, Pharmacogenomics Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia,
| | | |
Collapse
|
13
|
Goldstein JM, Cherkerzian S, Tsuang MT, Petryshen TL. Sex differences in the genetic risk for schizophrenia: history of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:698-710. [PMID: 24132902 DOI: 10.1002/ajmg.b.32159] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Although there is a long history to examinations of sex differences in the familial (and specifically, genetic) transmission of schizophrenia, there have been few investigators who have systematically and rigorously studied this issue. This is true even in light of population and clinical studies identifying significant sex differences in incidence, expression, neuroanatomic and functional brain abnormalities, and course of schizophrenia. This review highlights the history of work in this arena from studies of family transmission patterns, linkage and twin studies to the current molecular genetic strategies of large genome-wide association studies. Taken as a whole, the evidence supports the presence of genetic risks of which some are sex-specific (i.e., presence in one sex and not the other) or sex-dependent (i.e., quantitative differences in risk between the sexes). Thus, a concerted effort to systematically investigate these questions is warranted and, as we argue here, necessary in order to fully understand the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts; Division of Psychiatric Neuroscience, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
14
|
Seeman P. Are dopamine D2 receptors out of control in psychosis? Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:146-52. [PMID: 23880595 DOI: 10.1016/j.pnpbp.2013.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
It is known that schizophrenia patients are behaviorally supersensitive to dopamine-like drugs (amphetamine, methylphenidate). There is evidence for an increased release of dopamine, a slight increase of dopamine D2 receptors and an increase of dopamine D2High receptors in schizophrenia, all possibly explaining the clinical supersensitivity to dopamine. The elevation in apparent D2High receptors in vivo in schizophrenia matches the elevation in D2High receptors in many animal models of psychosis. The increased amounts of D2High receptors in psychotic-like behavior in animals may result from a loss of control of D2 by various factors. These factors include the rate of phosphorylation and desensitization of D2 receptors by kinases, the attachment of arrestin to D2 receptors, internalization of D2 receptors, the rate of receptor de-phosphorylation, formation of D2 receptor dimers, and GTP regulation by various GTPases. While at present there are no statistically significant associations of any of these controlling factors and their genes with schizophrenia, investigation of D2High receptors in schizophrenia will require a new radioligand in order to selectively label D2High receptors in vivo in patients. Finally, haloperidol reduces the number of D2High receptors that are elevated by amphetamine, indicating that this therapeutic effect may occur clinically.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario M5P 3L6, Canada; Department of Psychiatry, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
15
|
Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CSJ, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013; 8:e60099. [PMID: 23555897 PMCID: PMC3610748 DOI: 10.1371/journal.pone.0060099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Jie Chiou
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, United States of America
- Institute of Behavioral Genomics, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Liu Y, Li Z, Zhang M, Deng Y, Yi Z, Shi T. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genomics 2013; 6 Suppl 1:S17. [PMID: 23369358 PMCID: PMC3552677 DOI: 10.1186/1755-8794-6-s1-s17] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) and type 2 diabetes mellitus (T2D) are both complex diseases. Accumulated studies indicate that schizophrenia patients are prone to present the type 2 diabetes symptoms, but the potential mechanisms behind their association remain unknown. Here we explored the pathogenetic association between SCZ and T2D based on pathway analysis and protein-protein interaction. RESULTS With sets of prioritized susceptibility genes for SCZ and T2D, we identified significant pathways (with adjusted p-value < 0.05) specific for SCZ or T2D and for both diseases based on pathway enrichment analysis. We also constructed a network to explore the crosstalk among those significant pathways. Our results revealed that some pathways are shared by both SCZ and T2D diseases through a number of susceptibility genes. With 382 unique susceptibility proteins for SCZ and T2D, we further built a protein-protein interaction network by extracting their nearest interacting neighbours. Among 2,104 retrieved proteins, 364 of them were found simultaneously interacted with susceptibility proteins of both SCZ and T2D, and proposed as new candidate risk factors for both diseases. Literature mining supported the potential association of partial new candidate proteins with both SCZ and T2D. Moreover, some proteins were hub proteins with high connectivity and interacted with multiple proteins involved in both diseases, implying their pleiotropic effects for the pathogenic association. Some of these hub proteins are the components of our identified enriched pathways, including calcium signaling, g-secretase mediated ErbB4 signaling, adipocytokine signaling, insulin signaling, AKT signaling and type II diabetes mellitus pathways. Through the integration of multiple lines of information, we proposed that those signaling pathways, which contain susceptibility genes for both diseases, could be the key pathways to bridge SCZ and T2D. AKT could be one of the important shared components and may play a pivotal role to link both of the pathogenetic processes. CONCLUSIONS Our study is the first network and pathway-based systematic analysis for SCZ and T2D, and provides the general pathway-based view of pathogenetic association between two diseases. Moreover, we identified a set of candidate genes potentially contributing to the linkage between these two diseases. This research offers new insights into the potential mechanisms underlying the co-occurrence of SCZ and T2D, and thus, could facilitate the inference of novel hypotheses for the co-morbidity of the two diseases. Some etiological factors that exert pleiotropic effects shared by the significant pathways of two diseases may have important implications for the diseases and could be therapeutic intervention targets.
Collapse
Affiliation(s)
- Yanli Liu
- Center for Bioinformatics and Computational Biology, and The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zezhi Li
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, 168 Changhai Road, Shanghai, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University 37 Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Youping Deng
- Rush University Cancer Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhenghui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
17
|
The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18:38-52. [PMID: 22547114 DOI: 10.1038/mp.2012.34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.
Collapse
|
18
|
An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry 2012; 17:1194-205. [PMID: 22290124 DOI: 10.1038/mp.2011.183] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.
Collapse
|
19
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
20
|
Vergult S, Dauber A, Chiaie BD, Van Oudenhove E, Simon M, Rihani A, Loeys B, Hirschhorn J, Pfotenhauer J, Phillips JA, Mohammed S, Ogilvie C, Crolla J, Mortier G, Menten B. 17q24.2 microdeletions: a new syndromal entity with intellectual disability, truncal obesity, mood swings and hallucinations. Eur J Hum Genet 2012; 20:534-9. [PMID: 22166941 PMCID: PMC3330218 DOI: 10.1038/ejhg.2011.239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/21/2011] [Accepted: 11/23/2011] [Indexed: 11/09/2022] Open
Abstract
Although microdeletions of the long arm of chromosome 17 are being reported with increasing frequency, deletions of chromosome band 17q24.2 are rare. Here we report four patients with a microdeletion encompassing chromosome band 17q24.2 with a smallest region of overlap of 713 kb containing five Refseq genes and one miRNA. The patients share the phenotypic characteristics, such as intellectual disability (4/4), speech delay (4/4), truncal obesity (4/4), seizures (2/4), hearing loss (3/4) and a particular facial gestalt. Hallucinations and mood swings were also noted in two patients. The PRKCA gene is a very interesting candidate gene for many of the observed phenotypic features, as this gene plays an important role in many cellular processes. Deletion of this gene might explain the observed truncal obesity and could also account for the hallucinations and mood swings seen in two patients, whereas deletion of a CACNG gene cluster might be responsible for the seizures observed in two patients. In one of the patients, the PRKAR1A gene responsible for Carney Complex and the KCNJ2 gene causal for Andersen syndrome are deleted. This is the first report of a patient with a whole gene deletion of the KCNJ2 gene.
Collapse
Affiliation(s)
- Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Andrew Dauber
- Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | | | | | - Marleen Simon
- Department of Clinical Genetics, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ali Rihani
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bart Loeys
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department for Medical Genetics, Antwerp, Belgium
| | - Joel Hirschhorn
- Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | - Jean Pfotenhauer
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - John Crolla
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | | | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
21
|
Casals F, Idaghdour Y, Hussin J, Awadalla P. Next-generation sequencing approaches for genetic mapping of complex diseases. J Neuroimmunol 2012; 248:10-22. [PMID: 22285396 DOI: 10.1016/j.jneuroim.2011.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/30/2011] [Accepted: 12/15/2011] [Indexed: 01/12/2023]
Abstract
The advent of next generation sequencing technologies has opened new possibilities in the analysis of human disease. In this review we present the main next-generation sequencing technologies, with their major contributions and possible applications to the study of the genetic etiology of complex diseases.
Collapse
Affiliation(s)
- Ferran Casals
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
22
|
Hamshere ML, Holmans PA, McCarthy GM, Jones LA, Murphy KC, Sanders RD, Gray MY, Zammit S, Williams NM, Norton N, Williams HJ, McGuffin P, O'Donovan MC, Craddock N, Owen MJ, Cardno AG. Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:929-40. [PMID: 21960518 DOI: 10.1002/ajmg.b.31240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
Genetic factors are likely to influence clinical variation in schizophrenia, but it is unclear which variables are most suitable as phenotypes and which molecular genetic loci are involved. We evaluated clinical variable phenotypes and applied suitable phenotypes in genome-wide covariate linkage analysis. We ascertained 170 affected relative pairs (168 sibling-pairs and two avuncular pairs) with DSM-IV schizophrenia or schizoaffective disorder from the United Kingdom. We defined psychotic symptom dimensions, age at onset (AAO), and illness course using the OPCRIT checklist. We evaluated phenotypes using within sibling-pair correlations and applied suitable phenotypes in multipoint covariate linkage analysis based on 372 microsatellite markers at ∼10 cM intervals. The statistical significance of linkage results was assessed by simulation. The positive and disorganized symptom dimensions, AAO, and illness course qualified as suitable phenotypes. There were no genome-wide significant linkage results. There was suggestive evidence of linkage for the positive dimension on chromosomes 2q32, 10q26, and 20q12; the disorganized dimension on 8p21 and 17q21; and illness course on 2q33 and 22q11. The linkage peak for disorganization on 17q21 remained suggestive after correction for multiple testing. To our knowledge, this is the first study to integrate phenotype evaluation and genome-wide covariate linkage analysis for symptom dimensions and illness history variables in sibling-pairs with schizophrenia. The significant within-pair correlations strengthen the evidence that some clinical variables within schizophrenia are suitable phenotypes for molecular genetic investigations. At present there are no genome-wide significant linkage results for these phenotypes, but a number of suggestive findings warrant further investigation.
Collapse
Affiliation(s)
- Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene. Eur J Hum Genet 2011; 20:84-90. [PMID: 21811305 DOI: 10.1038/ejhg.2011.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors. Despite a significant hereditary component, genetic studies have only been modestly successful in identifying genes of importance for the development of PD. In this study, we conducted a genome-wide scan using microsatellite markers and PD patients and control individuals from the isolated population of the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant association with PD in an extended Faroese case-control sample. However, analyses of a larger independent Danish case-control sample yielded no substantial significant association. This suggests that the possible risk alleles associated in the isolated population are not those involved in the development of PD in a larger outbred population.
Collapse
|
24
|
Samuels J, Wang Y, Riddle MA, Greenberg BD, Fyer AJ, McCracken JT, Rauch SL, Murphy DL, Grados MA, Knowles JA, Piacentini J, Cullen B, Bienvenu OJ, Rasmussen SA, Geller D, Pauls DL, Liang KY, Shugart YY, Nestadt G. Comprehensive family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:472-7. [PMID: 21445956 PMCID: PMC3082623 DOI: 10.1002/ajmg.b.31184] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 03/02/2011] [Indexed: 12/25/2022]
Abstract
SLC1A1 encodes a neuronal glutamate transporter and is a promising candidate gene for obsessive-compulsive disorder (OCD). Several independent research groups have reported significant associations between OCD and single nucleotide polymorphisms (SNPs) in this gene. Previously, we evaluated 13 SNPs in, or near, SLC1A1 and reported a strong association signal with rs301443, a SNP 7.5 kb downstream of the gene [Shugart et al. (2009); Am J Med Genet Part B 150B:886–892]. The aims of the current study were first, to further investigate this finding by saturating the region around rs301443; and second, to explore the entire gene more thoroughly with a dense panel of SNP markers. We genotyped an additional 111 SNPs in or near SLC1A1, covering from 9 kb upstream to 84 kb downstream of the gene at average spacing of 1.7 kb per SNP, and conducted family-based association analyses in 1,576 participants in 377 families.We found that none of the surrounding markers were in linkage disequilibrium with rs301443, nor were any associated with OCD. We also found that SNP rs4740788, located about 8.8 kb upstream of the gene, was associated with OCD in all families (P = 0.003) and in families with male affecteds (P = 0.002). A three-SNP haplotype (rs4740788–rs10491734–rs10491733) was associated with OCD in the total sample (P = 0.00015) and in families with male affecteds (P = 0.0007). Although of nominal statistical significance considering the number of comparisons, these findings provide further support for the involvement of SLC1A1 in the pathogenesis of OCD.
Collapse
Affiliation(s)
- Jack Samuels
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Ying Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark A. Riddle
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin D. Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, Rhode Island
| | - Abby J. Fyer
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, New York City, New York
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral Sciences University of California, Los Angeles, School of Medicine, Los Angeles, California
| | - Scott L. Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Marco A. Grados
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James A. Knowles
- Department of Psychiatry, University of Southern California School of Medicine, Los Angeles, California
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences University of California, Los Angeles, School of Medicine, Los Angeles, California
| | - Bernadette Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - O. Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven A. Rasmussen
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, Rhode Island
| | - Daniel Geller
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - David L. Pauls
- Department of Psychiatry and Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kung-Yee Liang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Yin Y. Shugart
- Genomic Research Branch, Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Han S, Yang BZ, Kranzler HR, Oslin D, Anton R, Gelernter J. Association of CHRNA4 polymorphisms with smoking behavior in two populations. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:421-9. [PMID: 21445957 PMCID: PMC3742073 DOI: 10.1002/ajmg.b.31177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
CHRNA4, the gene that encodes the nicotinic acetylcholine receptor α(4) subunit, is a potential candidate gene for nicotine dependence (ND). However, studies of the association of CHNRA4 with smoking behavior have shown inconsistent results. Our meta-analysis of linkage studies of smoking behavior identified a genome-wide significant linkage of the phenotype maximum number of cigarettes smoked in a 24-hour period to a region (20q13.12-q13.32) harboring CHRNA4. This motivated us to examine the association of CHRNA4 with smoking behavior in two independent samples. In this study, we examined five single nucleotide polymorphisms (SNPs) within CHRNA4 and three smoking-related behaviors: one quantitative trait [cigarettes smoked per day (CPD)], and two binary traits [DSM-IV diagnosis of ND and dichotomized Fagerstrom test of ND (FTND)], in 1,249 unrelated European-Americans (EAs) and 1,790 unrelated African-Americans (AAs). Using the combined sample with sex, age, and race as covariates, the synonymous SNP rs1044394 was significantly associated with ND (P = 0.001) and FTND (P = 0.01). Rs2236196, which has a low correlation with rs1044394, was also significantly associated with CPD (P = 0.003). The pattern of association for these SNPs was similar in AAs and EAs. After correction for multiple testing, the association between rs1044394 and ND in the combined sample remained significant (P = 0.033). In summary, our study supports association between CHRNA4 common variation and ND in AA and EA samples. Additional studies will be necessary to evaluate the role of rare variants at CHRNA4 for ND.
Collapse
Affiliation(s)
- Shizhong Han
- Department of Psychiatry, Division of Human Genetics, Yale
University School of Medicine, New Haven, CT 06511, USA
- VA CT Healthcare Center 116A2; 950 Campbell Avenue; West Haven, CT
06516
| | - Bao-Zhu Yang
- Department of Psychiatry, Division of Human Genetics, Yale
University School of Medicine, New Haven, CT 06511, USA
- VA CT Healthcare Center 116A2; 950 Campbell Avenue; West Haven, CT
06516
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of
Medicine, Philadelphia, PA 19104 and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia,
PA 19104
| | - David Oslin
- Department of Psychiatry, University of Pennsylvania School of
Medicine, Philadelphia, PA, 19104 USA
| | - Raymond Anton
- Department of Psychiatry and Behavioral Sciences, Medical University
of South Carolina, Charleston, SC, 29425 USA
| | - Joel Gelernter
- Department of Psychiatry, Division of Human Genetics, Yale
University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New
Haven, CT 06511, USA
- Department of Neurobiology, Yale University School of Medicine, New
Haven, CT 06511, USA
- VA CT Healthcare Center 116A2; 950 Campbell Avenue; West Haven, CT
06516
| |
Collapse
|
26
|
Jablensky A, Morar B, Wiltshire S, Carter K, Dragovic M, Badcock JC, Chandler D, Peters K, Kalaydjieva L. Polymorphisms associated with normal memory variation also affect memory impairment in schizophrenia. GENES BRAIN AND BEHAVIOR 2011; 10:410-7. [PMID: 21281445 DOI: 10.1111/j.1601-183x.2011.00679.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neurocognitive dysfunction is a core feature of schizophrenia with particularly prominent deficits in verbal episodic memory. The molecular basis of this memory impairment is poorly understood and its relatedness to normal variation in memory performance is unclear. In this study, we explore, in a sample of cognitively impaired schizophrenia patients, the role of polymorphisms in seven genes recently reported to modulate episodic memory in normal subjects. Three polymorphisms (GRIN2B rs220599, GRM3 rs2189814 and PRKCA rs8074995) were associated with episodic verbal memory in both control and patients with cognitive deficit, but not in cognitively spared patients or the pooled schizophrenia sample. GRM3 and PRKCA acted in opposite directions in patients compared to controls, possibly reflecting an abnormal brain milieu and/or adverse environmental effects in schizophrenia. The encoded proteins balance glutamate signalling vs. excitotoxicity in complex interactions involving the excitatory amino acid transporter 2 (EAAT2), implicated in the dysfunctional glutamatergic signalling in schizophrenia. Double carrier status of the GRM3 and PRKCA minor alleles was associated with lower memory test scores and with increased risk of schizophrenia. Single nucleotide polymorphism (SNP) rs8074995 lies within the PRKCA region spanned by a rare haplotype associated with schizophrenia in a recent UK study and provides further evidence of PRKCA contribution to memory impairment and susceptibility to schizophrenia. Our study supports the utility of parsing the broad phenotype of schizophrenia into component cognitive endophenotypes that reduce heterogeneity and enable the capture of potentially important genetic associations.
Collapse
Affiliation(s)
- A Jablensky
- Centre for Clinical Research in Neuropsychiatry and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tiwari AK, Zai CC, Müller DJ, Kennedy JL. Genetics in schizophrenia: where are we and what next? DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20954426 PMCID: PMC3181975 DOI: 10.31887/dcns.2010.12.3/atiwari] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the genetic basis of schizophrenia continues to be major challenge. The research done during the last two decades has provided several candidate genes which unfortunately have not been consistently replicated across or within a population. The recent genome-wide association studies (GWAS) and copy number variation (CNV) studies have provided important evidence suggesting a role of both common and rare large CNVs in schizophrenia genesis. The burden of rare copy number variations appears to be increased in schizophrenia patients. A consistent observation among the GWAS studies is the association with schizophrenia of genetic markers in the major histocompatibility complex (6p22.1)-containing genes including NOTCH4 and histone protein loci. Molecular genetic studies are also demonstrating that there is more overlap between the susceptibility genes for schizophrenia and bipolar disorder than previously suspected. In this review we summarize the major findings of the past decade and suggest areas of future research.
Collapse
Affiliation(s)
- Arun K Tiwari
- Neurogenetics section, Neuroscience department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Day A, Dong J, Funari VA, Harry B, Strom SP, Cohn DH, Nelson SF. Disease gene characterization through large-scale co-expression analysis. PLoS One 2009; 4:e8491. [PMID: 20046828 PMCID: PMC2797297 DOI: 10.1371/journal.pone.0008491] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET). RESULTS Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders. DISCUSSION UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.
Collapse
Affiliation(s)
- Allen Day
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Dong
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Vincent A. Funari
- Cedars-Sinai Medical Center, Medical Genetics Institute, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bret Harry
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Samuel P. Strom
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dan H. Cohn
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Cedars-Sinai Medical Center, Medical Genetics Institute, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|