1
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Zhang QX, Wu SS, Wang PJ, Zhang R, Valenzuela RK, Shang SS, Wan T, Ma J. Schizophrenia-Like Deficits and Impaired Glutamate/Gamma-aminobutyric acid Homeostasis in Zfp804a Conditional Knockout Mice. Schizophr Bull 2024; 50:1411-1426. [PMID: 38988003 PMCID: PMC11548938 DOI: 10.1093/schbul/sbae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.
Collapse
Affiliation(s)
- Qiao-xia Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shan-shan Wu
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng-jie Wang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Rui Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, College of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Robert K Valenzuela
- JAX Center for Alzheimer’s and Dementia Research, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shan-shan Shang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ting Wan
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Ward C, Sjulson L, Batista-Brito R. The function of Mef2c toward the development of excitatory and inhibitory cortical neurons. Front Cell Neurosci 2024; 18:1465821. [PMID: 39376213 PMCID: PMC11456456 DOI: 10.3389/fncel.2024.1465821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are caused by abnormal brain development, leading to altered brain function and affecting cognition, learning, self-control, memory, and emotion. NDDs are often demarcated as discrete entities for diagnosis, but empirical evidence indicates that NDDs share a great deal of overlap, including genetics, core symptoms, and biomarkers. Many NDDs also share a primary sensitive period for disease, specifically the last trimester of pregnancy in humans, which corresponds to the neonatal period in mice. This period is notable for cortical circuit assembly, suggesting that deficits in the establishment of brain connectivity are likely a leading cause of brain dysfunction across different NDDs. Regulators of gene programs that underlie neurodevelopment represent a point of convergence for NDDs. Here, we review how the transcription factor MEF2C, a risk factor for various NDDs, impacts cortical development. Cortical activity requires a precise balance of various types of excitatory and inhibitory neuron types. We use MEF2C loss-of-function as a study case to illustrate how brain dysfunction and altered behavior may derive from the dysfunction of specific cortical circuits at specific developmental times.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Aabdien A, Sichlinger L, Borgel Z, Jones MR, Waston IA, Gatford NJF, Raval P, Tanangonan L, Powell TR, Duarte RRR, Srivastava DP. Schizophrenia risk proteins ZNF804A and NT5C2 interact in cortical neurons. Eur J Neurosci 2024; 59:2102-2117. [PMID: 38279611 PMCID: PMC11170667 DOI: 10.1111/ejn.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.
Collapse
Affiliation(s)
- Afra Aabdien
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Zoe Borgel
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Madeleine R. Jones
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Iain A. Waston
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Lloyd Tanangonan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Timothy R. Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Rodrigo R. R. Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
5
|
Shen G, Wu Y, Wang K, Niculescu M, Liu Y, Kang Y, Luo X, Wang W, Chen YH, Liu Y, Wang F, Chen L. Impulsivity and aggression in alcohol withdrawal syndrome is modulated by the interaction of ZNF804A and mTOR polymorphism. Pharmacol Biochem Behav 2024; 236:173708. [PMID: 38216065 DOI: 10.1016/j.pbb.2024.173708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Alcohol withdrawal syndrome (AWS) is a poorly studied phenotype of alcohol use disorder. Understanding the relationship between allelic interactions and AWS-related impulsivity and aggression could have significant implications. This study aimed to investigate the main and interacting effects of ZNF804A and mTOR on impulsivity and aggression during alcohol withdrawal. 446 Chinese Han adult males with alcohol dependence were included in the study. Impulsivity and aggression were assessed, and genomic DNA was genotyped. Single gene analysis showed that ZNF804A rs1344706 (A allele/CC homozygote) and mTOR rs1057079 (C allele/TT homozygote) were strongly associated with AWS-related impulsivity and aggression. In the allelic group, MANOVA revealed a significant gene x gene interaction, suggesting that risk varied systematically depending on both ZNF804A and mTOR alleles. Additionally, a significant interactive effect of ZNF804A rs1344706 and mTOR rs7525957 was found on motor impulsivity and physical aggression, and the ZNF804A rs1344706 gene variant had significant effects on motor impulsivity and physical aggression only in mTOR rs7525957 TT homozygous carriers. The study showed that specific allelic combinations of ZNF804A and mTOR may have protective or risk-enhancing effects on AWS-related impulsivity and aggression.
Collapse
Affiliation(s)
- Guanghui Shen
- Wenzhou Seventh People's Hospital, Wenzhou 325006, China; School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Kexin Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | | | - Yuqing Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Hsin Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China.
| | - Li Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Hsu YHH, Pintacuda G, Liu R, Nacu E, Kim A, Tsafou K, Petrossian N, Crotty W, Suh JM, Riseman J, Martin JM, Biagini JC, Mena D, Ching JK, Malolepsza E, Li T, Singh T, Ge T, Egri SB, Tanenbaum B, Stanclift CR, Apffel AM, Carr SA, Schenone M, Jaffe J, Fornelos N, Huang H, Eggan KC, Lage K. Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia. iScience 2023; 26:106701. [PMID: 37207277 PMCID: PMC10189495 DOI: 10.1016/j.isci.2023.106701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders.
Collapse
Affiliation(s)
- Yu-Han H. Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ruize Liu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eugeniu Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - April Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natalie Petrossian
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jung Min Suh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jackson Riseman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacqueline M. Martin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia C. Biagini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daya Mena
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua K.T. Ching
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Taibo Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shawn B. Egri
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Tanenbaum
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Annie M. Apffel
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A. Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake Jaffe
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin C. Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| |
Collapse
|
7
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
8
|
Maity S, Munisamy M, Sagar R, Udupa N, Puluturu Shilpa V, Subbiah V. Psychosis susceptibility zinc finger protein 804A (ZNF804A) gene polymorphism in schizophrenia patients treated with olanzapine in North Indian population. Int J Neurosci 2023; 133:467-472. [PMID: 33866919 DOI: 10.1080/00207454.2021.1916742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The Zinc finger protein 804A (ZNF804A) is a potential schizophrenia candidate gene that has emerged from genome-wide association studies. The aim of the study is to investigate whether this gene variant influences the response of positive or negative symptoms to antipsychotic drug olanzapine in North Indian schizophrenia patients. MATERIALS AND METHODS Our study involved 184 unrelated schizophrenia cases (114 males and 70 females; mean age: 52.8 ± 11.6 years) and 300 normal controls (168 males and 132 females; mean age: 54.9 ± 6.9 years). At the start of treatment and after four weeks, we assessed the response of positive and negative symptoms by positive and negative syndrome scale (PANSS). Olanzapine drug level was estimated using HPLC Method and Genotyping was performed using PCR-Snap Shot technique. RESULTS Significant differences were observed in the genotype distribution (χ2 = 6.10, d.f. = 2, p = 0.04) and allele frequencies (χ2 = 5.14, d.f. = 1, p = 0.02; odds ratio = 0.57, 95% confidence interval =1.09-3.48) between schizophrenia patients and controls group. The improvement of positive and negative schizophrenia symptoms after 4 weeks of treatment with olanzapine was assessed. Patients homozygous for the ZNF804A risk allele for AA show poorer improvement of positive symptoms compared to patients with a protective allele. CONCLUSIONS Our findings indicate that ZNF804A gene polymorphism plays a significant role in the treatment of schizophrenia, suggesting that ZNF804A may be an effective marker for schizophrenia treatment.
Collapse
Affiliation(s)
- Sayantika Maity
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Nayanabhirama Udupa
- Directorate of Research, Department of Pharmacy Management, Manipal College of Pharmaceutical Sciences, Manipal, India
| | | | - Vivekanandhan Subbiah
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
9
|
Hegarty CE, Ianni AM, Kohn PD, Kolachana B, Gregory M, Masdeu JC, Eisenberg DP, Berman KF. Polymorphism in the ZNF804A Gene and Variation in D 1 and D 2/D 3 Dopamine Receptor Availability in the Healthy Human Brain: A Dual Positron Emission Tomography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:121-128. [PMID: 33712377 PMCID: PMC10501410 DOI: 10.1016/j.bpsc.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND The rs1344706 single nucleotide polymorphism in the ZNF804A gene has been associated with risk for psychosis in multiple genome-wide association studies, yet mechanisms underlying this association are not known. Given preclinical work suggesting an impact of ZNF804A on dopamine receptor gene transcription and clinical studies establishing dopaminergic dysfunction in patients with schizophrenia, we hypothesized that the ZNF804A risk single nucleotide polymorphism would be associated with variation in dopamine receptor availability in the human brain. METHODS In this study, 72 healthy individuals genotyped for rs1344706 completed both [18F]fallypride and [11C]NNC-112 positron emission tomography scans to measure D2/D3 and D1 receptor availability, respectively. Genetic effects on estimates of binding potential for each ligand were tested first with canonical subject-specific striatal regions of interest analyses, followed by exploratory whole-brain voxelwise analyses to test for more localized striatal signals and for extrastriatal effects. RESULTS Region of interest analyses revealed significantly less D2/D3 receptor availability in risk-allele homozygotes (TT) compared with non-risk allele carriers (G-allele carrier group: TG and GG) in the associative striatum and sensorimotor striatum, but no significant differences in striatal D1 receptor availability. CONCLUSIONS These data suggest that ZNF804A genotype may be meaningfully linked to dopaminergic function in the human brain. The results also may provide information to guide future studies of ZNF804A-related mechanisms of schizophrenia risk.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| | - Angela M Ianni
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Philip D Kohn
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Bhaskar Kolachana
- Human Brain Collection Core, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Michael Gregory
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Joseph C Masdeu
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
10
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Sotero A, Salvador R, Fuentes-Claramonte P, Salgado-Pineda P, Papiol S, Ortiz-Gil J, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). Eur Arch Psychiatry Clin Neurosci 2022; 272:1229-1239. [PMID: 35796825 DOI: 10.1007/s00406-022-01447-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Alejandro Sotero
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jordi Ortiz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Hospital General de Granollers, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, Manhasset, NY, USA
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | - Vicente Molina
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Zhang QX, Zhao DBJ, Gu RY, Zhao XH, Zhao HX, Valenzuela RK, Xi MM, Zhang R, Ma J. Study of a functional SNP rs13423388 in a novel enhancer element of schizophrenia-associated ZNF804A. Asian J Psychiatr 2022; 74:103191. [PMID: 35728455 DOI: 10.1016/j.ajp.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Qiao-Xia Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Dong-Bu-Jia Zhao
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rui-Ying Gu
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiu-Hua Zhao
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hua-Xiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Robert K Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic, Marshfield, WI 54449, USA
| | - Miao-Miao Xi
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
13
|
Münch-Anguiano L, Camarena B, Nieto-Quinto J, de la Torre P, Pedro Laclette J, Hirata-Hernández H, Hernández-Muñoz S, Aguilar-García A, Becerra-Palars C, Gutiérrez-Mora D, Ortega-Ortiz H, Escamilla-Orozco R, Saracco-Álvarez R, Bustos-Jaimes I. Genetic analysis of the ZNF804A gene in Mexican patients with schizophrenia, schizoaffective disorder and bipolar disorder. Gene 2022; 829:146508. [PMID: 35447233 DOI: 10.1016/j.gene.2022.146508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests that schizophrenia (SCZ), schizoaffective disorder (SAD) and bipolar disorder (BPD) share genetic risk variants. ZNF804A gene has been associated with these disorders in different populations. GWAS and candidate gene studies have reported association between the rs1344706 A allele with SCZ, SAD and BPD in European and Asian populations. In Mexican patients, no studies have specifically analyzed ZNF804A gene variants with these disorders. The aim of the study was to analyze the rs1344706 and identify common and rare variants in a targeted region of the ZNF804A gene in Mexican patients with SCZ, BPD and SAD compared with a control group. METHODS We genotyped the rs1344706 in 228 Mexican patients diagnosed with SCZ, SAD and BPD, and 295 controls. Also, an additional sample of 167 patients with these disorders and 170 controls was analyzed to identify rare and common variants using the Sanger-sequence analysis of a targeted region of ZNF804A gene. RESULTS Association analysis of rs1344706 observed a higher frequency of A allele in the patients compared with the control group; however, did not show statistical differences after Bonferronís correction (χ2 = 5.3, p = 0.0208). In the sequence analysis, we did not identify rare variants; however, we identified three common variants: rs3046266, rs1366842 and rs12477430. A comparison of the three identified variants between patients and controls did not show statistical differences (p > 0.0125). Finally, haplotype analysis did not show statistical differences between SCZ, SAD and BPD and controls. CONCLUSIONS Our findings did not support the evidence suggesting that ZNF804A gene participates in the etiology of SCZ, SAD and BPD. Future studies are needed in a larger sample size to identify the effect of this gene in psychiatric disorders.
Collapse
Affiliation(s)
- Lucía Münch-Anguiano
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico; Programa de Maestría y Doctorado en Ciencias Médicas y Odontológicas de la Salud, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.
| | - Jesica Nieto-Quinto
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Patricia de la Torre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan Pedro Laclette
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Harumi Hirata-Hernández
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Sandra Hernández-Muñoz
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Alejandro Aguilar-García
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Claudia Becerra-Palars
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Doris Gutiérrez-Mora
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Hiram Ortega-Ortiz
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Raúl Escamilla-Orozco
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ricardo Saracco-Álvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ismael Bustos-Jaimes
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
14
|
Bartsch U, Corbin LJ, Hellmich C, Taylor M, Easey KE, Durant C, Marston HM, Timpson NJ, Jones MW. Schizophrenia-associated variation at ZNF804A correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults. Sleep 2021; 44:zsab191. [PMID: 34329479 PMCID: PMC8664578 DOI: 10.1093/sleep/zsab191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
Collapse
Affiliation(s)
- Ullrich Bartsch
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- UK DRI Health Care & Technology at Imperial College London and the University of Surrey, Surrey Sleep Research Centre, University of Surrey, Clinical Research Building, Egerton Road, Guildford, Surrey, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte Hellmich
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Claire Durant
- Clinical Research and Imaging Centre (CRIC), University of Bristol, Bristol, UK
| | - Hugh M Marston
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- Böhringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Matveeva N, Titov B, Bazyleva E, Pevzner A, Favorova O. Towards Understanding the Genetic Nature of Vasovagal Syncope. Int J Mol Sci 2021; 22:10316. [PMID: 34638656 PMCID: PMC8508958 DOI: 10.3390/ijms221910316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Syncope, defined as a transient loss of consciousness caused by transient global cerebral hypoperfusion, affects 30-40% of humans during their lifetime. Vasovagal syncope (VVS) is the most common cause of syncope, the etiology of which is still unclear. This review summarizes data on the genetics of VVS, describing the inheritance pattern of the disorder, candidate gene association studies and genome-wide studies. According to this evidence, VVS is a complex disorder, which can be caused by the interplay between genetic factors, whose contribution varies from monogenic Mendelian inheritance to polygenic inherited predisposition, and external factors affecting the monogenic (resulting in incomplete penetrance) and polygenic syncope types.
Collapse
Affiliation(s)
- Natalia Matveeva
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Boris Titov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elizabeth Bazyleva
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
| | - Alexander Pevzner
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
| | - Olga Favorova
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
16
|
Ethnicity-dependent effects of Zinc finger 804A variant on schizophrenia: a systematic review and meta-analysis. Psychiatr Genet 2021; 31:21-28. [PMID: 33395218 DOI: 10.1097/ypg.0000000000000275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Previous studies and meta-analysis indicated that rs1344706 was associated with schizophrenia in European population, whereas the conclusions in other populations were disputed. To further explore whether the allele A of rs1344706 would increase the risk of schizophrenia in different populations and update the original meta-analysis, we conducted a systematic review and meta-analysis worldwide. METHODS A literature search was performed in PubMed, Embase, Cochrane Library, PsycINFO and Web of Science (up to 10 July 2019) according to the inclusion criteria. RESULTS A total of 27 articles were included. Our meta-analysis showed an association between rs1344706 and schizophrenia in total populations [P = 0.000; odds ratio (OR) = 1.105; 95% confidence interval (CI), 1.048-1.165], Europe population (P = 0.025; OR = 1.108; 95% CI, 1.013-1.222) and Asian population(P = 0.005; OR = 1.094; 95% CI, 1.027-1.164). CONCLUSIONS Our findings suggested that the risk of single nucleotide polymorphism rs1344706 A-allele may increase the risk of schizophrenia worldwide. Also, this ethnicity-dependent effects of ZNF804A variant on schizophrenia may be related to the opposite allele direction. But to elucidate the underlying biological mechanism, further studies with large participant populations are needed.
Collapse
|
17
|
Klockmeier K, Silva Ramos E, Raskó T, Martí Pastor A, Wanker EE. Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells. J Mol Biol 2021; 433:167184. [PMID: 34364876 DOI: 10.1016/j.jmb.2021.167184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Previously evidence was presented that the single-nucleotide polymorphism rs1344706 located in an intronic region of the ZNF804A gene is associated with reduced transcript levels in fetal brains. This genetic variation in the gene encoding the zinc-finger protein ZNF804A is associated with schizophrenia (SZ) and bipolar disorder. Currently, the molecular and cellular function of ZNF804A is unclear. Here, we generated a high-confidence protein-protein interaction (PPI) network for ZNF804A using a combination of yeast two-hybrid and bioluminescence-based PPI detection assays, directly linking 12 proteins to the disease-associated target protein. Among the top hits was the signal transducer and activator of transcription 2 (STAT2), an interferon-regulated transcription factor. Detailed mechanistic studies revealed that STAT2 binds to the unstructured N-terminus of ZNF804A. This interaction is mediated by multiple short amino acid motifs in ZNF804A but not by the conserved C2H2 zinc-finger domain, which is also located at the N-terminus. Interestingly, investigations in HEK293 cells demonstrated that ZNF804A and STAT2 both co-translocate from the cytoplasm into the nucleus upon interferon (IFN) treatment. Furthermore, a concentration-dependent effect of ZNF804A overproduction on STAT2-mediated gene expression was observed using a luciferase reporter, which is under the control of an IFN-stimulated response element (ISRE). Together these results indicate the formation of ZNF804A:STAT2 protein complex and its translocation from the cytoplasm into the nucleus upon IFN stimulation, suggesting that it may function as a signal transducer that activates IFN-mediated gene expression programs.
Collapse
Affiliation(s)
- Konrad Klockmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Eduardo Silva Ramos
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Mobile DNA, Berlin, Germany
| | - Adrián Martí Pastor
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany
| | - Erich E Wanker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), L aboratory for Neuroproteomics, Berlin, Germany.
| |
Collapse
|
18
|
Yaple ZA, Tolomeo S, Yu R. Mapping working memory-specific dysfunction using a transdiagnostic approach. NEUROIMAGE-CLINICAL 2021; 31:102747. [PMID: 34256292 PMCID: PMC8278205 DOI: 10.1016/j.nicl.2021.102747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023]
Abstract
Background Working memory (WM) is an executive ability that allows one to hold and manipulate information for a short period of time. Schizophrenia and mood disorders are severe psychiatric conditions with overlapping genetic and clinical symptoms. Whilst WM has been suggested as meeting the criteria for being an endophenotype for schizophrenia and mood disorders, it still unclear whether they share overlapping neural circuitry. Objective The n-back task has been widely used to measure WM capacity, such as maintenance, flexible updating, and interference control. Here we compiled studies that included psychiatric populations, i.e., schizophrenia, bipolar disorder and major depressive disorder. Methods We performed a coordinate-based meta-analysis that combined 34 BOLD-fMRI studies comparing activity associated with n-back working memory between psychiatric patients and healthy controls. We specifically focused our search using the n-back task to diminish study heterogeneity. Results All patient groups showed blunted activity in the striatum, anterior insula and frontal lobe. The same brain networks related to WM were compromised in schizophrenia, major depressive disorder and bipolar disorder. Conclusion Our findings support the suggestion of commonal functional abnormalities across schizophrenia and mood disorders related to WM.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
19
|
Dong F, Mao J, Chen M, Yoon J, Mao Y. Schizophrenia risk ZNF804A interacts with its associated proteins to modulate dendritic morphology and synaptic development. Mol Brain 2021; 14:12. [PMID: 33446247 PMCID: PMC7809827 DOI: 10.1186/s13041-021-00729-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/01/2021] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia (SZ) is a devastating brain disease that affects about 1% of world population. Among the top genetic associations, zinc finger protein 804A (ZNF804A) gene encodes a zinc finger protein, associated with SZ and biolar disorder (BD). Copy number variants (CNVs) of ZNF804A have been observed in patients with autism spectrum disorders (ASDs), anxiety disorder, and BD, suggesting that ZNF804A is a dosage sensitive gene for brain development. However, its molecular functions have not been fully determined. Our previous interactomic study revealed that ZNF804A interacts with multiple proteins to control protein translation and neural development. ZNF804A is localized in the cytoplasm and neurites in the human cortex and is expressed in various types of neurons, including pyramidal, dopaminergic, GABAergic, and Purkinje neurons in mouse brain. To further examine the effect of gene dosage of ZNF804A on neurite morphology, both knockdown and overexpression of ZNF804A in primary neuronal cells significantly attenuate dendritic complex and spine formation. To determine the factors mediating these phenotypes, interestingly, three binding proteins of ZNF804A, galectin 1 (LGALS1), fasciculation and elongation protein zeta 1 (FEZ1) and ribosomal protein SA (RPSA), show different effects on reversing the deficits. LGALS1 and FEZ1 stimulate neurite outgrowth at basal level but RPSA shows no effect. Intriguingly, LGALS1 but not FEZ1, reverses the neurite outgrowth deficits induced by ZNF804A knockdown. However, FEZ1 and RPSA but not LGALS1, can ameliorate ZNF804A overexpression-mediated dendritic abnormalities. Thus, our results uncover a critical post-mitotic role of ZNF804A in neurite and synaptic development relevant to neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Fengping Dong
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joseph Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Xie X, Li L, Wu H, Hou F, Chen Y, Xue Q, Zhou Y, Zhang J, Gong J, Song R. Comprehensive Integrative Analyses Identify TIGD5 rs75547282 as a Risk Variant for Autism Spectrum Disorder. Autism Res 2021; 14:631-644. [PMID: 33393181 DOI: 10.1002/aur.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Although recent genome-wide association studies have identified risk loci that strongly associates with autism spectrum disorder (ASD), how to pinpoint the causal genes remains a challenge. We aimed to pinpoint the potential causal genes and explore the possible susceptibility and mechanism. A convergent functional genomics (CFG) method was used to prioritize the candidate genes by combining lines of evidence, including Sherlock analysis, spatio-temporal expression patterns, expression analysis, protein-protein interactions, co-expression and association with brain structure. A higher score in the CFG approach suggested that more evidence supported this gene as an ASD risk gene. We screened genes with higher CFG scores for candidate functional single nucleotide polymorphisms (SNPs). A genotyping experiment (602 ASD children and 604 healthy sex-matched children) and the dual-luciferase reporter gene assay were followed to validate the effects of SNPs. We identified three genes (MAPT, ZNF285, and TIGD5) as candidate causal genes using the CFG approach. The genotyping experiment showed that TIGD5 rs75547282 was associated with an increased risk of ASD under the dominant model (OR = 1.37, 95% CI = 1.09-1.72, P = 0.006) though the statistical power was limited (5.2%). The T allele of rs75547282 activated the expression of TIGD5 compared with the C allele in the dual-luciferase reporter assay. Our study indicates that such comprehensive integrative analyses may be an effective way to explore promising ASD susceptibility variants and needs to be further investigated in future research. Genotyping experiments should, however, be based on a larger population sample to increase statistical power. LAY SUMMARY: We set out to pinpoint the potential causal genes of ASD and explore the possible susceptibility and mechanism by combining lines of evidence from different analyses. Our results show that TIGD5 rs75547282 is associated with the risk of ASD in the Han Chinese population. In addition, a similar framework to seek promising ASD risk variants could be further investigated in future research Autism Res 2021, 14: 631-644. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors. Mol Psychiatry 2021; 26:2514-2532. [PMID: 33303946 PMCID: PMC8440220 DOI: 10.1038/s41380-020-00972-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies uncovered the association of ZNF804A (Zinc-finger protein 804A) with schizophrenia (SZ). In vitro data have indicated that ZNF804A might exert its biological roles by regulating spine and neurite morphogenesis. However, no in vivo data are available for the role of ZNF804A in psychiatric disorders in general, SZ in particular. We generated ZFP804A mutant mice, and they showed deficits in contextual fear and spatial memory. We also observed the sensorimotor gating impairment, as revealed by the prepulse inhibition test, but only in female ZFP804A mutant mice from the age of 6 months. Notably, the PPI difference between the female mutant and control mice was no longer existed with the administration of Clozapine or after the ovariectomy. Hippocampal long-term potentiation was normal in both genders of the mutant mice. Long-term depression was absent in male mutants, but facilitated in the female mutants. Protein levels of hippocampal serotonin-6 receptor and GABAB1 receptor were increased, while those of cortical dopamine 2 receptor were decreased in the female mutants with no obvious changes in the male mutants. Moreover, the spine density was reduced in the cerebral cortex and hippocampus of the mutant mice. Knockdown of ZFP804A impaired the neurite morphogenesis of cortical and hippocampal neurons, while its overexpression enhanced neurite morphogenesis only in the cortical neurons in vitro. Our data collectively support the idea that ZFP804A/ZNF804A plays important roles in the cognitive functions and sensorimotor gating, and its dysfunction may contribute to SZ, particularly in the female patients.
Collapse
|
22
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Liu S, Li A, Liu Y, Li J, Wang M, Sun Y, Qin W, Yu C, Jiang T, Liu B. MIR137 polygenic risk is associated with schizophrenia and affects functional connectivity of the dorsolateral prefrontal cortex. Psychol Med 2020; 50:1510-1518. [PMID: 31239006 DOI: 10.1017/s0033291719001442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have consistently revealed that a variant of microRNA 137 (MIR137) shows a quite significant association with schizophrenia. Identifying the network of genes regulated by MIR137 could provide insights into the biological processes underlying schizophrenia. In addition, DLPFC functional connectivity, a robust correlate of MIR137, may provide plausible endophenotypes. However, the regulatory role of the MIR137 gene network in the disrupted functional connectivity remains unclear. Here, we tested the effects of the MIR137 regulated genes on the risk for schizophrenia and DLPFC functional connectivity. METHODS To evaluate the additive effects of the MIR137 regulated genes (N = 1274), we calculated a MIR137 polygenic risk score (PRS) for schizophrenia and tested its association with the risk for schizophrenia in the genomic data of a Han Chinese population that included schizophrenia patients (N = 589) and normal controls (N = 575). We then investigated the association between MIR137 PRS and DLPFC functional connectivity in two independent young healthy cohorts (N = 356 and N = 314). RESULTS We found that the MIR137 PRS successfully captured the differences in genetic structure between the patients and controls, but the single gene MIR137 did not. We then consistently found that a higher MIR137 PRS was correlated with lower functional connectivities between the DLPFC and both the superior parietal cortex and the inferior temporal cortex in two independent cohorts. CONCLUSION The findings suggested that these two functional connectivities of the DLPFC could be important endophenotypes linking the MIR137-regulated genetic structure to schizophrenia.
Collapse
Affiliation(s)
- Shu Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ang Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yong Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
| | - Jin Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuqing Sun
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu610054, China
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bing Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
24
|
Hyperfunctioning of the right posterior superior temporal sulcus in response to neutral facial expressions presents an endophenotype of schizophrenia. Neuropsychopharmacology 2020; 45:1346-1352. [PMID: 32059228 PMCID: PMC7297989 DOI: 10.1038/s41386-020-0637-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 01/13/2023]
Abstract
Deficits in social cognition have been proposed as a marker of schizophrenia. Growing evidence suggests especially hyperfunctioning of the right posterior superior temporal sulcus (pSTS) in response to neutral social stimuli reflecting the neural correlates of social-cognitive impairments in schizophrenia. We characterized healthy participants according to schizotypy (n = 74) and the single-nucleotide polymorphism rs1344706 in ZNF804A (n = 73), as they represent risk variants for schizophrenia from the perspectives of personality traits and genetics, respectively. A social-cognitive fMRI task was applied to investigate the association of right pSTS hyperfunctioning in response to neutral face stimuli with schizotypy and rs1344706. Higher right pSTS activation in response to neutral facial expressions was found in individuals with increased positive (trend) and disorganization symptoms, as well as in carriers of the risk allele of rs1344706. In addition, a positive association between right-left pSTS connectivity and disorganization symptoms during neutral face processing was revealed. Although these findings warrant replication, we suggest that right pSTS hyperfunctioning in response to neutral facial expressions presents an endophenotype of schizophrenia. We assume that right pSTS hyperfunctioning is a vulnerability to perceive neutral social stimuli as emotionally or intentionally salient, probably contributing to the emergence of symptoms of schizophrenia.
Collapse
|
25
|
Krug A, Wöhr M, Seffer D, Rippberger H, Sungur AÖ, Dietsche B, Stein F, Sivalingam S, Forstner AJ, Witt SH, Dukal H, Streit F, Maaser A, Heilmann-Heimbach S, Andlauer TFM, Herms S, Hoffmann P, Rietschel M, Nöthen MM, Lackinger M, Schratt G, Koch M, Schwarting RKW, Kircher T. Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study. Mol Autism 2020; 11:54. [PMID: 32576230 PMCID: PMC7310295 DOI: 10.1186/s13229-020-00345-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany.
- Center for Mind, Brain and Behavior, Marburg, Germany.
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Dominik Seffer
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Henrike Rippberger
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anna Maaser
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Till F M Andlauer
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, 28334, Bremen, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
26
|
Wu S, Wang P, Tao R, Yang P, Yu X, Li Y, Shao Q, Nie F, Ha J, Zhang R, Tian Y, Ma J. Schizophrenia‑associated microRNA‑148b‑3p regulates COMT and PRSS16 expression by targeting the ZNF804A gene in human neuroblastoma cells. Mol Med Rep 2020; 22:1429-1439. [PMID: 32626976 PMCID: PMC7339789 DOI: 10.3892/mmr.2020.11230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/31/2020] [Indexed: 01/17/2023] Open
Abstract
Zinc finger protein 804A (ZNF804A) has been identified by genome-wide association studies as a robust risk gene in schizophrenia, but how ZNF804A contributes to schizophrenia and its upstream regulation remains unknown. Previous studies have indicated that microRNAs (miRs) are key factors that regulate the expression levels of their target genes. The present study revealed significantly increased expression of miR-148b-3p in the peripheral blood of patients with first-onset schizophrenia compared with healthy controls, and bioinformatics analysis predicted that the ZNF804A gene is a target of miR-148b-3p. Therefore, the present study investigated the possible upstream regulation of ZNF804A by miR-148b-3p in the human neuroblastoma SH-SY5Y cell line, and assessed the implications for schizophrenia. The results revealed significantly reversed expression levels of miR-148b-3p (P=0.0051) and ZNF804A (P=0.0218) in the peripheral blood of patients with first-onset schizophrenia compared with healthy individuals. Furthermore, it was demonstrated that miR-148b-3p directly targeted ZNF804A via binding to conserved target sites in the 3′-untranslated region of ZNF804A mRNA, where it inhibited the endogenous expression of ZNF804A at both the mRNA (P=0.048) and protein levels (P=0.013) in SH-SY5Y cells. Furthermore, miR-148b-3p was revealed to regulate the expression levels of catechol-O-methyltransferase (COMT) and serine protease 16 (PRSS16) by targeting ZNF804A in SH-SY5Y cells. Collectively, the present results indicated that there was a direct upstream regulation of the schizophrenia risk gene ZNF804A by miR-148b-3p, which contributed to the regulation of the downstream genes COMT and PRSS16. Thus, the miR-148b-3p/ZNF804A/COMT/PRSS16 pathway may play an important role in the pathophysiology of schizophrenia, and may serve as a potential target in drug discovery and gene therapy for this disorder.
Collapse
Affiliation(s)
- Shanshan Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Pengjie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pengbo Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaorui Yu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiuya Shao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fayi Nie
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Ha
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Ye Tian
- Medical Research Center, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Jie Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
27
|
Calabrò M, Mandelli L, Crisafulli C, Nicola MD, Colombo R, Janiri L, Lee SJ, Jun TY, Wang SM, Masand PS, Patkar AA, Han C, Pae CU, Serretti A. ZNF804A Gene Variants Have a Cross-diagnostic Influence on Psychosis and Treatment Improvement in Mood Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:231-240. [PMID: 32329304 PMCID: PMC7242106 DOI: 10.9758/cpn.2020.18.2.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Objective Genetic variations in the gene encoding zinc finger protein 804A gene (ZNF804A) have been associated with major depression and bipolar disorder. In this work we focused on the potential influence of ZNF804A variations on the risk of developing specific sub-phenotypes as well as the individual response to available treatments. Methods We used two samples of different ethnic origin: a Korean sample, composed by 242 patients diagnosed with major depression and 132 patients diagnosed with bipolar disorder and 326 healthy controls; an Italian sample composed 151 major depression subjects, 189 bipolar disorder subjects and 38 outpatients diagnosed for a primary anxiety disorder. Results Our analyses reported an association of rs1344706 with psychotic phenotype in the cross-diagnostic pooled sample (geno p = 4.15 × 10−4, allelic p = 1.06 × 10−4). In the cross-diagnosis Italian sample but not in the Korean one, rs7597593 was involved with depressive symptoms improvement after treatment (geno p = 0.025, allelic p = 0.007). Conclusion The present study evidenced the role of ZNF804A alterations in symptoms improvement after treatment. Both manic and depressive symptoms seem to be modulated by ZNF804A, though the latter was observed in the bipolar pooled sample only. The role of this factor is likely related to synaptic development and maintenance; however, further analyses will be needed to better understand the molecular mechanics involved with ZNF804A.
Collapse
Affiliation(s)
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Di Nicola
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Colombo
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Janiri
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Youn Jun
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.,Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Bakshi K, Kemether EM. Two Thalamic Regions Screened Using Laser Capture Microdissection with Whole Human Genome Microarray in Schizophrenia Postmortem Samples. SCHIZOPHRENIA RESEARCH AND TREATMENT 2020; 2020:5176834. [PMID: 32566292 PMCID: PMC7285254 DOI: 10.1155/2020/5176834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
We used whole human genome microarray screening of highly enriched neuronal populations from two thalamic regions in postmortem samples from subjects with schizophrenia and controls to identify brain region-specific gene expression changes and possible transcriptional targets. The thalamic anterior nucleus is reciprocally connected to anterior cingulate, a schizophrenia-affected cortical region, and is also thought to be schizophrenia affected; the other thalamic region is not. Using two regions in the same subject to identify disease-relevant gene expression differences was novel and reduced intersubject heterogeneity of findings. We found gene expression differences related to miRNA-137 and other SZ-associated microRNAs, ELAVL1, BDNF, DISC-1, MECP2 and YWHAG associated findings, synapses, and receptors. Manual curation of our data may support transcription repression.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NYC, NY 10029, USA
| | - Eileen M. Kemether
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NYC, NY 10029, USA
| |
Collapse
|
29
|
Allelic variants in the zinc transporter-3 gene, SLC30A3, a candidate gene identified from gene expression studies, show gender-specific association with schizophrenia. Eur Psychiatry 2020; 29:172-8. [DOI: 10.1016/j.eurpsy.2013.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/30/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023] Open
Abstract
AbstractPrevious microarray analysis of gene expression in frontal cortex showed differential expression of genes associated with synaptic function in schizophrenia compared to matched-controls in two independent cohorts. One of these genes validated in both cohorts, SLC30A3, which encodes the Zinc Transporter 3 (ZNT3), is localised to synaptic vesicles in glutamate synapses and known to be involved in cognitive function. In view of the robust depletion of SLC30A3 mRNA in two independent studies and the importance of this gene in cognitive function, we investigated whether single nucleotide polymorphism (SNP) associations with schizophrenia could be detected in a UK case controlled schizophrenia cohort. Four SNPs were selected across this gene and genotyped in a cohort of cases and controls from East UK. We found significant associations with schizophrenia at the allelic (ORs: 1.51 to 1.57), genotype (ORs: 1.46 to 1.53) and haplotype level (P = 2.15 × 10−4). These associations proved to be gender-specific with significant effects of allele (ORs: 1.74 to 2.11), genotype (ORs: 1.78 to 2.14) and haplotype (P = 3.51 × 10−5) observed in female schizophrenia cases but not males, when split by gender. In conclusion, SNPs in SLC30A3 showed a gender-specific association with schizophrenia in this East UK cohort, which merits further investigation in other population samples.
Collapse
|
30
|
Proof-of-concept study of a multi-gene risk score in adolescent bipolar disorder. J Affect Disord 2020; 262:211-222. [PMID: 31727397 DOI: 10.1016/j.jad.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Few studies have examined multiple genetic variants concurrently for the purpose of classifying bipolar disorder (BD); the literature among youth is particularly sparse. We selected 35 genetic variants, previously implicated in BD or associated characteristics, from which to identify the most robustly predictive group of genes. METHODS 215 Caucasian adolescents (114 BD and 101 healthy controls (HC), ages 13-20 years) were included. Psychiatric diagnoses were determined based on semi-structured diagnostic interviews. Genomic DNA was extracted from saliva for genotyping. Two models were used to calculate a multi-gene risk score (MGRS). Model 1 used forward and backward regressions, and model 2 used a PLINK generated method. RESULTS In model 1, GPX3 rs3792797 was significant in the forward regression, DRD4 exonIII was significant in the backward regression; IL1β rs16944 and DISC1 rs821577 were significant in both the forward and backward regressions. These variants are involved in dopamine neurotransmission; inflammation and oxidative stress; and neuronal development. Model 1 MGRS did not significantly discriminate between BD and HC. In model 2, ZNF804A rs1344706 was significantly associated with BD; however, this association did not predict diagnosis when entered into the weighted model. LIMITATIONS This study was limited by the number of genetic variants examined and the modest sample size. CONCLUSIONS Whereas regression approaches identified four genetic variants that significantly discriminated between BD and HC, those same variants no longer discriminated between BD and HC when computed as a MGRS. Future larger studies are needed evaluating intermediate phenotypes such as neuroimaging and blood-based biomarkers.
Collapse
|
31
|
Chapman RM, Tinsley CL, Hill MJ, Forrest MP, Tansey KE, Pardiñas AF, Rees E, Doyle AM, Wilkinson LS, Owen MJ, O’Donovan MC, Blake DJ. Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophr Bull 2019; 45:1267-1278. [PMID: 30597088 PMCID: PMC6811834 DOI: 10.1093/schbul/sby183] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have linked common variation in ZNF804A with an increased risk of schizophrenia. However, little is known about the biology of ZNF804A and its role in schizophrenia. Here, we investigate the function of ZNF804A using a variety of complementary molecular techniques. We show that ZNF804A is a nuclear protein that interacts with neuronal RNA splicing factors and RNA-binding proteins including RBFOX1, which is also associated with schizophrenia, CELF3/4, components of the ubiquitin-proteasome system and the ZNF804A paralog, GPATCH8. GPATCH8 also interacts with splicing factors and is localized to nuclear speckles indicative of a role in pre-messenger RNA (mRNA) processing. Sequence analysis showed that GPATCH8 contains ultraconserved, alternatively spliced poison exons that are also regulated by RBFOX proteins. ZNF804A knockdown in SH-SY5Y cells resulted in robust changes in gene expression and pre-mRNA splicing converging on pathways associated with nervous system development, synaptic contact, and cell adhesion. We observed enrichment (P = 1.66 × 10-9) for differentially spliced genes in ZNF804A-depleted cells among genes that contain RBFOX-dependent alternatively spliced exons. Differentially spliced genes in ZNF804A-depleted cells were also enriched for genes harboring de novo loss of function mutations in autism spectrum disorder (P = 6.25 × 10-7, enrichment 2.16) and common variant alleles associated with schizophrenia (P = .014), bipolar disorder and schizophrenia (P = .003), and autism spectrum disorder (P = .005). These data suggest that ZNF804A and its paralogs may interact with neuronal-splicing factors and RNA-binding proteins to regulate the expression of a subset of synaptic and neurodevelopmental genes.
Collapse
Affiliation(s)
- Ria M Chapman
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Caroline L Tinsley
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew J Hill
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Marc P Forrest
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Katherine E Tansey
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - A Michelle Doyle
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O’Donovan
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
Van Voorhis AC, Kent JS, Kang SS, Goghari VM, MacDonald AW, Sponheim SR. Abnormal neural functions associated with motor inhibition deficits in schizophrenia and bipolar disorder. Hum Brain Mapp 2019; 40:5397-5411. [PMID: 31471938 PMCID: PMC6864893 DOI: 10.1002/hbm.24780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023] Open
Abstract
Deficits in response inhibition have been observed in schizophrenia and bipolar disorder; however, the neural origins of the abnormalities and their relevance to genetic liability for psychosis are unknown. We used a stop‐signal task to examine motor inhibition and associated neural processes in schizophrenia patients (n = 57), bipolar disorder patients (n = 21), first‐degree biological relatives of patients with schizophrenia (n = 34), and healthy controls (n = 56). Schizophrenia patients demonstrated motor control deficits reflected in longer stop‐signal reaction times and elongated reaction times. With the possibility of needing to inhibit a button press, both schizophrenia and bipolar disorder patients showed diminished reductions of the P300 brain response and only the healthy controls demonstrated adjustments in response execution time, as measured by response‐locked lateralized readiness potentials. Schizotypal traits in the biological relatives were associated with less P300 modulation consistent with the motor‐related anomalies being associated with subtle schizophrenia‐spectrum symptomatology in family members. The two patient groups had elongated response selection processes as manifest in the delayed onset of the stimulus‐locked lateralized readiness potential. The bipolar disorder group was unique in showing significantly diminished neural responses to the stop‐signal to inhibit a response. Antipsychotic medication dosage was related to worse motor inhibition, thus motor inhibition deficits in schizophrenia may be partially explained by the effect of pharmacological agents. Failed modulation of brain processes in relation to response inhibition probability and the lengthening of motor response selection appear to be transdiagnostic abnormalities spanning schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
| | - Jerillyn S Kent
- Department of Psychiatry, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Seung Suk Kang
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, Missouri
| | - Vina M Goghari
- Department of Psychology, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Angus W MacDonald
- Department of Psychiatry, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, Minnesota.,Department of Psychiatry, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
33
|
Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142870] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A computerized detection system for the diagnosis of Schizophrenia (SZ) using a convolutional neural system is described in this study. Schizophrenia is an anomaly in the brain characterized by behavioral symptoms such as hallucinations and disorganized speech. Electroencephalograms (EEG) indicate brain disorders and are prominently used to study brain diseases. We collected EEG signals from 14 healthy subjects and 14 SZ patients and developed an eleven-layered convolutional neural network (CNN) model to analyze the signals. Conventional machine learning techniques are often laborious and subject to intra-observer variability. Deep learning algorithms that have the ability to automatically extract significant features and classify them are thus employed in this study. Features are extracted automatically at the convolution stage, with the most significant features extracted at the max-pooling stage, and the fully connected layer is utilized to classify the signals. The proposed model generated classification accuracies of 98.07% and 81.26% for non-subject based testing and subject based testing, respectively. The developed model can likely aid clinicians as a diagnostic tool to detect early stages of SZ.
Collapse
|
34
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
35
|
Lezheiko TV, Gabaeva MV, Kolesina NY, Golimbet VE. Effect of the ZNF804A Gene and Obstetrical Complications on Clinical Characteristics of Schizophrenia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Yüksel D, Zaremba D, Grotegerd D, Dohm K, Meinert S, Förster K, Redlich R, Opel N, Repple J, Hahn T, Jansen A, Andlauer TFM, Forstner AJ, Heilmann-Heimbach S, Streit F, Witt SH, Rietschel M, Müller-Myhsok B, Nöthen MM, Dannlowski U, Krug A, Kircher T, Nenadić I. Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophr Res 2019; 208:67-75. [PMID: 31076262 DOI: 10.1016/j.schres.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 12/30/2022]
Abstract
Schizotypy is a multidimensional risk phenotype distributed in the general population, constituting of subclinical, psychotic-like symptoms. It is associated with psychosis proneness, and several risk genes for psychosis are associated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is associated with attentional deficits in healthy subjects. In this study, we tested the hypothesis that established genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737 are associated with psychometric schizotypy and that schizotypy mediates their effect on attention or vice versa. In 615 healthy subjects from the FOR2107 cohort study, we analysed the genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737, psychometric schizotypy (schizotypal personality questionnaire-brief SPQB), and a neuropsychological measure of sustained and selective attention (d2 test). ZNF804A rs1344706 C (non-risk) alleles were significantly associated with higher SPQ-B Cognitive-Perceptual subscores in women and with attention deficits in both sexes. This schizotypy dimension also mediated the effect of ZNF804A on attention in women, but not in men. CACNA1C rs1006737-A showed a significant sex-modulated negative association with Interpersonal schizotypy only in men, and no effect on attention. Our multivariate model demonstrates differential genetic contributions of two psychosis risk genes to dimensions of schizotypy and, partly, to attention. This supports a model of shared genetic influence between schizotypy and cognitive functions impaired in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany.
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; SRI International, Center for Health Sciences, Bioscience Division, 333 Ravenswood Avenue, 94025 Menlo Park, CA, USA
| | - Dario Zaremba
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Till F M Andlauer
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany; Institute of Human Genetics, Philipps-Universität Marburg, Baldingerstraße, 35033 Marburg, Germany; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstr. 40, 4056 Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Fabian Streit
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Bertram Müller-Myhsok
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany; Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
37
|
Wang Z, Zhang T, Liu J, Wang H, Lu T, Jia M, Zhang D, Wang L, Li J. Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry 2019; 19:159. [PMID: 31122238 PMCID: PMC6533675 DOI: 10.1186/s12888-019-2144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism is a complex neurodevelopmental disorder with high heritability. Zinc finger protein 804A (ZNF804A) was suggested to play important roles in neurodevelopment. Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia and might influence social interaction. Only one study explored the significance of ZNF804A polymorphisms in autism, which discovered that rs7603001 was nominally associated with autism. Moreover, no previous study investigated the association between ZNF804A and autism in a Han Chinese population. Here, we investigated whether these two SNPs (rs1344706 and rs7603001) in ZNF804A contribute to the risk of autism in a Han Chinese population. METHODS We performed a family-based association study in 640 Han Chinese autism trios. Sanger sequencing was used for sample genotyping. Then, single marker association analyses were conducted using the family-based association test (FBAT) program. RESULTS No significant association was found between the two SNPs (rs1344706 and rs7603001) in ZNF804A and autism (P > 0.05). CONCLUSIONS Our findings suggested that rs1344706 and rs7603001 in ZNF804A might not be associated with autism in a Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tian Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jing Liu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Han Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tianlan Lu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Meixiang Jia
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Dai Zhang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Lifang Wang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Jun Li
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
38
|
Cui L, Wang F, Chang M, Yin Z, Fan G, Song Y, Wei Y, Xu Y, Zhang Y, Tang Y, Gong X, Xu K. Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms. Neurosci Bull 2019; 35:735-742. [PMID: 30852803 DOI: 10.1007/s12264-019-00357-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yixiao Xu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
39
|
The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:174-180. [PMID: 30118824 DOI: 10.1016/j.pnpbp.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
The ZNF804A gene and cannabis use are risk factors for psychosis and both have also been associated with schizotypal traits. This study aimed to investigate: i) the association of lifetime cannabis use (and its dose effect) with schizotypal personality traits, and ii) whether the genetic variability at ZNF804A gene modulates that association. Our sample consisted of 385 Spanish non-clinical subjects (43.1% males, mean age = 21.11(2.19)). Schizotypy was evaluated using the three factors of the Schizotypal Personality Questionnaire-Brief (SPQ-B): Cognitive-Perceptual (SPQ-CP), Interpersonal (SPQ-I) and Disorganized (SPQ-D). Subjects were classified according to their frequency of cannabis consumption, and dichotomized as users or non-users. The effects of a genetic variant of ZNF804A (rs1344706) and cannabis use, as well as their interaction, on each of the three SPQ-B factors were assessed using linear models and permutation tests. Sex, SCL anxiety scores and use of other drugs were included as covariates. Our analysis showed a significant relationship between ZNF804A and SPQ-I: AA genotype was associated with higher scores (β = 0.885 pFDR = .018). An interaction between the AA genotype and lifetime cannabis use was found in SPQ-CP (β = 1.297 pFDR = 0.018). This interaction showed a dose-effect pattern among AA subjects: schizotypy scores increased with increasing frequency of cannabis use (sporadic users: β = 0.746 pFDR = 0.208; monthly users: β = 1.688 pFDR = 0.091; intense users: β = 1.623 pFDR = 0.038). These results add evidence on that the ZNF804A gene is associated with schizotypy and suggest that the interaction between cannabis use and ZNF804A genotype could modulate psychosis proneness.
Collapse
|
40
|
Zhang L, Qin Y, Gong X, Peng R, Cai C, Zheng Y, Du Y, Wang H. A promoter variant in ZNF804A decreasing its expression increases the risk of autism spectrum disorder in the Han Chinese population. Transl Psychiatry 2019; 9:31. [PMID: 30670685 PMCID: PMC6342935 DOI: 10.1038/s41398-019-0369-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Synaptic pathology may be one of the cellular substrates underlying autism spectrum disorder (ASD). ZNF804A is a transcription factor that can affect or regulate the expression of many candidate genes involved in ASD. It also localizes at synapses and regulates neuronal and synaptic morphology. So far, few reports have addressed possible associations between ZNF804A polymorphisms and ASD. This study aimed to investigate whether ZNF804A genetic variants contribute to ASD susceptibility and its possible pathological role in the disorder. We analyzed the relationship of two polymorphisms (rs10497655 and rs34714481) in ZNF804A promoter region with ASD in 854 cases versus 926 controls. The functional analyses of rs10497655 were then performed using real-time quantitative polymerase chain reaction, electrophoretic mobility shift assays, chromatin immunoprecipitation and dual-luciferase assays. The variant rs10497655 was significantly associated with ASD (P = 0.007851), which had a significant effect on ZNF804A expression, with the T risk allele homozygotes related with reduced ZNF804A expression in human fetal brains. HSF2 acted as a suppressor by down-regulating ZNF804A expression and had a stronger binding affinity for the T allele of rs10497655 than for the C allele. This was the first experiment to elucidate the process in which a disease-associated SNP affects the level of ZNF804A expression by binding with the upstream regulation factor HSF2. This result indicates that the rs10497655 allelic expression difference of ZNF804A during the critical period of brain development may have an effect on postnatal phenotypes of ASD. It reveals new roles of ZNF804A polymorphisms in the pathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yue Qin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohong Gong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Rui Peng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Yasong Du
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032, China.
- Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
41
|
Mehta D, Czamara D. GWAS of Behavioral Traits. Curr Top Behav Neurosci 2019; 42:1-34. [PMID: 31407241 DOI: 10.1007/7854_2019_105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, genome-wide association studies (GWAS) have evolved into a powerful tool to investigate genetic risk factors for human diseases via a hypothesis-free scan of the genome. The success of GWAS for psychiatric disorders and behavioral traits have been somewhat mixed, partly owing to the complexity and heterogeneity of these traits. Significant progress has been made in the last few years in the development and implementation of complex statistical methods and algorithms incorporating GWAS. Such advanced statistical methods applied to GWAS hits in combination with incorporation of different layers of genomics data have catapulted the search for novel genes for behavioral traits and improved our understanding of the complex polygenic architecture of these traits.This chapter will give a brief overview on GWAS and statistical methods currently used in GWAS. The chapter will focus on reviewing the current literature and highlight some of the most important GWAS on psychiatric and other behavioral traits and will conclude with a discussion on future directions.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Darina Czamara
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
42
|
Jiang W, King TZ, Turner JA. Imaging Genetics Towards a Refined Diagnosis of Schizophrenia. Front Psychiatry 2019; 10:494. [PMID: 31354550 PMCID: PMC6639711 DOI: 10.3389/fpsyt.2019.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 01/31/2023] Open
Abstract
Current diagnoses of schizophrenia and related psychiatric disorders are classified by phenomenological principles and clinical descriptions while ruling out other symptoms and conditions. Specific biomarkers are needed to assist the current diagnostic system. However, complicated gene and environment interactions induce great disease heterogeneity. This unclear etiology and heterogeneity raise difficulties in distinguishing schizophrenia-related effects. Simultaneously, the overlap in symptoms, genetic variations, and brain alterations in schizophrenia and related psychiatric disorders raises similar difficulties in determining disease-specific effects. Imaging genetics is a unique methodology to assess the impact of genetic factors on both brain structure and function. More importantly, imaging genetics builds a bridge to understand the behavioral and clinical implications of genetics and neuroimaging. By characterizing and quantifying the brain measures affected in psychiatric disorders, imaging genetics is contributing to identifying potential biomarkers for schizophrenia and related disorders. To date, candidate gene analysis, genome-wide association studies, polygenetic risk score analysis, and large-scale collaborative studies have made contributions to the understanding of schizophrenia with the potential to serve as biomarkers. Despite limitations, imaging genetics remains promising as more aggregative, clustering methods and imaging genetics-compatible clinical assessments are employed in future studies. We review imaging genetics' contribution to our understanding of the heterogeneity within schizophrenia and the commonalities across schizophrenia and other diagnostic borders, and we will discuss whether imaging genetics is ready to form its own diagnostic system.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jessica A Turner
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Mind Research Network, Albuquerque, NM, United States
| |
Collapse
|
43
|
Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery. Transl Psychiatry 2018; 8:278. [PMID: 30546022 PMCID: PMC6293320 DOI: 10.1038/s41398-018-0325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/13/2018] [Indexed: 12/02/2022] Open
Abstract
The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 μM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = -10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10-141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10-6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies.
Collapse
|
44
|
Pisanu C, Congiu D, Costa M, Chillotti C, Ardau R, Severino G, Angius A, Heilbronner U, Hou L, McMahon FJ, Schulze TG, Del Zompo M, Squassina A. Convergent analysis of genome-wide genotyping and transcriptomic data suggests association of zinc finger genes with lithium response in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:658-664. [PMID: 30318722 PMCID: PMC6230310 DOI: 10.1002/ajmg.b.32663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/07/2018] [Accepted: 06/13/2018] [Indexed: 11/08/2022]
Abstract
Lithium is the mainstay treatment in bipolar disorder (BD) for its effectiveness in the acute phases of illness and in prevention of recurrences. Lithium's mechanism of action is complex, and while it modulates the function of hundreds of molecular targets, most of these effects could be unspecific and not relevant for its clinical efficacy. In this study, we applied an integrated analytical approach using genome-wide expression and genotyping data from BD patients to identify lithium-responsive genes that may serve as biomarkers of its efficacy. To this purpose, we tested the effect of treatment with lithium chloride 1 mM on the transcriptome of lymphoblasts from 10 lithium responders (LR) and 10 nonresponders (NR) patients and identified genes significantly influenced by the treatment exclusively in LR. These findings were integrated with gene-based analysis on genome-wide genotyping data from an extended sample of 205 BD patients characterized for lithium response. The expression of 29 genes was significantly changed by lithium exclusively in LR. Gene-based analysis showed that two of these genes, zinc finger protein 429 (ZNF429) and zinc finger protein 493 (ZNF493), were also significantly associated with lithium response. Validation with quantitative real-time polymerase chain reaction confirmed the lithium-induced downregulation of ZNF493 in LR (p = .036). Using convergent analyses of genome-wide expression and genotyping data, we identified ZNF493 as a potential lithium-responsive target that may be involved in modulating lithium efficacy in BD. To our knowledge, this is the first evidence supporting the involvement of zinc finger proteins in lithium response.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy;,Authors for correspondence: Alessio Squassina. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Claudia Pisanu. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Maria Del Zompo. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4311
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Marta Costa
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy;,The Francis Crick Institute, London, UK
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, United States
| | - Francis J. McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, United States
| | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Germany;,Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, United States
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy;,Unit of Clinical Pharmacology of the University Hospital of Cagliari, Italy;,Authors for correspondence: Alessio Squassina. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Claudia Pisanu. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Maria Del Zompo. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4311
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy;,Authors for correspondence: Alessio Squassina. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Claudia Pisanu. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4323, Maria Del Zompo. Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, sp Monserrato-Sestu, Km 0.700, 09042, Monserrato, Cagliari, Italy;, ; phone: +39 070 675 4311
| |
Collapse
|
45
|
Zhou Y, Dong F, Mao Y. Control of CNS functions by RNA-binding proteins in neurological diseases. ACTA ACUST UNITED AC 2018; 4:301-313. [PMID: 30410853 DOI: 10.1007/s40495-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarizes recent studies on the molecular mechanisms of RNA binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia. Recent Findings RBPs are critical players in gene expression that regulate every step of posttranscriptional modifications. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provides unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases. Summary RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
46
|
Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry 2018; 23:952-962. [PMID: 28924186 PMCID: PMC5868632 DOI: 10.1038/mp.2017.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
Recent genome-wide association studies identified over 100 genetic loci that significantly associate with schizophrenia (SZ). A top candidate gene, ZNF804A, was robustly replicated in different populations. However, its neural functions are largely unknown. Here we show in mouse that ZFP804A, the homolog of ZNF804A, is required for normal progenitor proliferation and neuronal migration. Using a yeast two-hybrid genome-wide screen, we identified novel interacting proteins of ZNF804A. Rather than transcriptional factors, genes involved in mRNA translation are highly represented in our interactome result. ZNF804A co-fractionates with translational machinery and modulates the translational efficiency as well as the mTOR pathway. The ribosomal protein RPSA interacts with ZNF804A and rescues the migration and translational defects caused by ZNF804A knockdown. RNA immunoprecipitation-RNAseq (RIP-Seq) identified transcripts bound to ZFP804A. Consistently, ZFP804A associates with many short transcripts involved in translational and mitochondrial regulation. Moreover, among the transcripts associated with ZFP804A, a SZ risk gene, neurogranin (NRGN), is one of ZFP804A targets. Interestingly, downregulation of ZFP804A decreases NRGN expression and overexpression of NRGN can ameliorate ZFP804A-mediated migration defect. To verify the downstream targets of ZNF804A, a Duolink in situ interaction assay confirmed genes from our RIP-Seq data as the ZNF804A targets. Thus, our work uncovered a novel mechanistic link of a SZ risk gene to neurodevelopment and translational control. The interactome-driven approach here is an effective way for translating genome-wide association findings into novel biological insights of human diseases.
Collapse
|
47
|
Guo X, Zhang Y, Du J, Yang H, Ma Y, Li J, Yan M, Jin T, Liu X. Association analysis of ANK3 gene variants with schizophrenia in a northern Chinese Han population. Oncotarget 2018; 7:85888-85894. [PMID: 27811378 PMCID: PMC5349882 DOI: 10.18632/oncotarget.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a chronic, severely debilitating mental disorder. Many studies have suggested that genetic factors play an important role in the onset and development of schizophrenia. In our study, we conducted a case-control study in a northern Chinese Han population of 499 schizophrenia patients and 500 controls to investigate the effect of variant genotypes of 13 SNPs in ANK3 on schizophrenia risk. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using the chi-squared test, genetic model analysis, and haplotype analysis. Four ANK3 SNPs were associated with schizophrenia risk. The minor allele of rs958852 in ANK3 was associated with a 0.75-fold reduction in schizophrenia risk in an allelic model. In the genetic model, rs958852 was associated with a reduced schizophrenia risk, and rs10994336, rs10994338 and rs4948418 were associated with an increased schizophrenia risk (rs10994336, OR = 2.00, 95%CI: 1.01–3.94, p = 0.047; rs10994338, OR = 1.99, 95%CI: 1.01–3.93, p = 0.047; rs4948418, OR = 2.00, 95%CI: 1.01–3.94, p = 0.047). In addition, haplotype “TTC” of ANK3 was associated with a 0.73-fold reduced schizophrenia risk (95%CI: 0.54–0.99; p = 0.044). To our knowledge, this is the first to report of an association between ANK3 rs10994336, rs10994338, rs4948418 and rs958852 and schizophrenia risk in a northern Chinese Han population.
Collapse
Affiliation(s)
- Xiaojuan Guo
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Yani Zhang
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Jieli Du
- Inner Mongolia Medical University Hohhot 010010, Inner Mongolia, China
| | - Hua Yang
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yini Ma
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jingjie Li
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Mengdan Yan
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi'an 710069, China.,Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xianyang Liu
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
48
|
Genetic analysis of common variants in the ZNF804A gene with schizophrenia and major depressive disorder. Psychiatr Genet 2018; 28:1-7. [DOI: 10.1097/ypg.0000000000000185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Gumpinger AC, Roqueiro D, Grimm DG, Borgwardt KM. Methods and Tools in Genome-wide Association Studies. Methods Mol Biol 2018; 1819:93-136. [PMID: 30421401 DOI: 10.1007/978-1-4939-8618-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many traits, such as height, the response to a given drug, or the susceptibility to certain diseases are presumably co-determined by genetics. Especially in the field of medicine, it is of major interest to identify genetic aberrations that alter an individual's risk to develop a certain phenotypic trait. Addressing this question requires the availability of comprehensive, high-quality genetic datasets. The technological advancements and the decreasing cost of genotyping in the last decade led to an increase in such datasets. Parallel to and in line with this technological progress, an analysis framework under the name of genome-wide association studies was developed to properly collect and analyze these data. Genome-wide association studies aim at finding statistical dependencies-or associations-between a trait of interest and point-mutations in the DNA. The statistical models used to detect such associations are diverse, spanning the whole range from the frequentist to the Bayesian setting.Since genetic datasets are inherently high-dimensional, the search for associations poses not only a statistical but also a computational challenge. As a result, a variety of toolboxes and software packages have been developed, each implementing different statistical methods while using various optimizations and mathematical techniques to enhance the computations.This chapter is devoted to the discussion of widely used methods and tools in genome-wide association studies. We present the different statistical models and the assumptions on which they are based, explain peculiarities of the data that have to be accounted for and, most importantly, introduce commonly used tools and software packages for the different tasks in a genome-wide association study, complemented with examples for their application.
Collapse
Affiliation(s)
- Anja C Gumpinger
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Damian Roqueiro
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominik G Grimm
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karsten M Borgwardt
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
50
|
Ou J, Li M, Xiao X. The schizophrenia susceptibility gene ZNF804A confers risk of major mood disorders. World J Biol Psychiatry 2017; 18:557-562. [PMID: 27784192 DOI: 10.1080/15622975.2016.1252466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Genome-wide association studies (GWAS) followed by independent replications suggest that ZNF804A is a risk gene for schizophrenia (SCZ), considering the substantial genetic overlap between SCZ and major mood disorders (e.g., bipolar disorder (BPD) and major depressive disorder (MDD)). METHODS We collected the data of two ZNF804A single-nucleotide polymorphisms (SNPs rs1344706 and rs7597593) from European and Asian populations to perform systematic meta-analyses with major mood disorders in a total of 65,240 subjects. RESULTS Meta-analysis showed that rs1344706 and rs7597593 were both associated with major mood disorders as well as diagnosis of either BPD or MDD, although neither of the analyses achieved a genome-wide level of statistical significance. CONCLUSIONS Our data provide evidence for the genetic involvement of ZNF804A SNPs in the susceptibility of major mood disorders, but further replication analyses in larger samples are necessary.
Collapse
Affiliation(s)
- Jianjun Ou
- a Mental Health Institute of the Second Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Ming Li
- b Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Xiao Xiao
- b Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| |
Collapse
|