1
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2025; 62:5311-5332. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Cao Y, Li X, Gao J, Zhang N, Zhang G, Li S. Revealing the Causal Relationship Between Differential White Blood Cell Counts and Depression: A Bidirectional Two-Sample Mendelian Randomization Study. Depress Anxiety 2025; 2025:3131579. [PMID: 40225727 PMCID: PMC11987073 DOI: 10.1155/da/3131579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/01/2024] [Accepted: 01/30/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The link between white blood cells (WBC) and depression has been studied, but the causal relationship remains unclear. This study aimed to elucidate the potential bidirectional causal links between six specific WBC count features and depression using a two-sample Mendelian randomization (MR) analysis, leveraging summary statistics from genome-wide association studies (GWAS). Method: The dataset on depression (N = 406,986) was sourced from the FinnGen database, while the dataset on WBC (N = 563,085) was obtained from a combined dataset of Blood Cell Consortium (BCX) and UK Biobank. The MR analyses employed include inverse variance weighted (IVW), MR-Egger, weighted median, contamination mixture method (conmix), and constrained maximum likelihood-based Mendelian randomization (cML-MA). A threshold p < 0.05 after false discovery rate (FDR) correction was set as the criterion for causality based on IVW. Results: Reverse MR analysis indicated a causal relationship where depression leads to an increase in overall WBC count (IVW beta = 0.031, p = 0.015, p FDR = 0.044) and specifically in basophil count (IVW beta = 0.038, p = 0.006, p FDR = 0.038), with a marginally significant impact on lymphocyte count (beta = 0.029, p = 0.036, p FDR = 0.071). Furthermore, forward MR analysis suggested a potential role of monocyte count in decreasing depression risk (p = 0.028), though this association did not retain statistical significance after FDR correction. Conclusion: These findings suggest that depression may causally influence the immune system by elevating overall WBC and basophil counts, with a marginally significant increase in lymphocyte levels. Conversely, higher monocyte count might confer some protection against depression, albeit with less statistial certainty. This study provides novel insights into the complex interplay between depression and immune function.
Collapse
Affiliation(s)
- Ying Cao
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuguang Li
- Health Care Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing Gao
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Nan Zhang
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guoqian Zhang
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin University, Tianjin, China
- Brain Assessment and Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
4
|
Zeng Y, Chourpiliadis C, Hammar N, Seitz C, Valdimarsdóttir UA, Fang F, Song H, Wei D. Inflammatory Biomarkers and Risk of Psychiatric Disorders. JAMA Psychiatry 2024; 81:1118-1129. [PMID: 39167384 PMCID: PMC11339698 DOI: 10.1001/jamapsychiatry.2024.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024]
Abstract
Importance Individuals with psychiatric disorders have been reported to have elevated levels of inflammatory biomarkers, and prospective evidence is limited regarding the association between inflammatory biomarkers and subsequent psychiatric disorders risk. Objective To assess the associations between inflammation biomarkers and subsequent psychiatric disorders risk. Design, Setting, and Participants This was a prospective cohort study including individuals from the Swedish Apolipoprotein Mortality Risk (AMORIS) cohort, with no prior psychiatric diagnoses and having a measurement of at least 1 inflammatory biomarker. Data from the UK Biobank were used for validation. Longitudinal trajectories of studied biomarkers were visualized before diagnosis of psychiatric disorders in the AMORIS cohort via a nested case-control study. In addition, genetic correlation and mendelian randomization (MR) analyses were conducted to determine the genetic overlap and causality of the studied associations using publicly available GWAS summary statistics. Exposures Inflammatory biomarkers, eg, leukocytes, haptoglobin, immunoglobulin G (IgG), C-reactive protein (CRP), platelets, or albumin. Main Outcomes and Measures Any psychiatric disorder or specific psychiatric disorder (ie, depression, anxiety, and stress-related disorders) was identified through the International Statistical Classification of Diseases, Eighth, Ninth, and Tenth Revision codes. Results Among the 585 279 individuals (mean [SD] age, 45.5 [14.9] years; 306 784 male [52.4%]) in the AMORIS cohort, individuals with a higher than median level of leukocytes (hazard ratio [HR], 1.11; 95% CI, 1.09-1.14), haptoglobin (HR, 1.13; 95% CI, 1.12-1.14), or CRP (HR, 1.02; 95% CI, 1.00-1.04) had an elevated associated risk of any psychiatric disorders. In contrast, we found an inverse association for IgG level (HR, 0.92; 95% CI, 0.89-0.94). The estimates were comparable for depression, anxiety, and stress-related disorders, specifically, and these results were largely validated in the UK Biobank (n = 485 620). Analyses of trajectories revealed that individuals with psychiatric disorders had higher levels of leukocytes and haptoglobin and a lower level of IgG than their controls up to 30 years before the diagnosis. The MR analysis suggested a possible causal relationship between leukocytes and depression. Conclusions and Relevance In this cohort study, inflammatory biomarkers including leukocytes, haptoglobin, CRP, and IgG were associated with a subsequent risk of psychiatric disorders, and thus might be used for high-risk population identification. The possible causal link between leukocytes and depression supports the crucial role of inflammation in the development of psychiatric disorders.
Collapse
Affiliation(s)
- Yu Zeng
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Niklas Hammar
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Unnur A. Valdimarsdóttir
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Fang Fang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Huan Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Dang Wei
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Swann P, Mirza-Davies A, O'Brien J. Associations Between Neuropsychiatric Symptoms and Inflammation in Neurodegenerative Dementia: A Systematic Review. J Inflamm Res 2024; 17:6113-6141. [PMID: 39262651 PMCID: PMC11389708 DOI: 10.2147/jir.s385825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neuropsychiatric symptoms are common in dementia and linked to adverse outcomes. Inflammation is increasingly recognized as playing a role as a driver of early disease progression in Alzheimer's disease (AD) and related dementias. Inflammation has also been linked to primary psychiatric disorders, however its association with neuropsychiatric symptoms in neurodegenerative dementias remains uncertain. Methods We conducted a systematic literature review investigating associations between inflammation and neuropsychiatric symptoms in neurodegenerative dementias, including AD, Lewy body, Frontotemporal, Parkinson's (PD) and Huntington's disease dementias. Results Ninety-nine studies met our inclusion criteria, and the majority (n = 59) investigated AD and/or mild cognitive impairment (MCI). Thirty-five studies included PD, and only 6 investigated non-AD dementias. Inflammation was measured in blood, CSF, by genotype, brain tissue and PET imaging. Overall, studies exhibited considerable heterogeneity and evidence for specific inflammatory markers was inconsistent, with lack of replication and few longitudinal studies with repeat biomarkers. Depression was the most frequently investigated symptom. In AD, some studies reported increases in peripheral IL-6, TNF-a associated with depressive symptoms. Preliminary investigations using PET measures of microglial activation found an association with agitation. In PD, studies reported positive associations between TNF-a, IL-6, CRP, MCP-1, IL-10 and depression. Conclusion Central and peripheral inflammation may play a role in neuropsychiatric symptoms in neurodegenerative dementias; however, the evidence is inconsistent. There is a need for multi-site longitudinal studies with detailed assessments of neuropsychiatric symptoms combined with replicable peripheral and central markers of inflammation.
Collapse
Affiliation(s)
- Peter Swann
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Anastasia Mirza-Davies
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
6
|
Meng L, Zhou M, Wang Y, Pan Y, Chen Z, Wu B, Zhao Y. CD177 on neutrophils engages stress-related behavioral changes in male mice. Brain Behav Immun 2024; 120:403-412. [PMID: 38871062 DOI: 10.1016/j.bbi.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.
Collapse
Affiliation(s)
- Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunpeng Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
La Porta C, Plum T, Palme R, Mack M, Tappe-Theodor A. Repeated social defeat stress differently affects arthritis-associated hypersensitivity in male and female mice. Brain Behav Immun 2024; 119:572-596. [PMID: 38663771 DOI: 10.1016/j.bbi.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.
Collapse
Affiliation(s)
- Carmen La Porta
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, Regensburg University Hospital, Regensburg, Germany
| | - Anke Tappe-Theodor
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Boles J, Uriarte Huarte O, Tansey MG. Peripheral endotoxin exposure in mice activates crosstalk between phagocytes in the brain and periphery. RESEARCH SQUARE 2024:rs.3.rs-4478250. [PMID: 38883776 PMCID: PMC11177977 DOI: 10.21203/rs.3.rs-4478250/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Inflammation is a central process of many neurological diseases, and a growing number of studies suggest that non-brain-resident immune cells may contribute to this neuroinflammation. However, the unique contributions of specific immune cell subsets to neuroinflammation are presently unknown, and it is unclear how communication between brain-resident and non-resident immune cells underlies peripheral immune cell involvement in neuroinflammation. Methods In this study, we employed the well-established model of lipopolysaccharide (LPS)-induced neuroinflammation and captured brain-resident and non-resident immune cells from the brain and its vasculature by magnetically enriching cell suspensions from the non-perfused brain for CD45 + cells. Then, we identified immune subtype-specific neuroinflammatory processes using single-cell genomics and predicted the crosstalk between immune cell subtypes by analyzing the simultaneous expression of ligands and receptors. Results We observed a greater abundance of peripheral phagocytes associated with the brain in this model of neuroinflammation, and report that these professional phagocytes activated similar transcriptional profiles to microglia during LPS-induced neuroinflammation. And, we observed that the probable crosstalk between microglia and peripheral phagocytes was activated in this model while homotypic microglial communication was likely to be decreased. Conclusions Our novel findings reveal that microglia signaling to non-brain-resident peripheral phagocytes is preferentially triggered by peripheral inflammation, which is associated with brain infiltration of peripheral cells. Overall, our study supports the involvement of peripheral immune cells in neuroinflammation and suggests several possible molecular signaling pathways between microglia and peripheral cells that may facilitate central-peripheral crosstalk during inflammation. Examining these molecular mediators in human disease and other rodent models may reveal novel targets that modify brain health, especially in comorbidities characterized by peripheral inflammation.
Collapse
|
9
|
Xu Y, Yan Z, Liu L. Sex differences in the combined influence of inflammation and nutrition status on depressive symptoms: insights from NHANES. Front Nutr 2024; 11:1406656. [PMID: 38868555 PMCID: PMC11168495 DOI: 10.3389/fnut.2024.1406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Background Both nutrition and inflammation are associated with depression, but previous studies have focused on individual factors. Here, we assessed the association between composite indices of nutrition and inflammation and depression. Methods Adult participants selected from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018 were chosen. The exposure variable was the Advanced Lung Cancer Inflammation Index (ALI) integrating nutrition and inflammation, categorized into low, medium, and high groups. The outcome variable was depression assessed using the Patient Health Questionnaire-9 (PHQ-9). A multivariable logistic regression model was employed to evaluate the relationship between ALI and the risk of depression. Results After extensive adjustment for covariates, in the overall population, participants with moderate and high levels of ALI had a decreased prevalence of depression compared to those with low ALI levels, with reductions of 17% (OR, 0.83; 95% CI: 0.72-0.97) and 23% (OR, 0.77; 95% CI: 0.66-0.91), respectively. Among females, participants with moderate and high ALI levels had a decreased prevalence of depression by 27% (OR, 0.73; 95% CI: 0.60-0.88) and 21% (OR, 0.79; 95% CI: 0.64-0.98), respectively, compared to those with low ALI levels, whereas no significant association was observed among males. Subgroup analyses based on females and males yielded consistent results. Conclusion In this study, we observed a negative correlation between moderate to high levels of ALI and the prevalence of depression, along with gender differences. Specifically, in females, greater attention should be given to the nutritional and inflammatory status.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Nakajima S, Demers G, Machuca-Parra AI, Pour ZD, Bairamian D, Bouyakdan K, Fisette A, Kabahizi A, Robb J, Rodaros D, Laurent C, Ferreira G, Arbour N, Alquier T, Fulton S. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J Neuroinflammation 2023; 20:302. [PMID: 38111048 PMCID: PMC10729532 DOI: 10.1186/s12974-023-02978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1β and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1β. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Geneviève Demers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Diane Bairamian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Anita Kabahizi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Josephine Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR 1286, INRA-Université de Bordeaux, Bordeaux, France
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada.
| |
Collapse
|
12
|
Tansey M, Boles J, Uriarte Huarte O. Microfluidics-free single-cell genomics reveals complex central-peripheral immune crosstalk in the mouse brain during peripheral inflammation. RESEARCH SQUARE 2023:rs.3.rs-3428910. [PMID: 37886510 PMCID: PMC10602178 DOI: 10.21203/rs.3.rs-3428910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Inflammation is a realized detriment to brain health in a growing number of neurological diseases, but querying neuroinflammation in its cellular complexity remains a challenge. This manuscript aims to provide a reliable and accessible strategy for examining the brain's immune system. We compare the efficacy of cell isolation methods in producing ample and pure immune samples from mouse brains. Then, with the high-input single-cell genomics platform PIPseq, we generate a rich neuroimmune dataset containing microglia and many peripheral immune populations. To demonstrate this strategy's utility, we interrogate the well-established model of LPS-induced neuroinflammation with single-cell resolution. We demonstrate the activation of crosstalk between microglia and peripheral phagocytes and highlight the unique contributions of microglia and peripheral immune cells to neuroinflammation. Our approach enables the high-depth evaluation of inflammation in longstanding rodent models of neurological disease to reveal novel insight into the contributions of the immune system to brain health.
Collapse
|
13
|
Patil CR, Suryakant Gawli C, Bhatt S. Targeting inflammatory pathways for treatment of the major depressive disorder. Drug Discov Today 2023; 28:103697. [PMID: 37422168 DOI: 10.1016/j.drudis.2023.103697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Current treatments modalities for major depressive disorder (MDD) mainly target the monoaminergic neurotransmission. However, the therapeutic inadequacy and adverse effects confine the use of these conventional antidepressants to a limited subset of MDD patients. The classical antidepressants are increasingly proving unsatisfactory in tackling the treatment-resistant depression (TRD). Hence, the focus of treatment is shifting to alternative pathogenic pathways involved in depression. Preclinical and clinical evidences accumulated across the last decades have unequivocally affirmed the causative role of immuno-inflammatory pathways in the progression of depression. There is an upsurge in the clinical evaluations of the drugs having anti-inflammatory effects as antidepressants. This review highlights the molecular mechanisms connecting the inflammatory pathways to the MDD and current clinical status of inflammation modulating drugs in the treatment of MDD.
Collapse
Affiliation(s)
- Chandragauda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Chandrakant Suryakant Gawli
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| |
Collapse
|
14
|
Zhou L, Wu X, Qin S, Shi J, Yu C, Xu Z, Tian G, Zhu W, Qin J. Cell-liposome delivery system based on neuroinflammation to target the amygdala for ameliorating depressive-like behaviors. Int J Pharm 2023; 637:122724. [PMID: 36958607 DOI: 10.1016/j.ijpharm.2023.122724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/25/2023]
Abstract
Depression is a serious psychiatric disorder with unsatisfactory outcomes due to difficulties in delivering therapeutic molecules from the periphery to the brain. Neuroinflammation plays a key role in neurobiology and the treatment of depression. Neutrophils can cross the blood-brain barrier (BBB) and infiltrate key brain regions related to the pathophysiology of depression during neuroinflammation. N-Acetyl Pro-Gly-Pro (PGP) peptides efficiently bind to CXCR2 receptors on the surface of neutrophils. The neuropeptide oxytocin demonstrated antidepressant properties in preclinical and clinical studies, but its inability to penetrate the BBB hampers its therapeutic applications. In this study, we established a novel drug delivery system based on neutrophil infiltration in key brain regions during neuroinflammation. PGP was used to modify oxytocin-loaded liposomes (PGP-OTL) as the target ligand. Systematic administration of PGP-OTL exhibited enhanced antidepressant properties resulting from elevated oxytocin concentrations, especially in the amygdala, a crucial depression-implicated brain region. Enhanced antidepressant effects of PGP-OTL, similar to the ones caused by central oxytocin infusion, were observed in behavioral measurement including forced swim and tail suspension tests. Our study demonstrated that PGP-OTL can "hitchhike" neutrophils and enhance delivery of therapeutics into the brain, thus providing the means for developing novel cell-liposome-based drug delivery strategies for depression therapy.
Collapse
Affiliation(s)
- Liping Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Xiao Wu
- National Institute on Drug Dependence & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Sijie Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jing Shi
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chunfeng Yu
- Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine
| | - Zhaowei Xu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Geng Tian
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province 264003, China.
| | - Weili Zhu
- National Institute on Drug Dependence & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
15
|
Kropp DR, Hodes GE. Sex differences in depression: An immunological perspective. Brain Res Bull 2023; 196:34-45. [PMID: 36863664 DOI: 10.1016/j.brainresbull.2023.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Depression is a heterogenous disorder with symptoms that present differently across individuals. In a subset of people depression is associated with alterations of the immune system that may contribute to disorder onset and symptomology. Women are twice as likely to develop depression and on average have a more sensitive adaptive and innate immune system when compared to men. Sex differences in pattern recognition receptors (PRRs), release of damage-associated molecular patterns (DAMPs), cell populations, and circulating cytokines play a critical role in inflammation onset. Sex differences in innate and adaptive immunity change the response of and repair to damage caused by dangerous pathogens or molecules in the body. This article reviews the evidence for sex specific immune responses that contribute to the sex differences in symptoms of depression that may account for the higher rate of depression in women.
Collapse
Affiliation(s)
- Dawson R Kropp
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
17
|
Childers E, Bowen EFW, Rhodes CH, Granger R. Immune-Related Genomic Schizophrenic Subtyping Identified in DLPFC Transcriptome. Genes (Basel) 2022; 13:1200. [PMID: 35885983 PMCID: PMC9319783 DOI: 10.3390/genes13071200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Well-documented evidence of the physiologic, genetic, and behavioral heterogeneity of schizophrenia suggests that diagnostic subtyping may clarify the underlying pathobiology of the disorder. Recent studies have demonstrated that increased inflammation may be a prominent feature of a subset of schizophrenics. However, these findings are inconsistent, possibly due to evaluating schizophrenics as a single group. In this study, we segregated schizophrenic patients into two groups ("Type 1", "Type 2") by their gene expression in the dorsolateral prefrontal cortex and explored biological differences between the subgroups. The study included post-mortem tissue samples that were sequenced in multiple, publicly available gene datasets using different sequencing methods. To evaluate the role of inflammation, the expression of genes in multiple components of neuroinflammation were examined: complement cascade activation, glial cell activation, pro-inflammatory mediator secretion, blood-brain barrier (BBB) breakdown, chemokine production and peripheral immune cell infiltration. The Type 2 schizophrenics showed widespread abnormal gene expression across all the neuroinflammation components that was not observed in Type 1 schizophrenics. Our results demonstrate the importance of separating schizophrenic patients into their molecularly defined subgroups and provide supporting evidence for the involvement of the immune-related pathways in a schizophrenic subset.
Collapse
Affiliation(s)
- Eva Childers
- Dartmouth College, Hanover, NH 03755, USA; (E.C.); (E.F.W.B.)
| | | | | | - Richard Granger
- Dartmouth College, Hanover, NH 03755, USA; (E.C.); (E.F.W.B.)
| |
Collapse
|
18
|
Torres E, Zumpf KB, Ciolino JD, Clark CT, Sit DK, Miller ES, Wisner KL. C-Reactive protein concentrations in reproductive-aged women with major mood disorders. Arch Womens Ment Health 2022; 25:577-584. [PMID: 35316423 DOI: 10.1007/s00737-022-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
To examine associations between high sensitivity C-reactive protein (CRP) concentrations and depressive symptoms in reproductive-aged women with mood disorders. Women (N = 86) with major depressive or bipolar disorder in a specialized mood disorders program provided plasma samples which were analyzed for CRP concentrations and categorized by tertiles (T1, low; T2, middle; T3 high). Depressive symptoms were assessed with the Inventory of Depressive Symptoms. We hypothesized that CRP concentrations would be significantly associated with the following: (1) depressive symptoms; (2) pregnancy, (3) body mass index, and (4) counts of white blood cells and absolute neutrophils and percentage of segmented neutrophils. The distribution of CRP concentrations was highly skewed with a median of 2.45 mg/L and an interquartile range 0.90 - 8.17 mg/L. Elevated plasma levels of CRP were not associated with depressive symptoms, which did not differ by tertile group either before or after adjusting for BMI, pregnancy status, and their interactions. Women in T3 had 5 times greater odds of pregnancy compared to women in T1 (p = .021). However, women in T2 had 11% greater BMI on average (p = 0.023), and women in T3 had 47% greater BMI compared to those in T1 (p < 0.001). Women in T3 had higher mean white blood cell counts than those in T1 and T2, the percentage of neutrophils was higher in T2 and T3 compared to T1, and women in T3 had higher absolute neutrophil counts compared to T1. CRP concentrations varied widely and were significantly elevated in reproductive-aged women with high BMI and current pregnancy, but not with depressive symptoms in this sample of depressed women.
Collapse
Affiliation(s)
- Elizabeth Torres
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Katelynn B Zumpf
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jody D Ciolino
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Crystal T Clark
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dorothy K Sit
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily S Miller
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Katherine L Wisner
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
20
|
Singh D, Guest PC, Dobrowolny H, Vasilevska V, Meyer-Lotz G, Bernstein HG, Borucki K, Neyazi A, Bogerts B, Jacobs R, Steiner J. Changes in leukocytes and CRP in different stages of major depression. J Neuroinflammation 2022; 19:74. [PMID: 35379263 PMCID: PMC8981816 DOI: 10.1186/s12974-022-02429-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background We recently reported increased levels of neutrophils, monocytes and C-reactive protein (CRP) correlated with symptom severity in acute schizophrenia. Here, we investigated if a similar pattern of innate immune system activation occurs in major depression (MD). Methods We assessed differential blood counts, CRP, depression symptoms (HAMD-21) and psychosocial functioning (GAF) in controls (n = 129) and patients with first (FEMD: n = 82) or recurrent (RMD: n = 47) disease episodes of MD at baseline (T0; hospital admission) and after 6-weeks treatment (T6). Results Considering smoking, BMI and gender as covariates, neutrophils (FEMD: p = 0.034, RMD: p = 0.034) and CRP (FEMD: p < 0.001, RMD: p = 0.021) were higher, and eosinophils (FEMD: p = 0.005, RMD: p = 0.004) lower in patients versus controls at T0. Baseline lymphocyte counts were elevated in RMD (p = 0.003) but not FEMD. Results were confirmed by analyses of nonsmokers. At follow-up, eosinophils rose significantly in FEMD (p = 0.011) but no significant changes were observed in RMD. Improvement in HAMD-21 correlated with T0–T6 changes of neutrophil counts in FEMD (r = 0.364, p = 0.024). Compared with our previous schizophrenia study, raised baseline neutrophil and reduced eosinophil counts in MD had smaller effect sizes and treatment had a weaker association with T0-T6 changes in neutrophils. In addition, lymphocytes were elevated at T0 in recurrent MD but not in schizophrenia patients. Conclusions These findings suggest that innate immunity may be involved in early stages of MD, and adaptive immunity may be involved in chronic disease. Thus, further studies may lead to new disease stage-dependent MD treatment strategies targeting different aspects of immune system activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02429-7.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexandra Neyazi
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Salus Institute, Magdeburg, Germany
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany. .,Center for Health und Medical Prevention (CHaMP), Magdeburg, Germany. .,German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
21
|
Yang J, Zhou J, Zhou J, Wang H, Sun Z, Zhu X, He Y, Wong AHC, Liu F, Wang G. Serum amyloid P component level is associated with clinical response to escitalopram treatment in patients with major depressive disorder. J Psychiatr Res 2022; 146:172-178. [PMID: 34995992 DOI: 10.1016/j.jpsychires.2021.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits, which has been implicated in Alzheimer's disease and major depressive disorder (MDD). However, the relationship between SAP level and depression severity remains obscure. The aims of this study were to investigate how SAP is involved in depression and to explore the association between SAP level and antidepressant treatment response. Patients with MDD (n = 85) who received escitalopram monotherapy for 8-12 weeks were selected from a multicenter open-label randomized clinical trial. The same number of healthy controls was recruited. Depression severity was measured according to the Hamilton Depression Rating Scale (HAMD-17) at baseline and weeks 4, 8, and 12. The plasma levels of SAP were measured at baseline, week 2 and week 12. As a result, baseline levels of SAP were significantly higher in depressed patients than in control subjects (p < 0.001). SAP levels at baseline were negatively associated with depression severity after escitalopram treatment (p < 0.05), and the changes in SAP levels from baseline to week 12 were highly correlated with the severity of depressive symptoms based on the HAMD-17 score (p < 0.05). Interestingly, treatment with escitalopram significantly decreased the plasma levels of SAP in females, but not in males. Altogether, our results suggest that SAP not only involved in the pathobiology of depression but also mediates the action of antidepressant medications.
Collapse
Affiliation(s)
- Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Jia Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Fang Liu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China.
| |
Collapse
|
22
|
Bredehöft J, Dolga AM, Honrath B, Wache S, Mazurek S, Culmsee C, Schoemaker RG, Gerstberger R, Roth J, Rummel C. SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. J Inflamm Res 2022; 15:509-531. [PMID: 35115803 PMCID: PMC8800008 DOI: 10.2147/jir.s338812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Previously, we have shown that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine), a pharmacological small-conductance calcium-activated potassium (SK)–channel positive modulator, antagonizes lipopolysaccharide (LPS)-induced cytokine expression in microglial cells. Here, we aimed to test its therapeutic potential for brain-controlled sickness symptoms, brain inflammatory response during LPS-induced systemic inflammation, and peripheral metabolic pathways in mice. Methods Mice were pretreated with CyPPA (15 mg/kg IP) 24 hours before and simultaneously with LPS stimulation (2.5 mg/kg IP), and the sickness response was recorded by a telemetric system for 24 hours. A second cohort of mice were euthanized 2 hours after CyPPA or solvent treatment to assess underlying CyPPA-induced mechanisms. Brain, blood, and liver samples were analyzed for inflammatory mediators or nucleotide concentrations using immunohistochemistry, real-time PCR and Western blot, or HPLC. Moreover, we investigated CyPPA-induced changes of UCP1 expression in brown adipose tissue (BAT)–explant cultures. Results CyPPA treatment did not affect LPS-induced fever, anorexia, adipsia, or expression profiles of inflammatory mediators in the hypothalamus or plasma or microglial reactivity to LPS (CD11b staining and CD68 mRNA expression). However, CyPPA alone induced a rise in core body temperature linked to heat production via altered metabolic pathways like reduced levels of adenosine, increased protein content, and increased UCP1 expression in BAT-explant cultures, but no alteration in ATP/ADP concentrations in the liver. CyPPA treatment was accompanied by altered pathways, including NFκB signaling, in the hypothalamus and cortex, while circulating cytokines remained unaltered. Conclusion Overall, while CyPPA has promise as a treatment strategy, in particular according to results from in vitro experiments, we did not reveal anti-inflammatory effects during severe LPS-induced systemic inflammation. Interestingly, we found that CyPPA alters metabolic pathways inducing short hyperthermia, most likely due to increased energy turnover in the liver and heat production in BAT.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Birgit Honrath
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg, Germany
| | - Sybille Wache
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, Netherlands
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior-CMBB, Giessen and Marburg, Germany
- Correspondence: Christoph Rummel Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, GiessenD-35392, GermanyTel +49 641 99 38155Fax +49 641 99 38159 Email
| |
Collapse
|
23
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|
24
|
Ji C, Tang Y, Zhang Y, Li C, Liang H, Ding L, Xia X, Xiong L, Qi XR, Zheng JC. Microglial glutaminase 1 deficiency mitigates neuroinflammation associated depression. Brain Behav Immun 2022; 99:231-245. [PMID: 34678461 DOI: 10.1016/j.bbi.2021.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Glutaminase 1 (GLS1) has recently been reported to be expressed in microglia and plays a crucial role in neuroinflamation. Significantly increased level of GLS1 mRNA expression together with neuroinflammation pathway were observed in postmortem prefrontal cortex from depressed patients. To find out the function of microglial GLS1 in depression and neuroinflammation, we generated transgenic mice (GLS1 cKO), postnatally losing GLS1 in microglia, to detect changes in the lipopolysaccharide (LPS)-induced depression model. LPS-induced anxiety/depression-like behavior was attenuated in GLS1 cKO mice, paralleled by a significant reduction in pro-inflammatory cytokines and an abnormal microglia morphological phenotype in the prefrontal cortex. Reduced neuroinflammation by GLS1 deficient microglia was a result of less reactive astrocytes, as GLS1 deficiency enhanced miR-666-3p and miR-7115-3p levels in extracellular vesicles released from microglia, thus suppressing astrocyte activation via inhibiting Serpina3n expression. Together, our data reveal a novel mechanism of GLS1 in neuroinflammation and targeting GLS1 in microglia may be a novel strategy to alleviate neuroinflammation-related depression and other disease.
Collapse
Affiliation(s)
- Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Huazheng Liang
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Lize Xiong
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
25
|
Sealock JM, Lee YH, Moscati A, Venkatesh S, Voloudakis G, Straub P, Singh K, Feng YCA, Ge T, Roussos P, Smoller JW, Chen G, Davis LK. Use of the PsycheMERGE Network to Investigate the Association Between Depression Polygenic Scores and White Blood Cell Count. JAMA Psychiatry 2021; 78:1365-1374. [PMID: 34668925 PMCID: PMC8529528 DOI: 10.1001/jamapsychiatry.2021.2959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
Importance Although depression is a common psychiatric disorder, its underlying biological basis remains poorly understood. Pairing depression polygenic scores with the results of clinical laboratory tests can reveal biological processes involved in depression etiology and in the physiological changes resulting from depression. Objective To characterize the association between depression polygenic scores and an inflammatory biomarker, ie, white blood cell count. Design, Setting, and Participants This genetic association study was conducted from May 19, 2019, to June 5, 2021, using electronic health record data from 382 452 patients across 4 health care systems. Analyses were conducted separately in each health care system and meta-analyzed across all systems. Primary analyses were conducted in Vanderbilt University Medical Center's biobank. Replication analyses were conducted across 3 other PsycheMERGE sites: Icahn School of Medicine at Mount Sinai, Mass General Brigham, and the Million Veteran Program. All patients with available genetic data and recorded white blood cell count measurements were included in the analyses. Primary analyses were conducted in individuals of European descent and then repeated in a population of individuals of African descent. Exposures Depression polygenic scores. Main Outcomes and Measures White blood cell count. Results Across the 4 PsycheMERGE sites, there were 382 452 total participants of European ancestry (18.7% female; median age, 57.9 years) and 12 383 participants of African ancestry (61.1% female; median age, 39.0 [range, birth-90.0 years]). A laboratory-wide association scan revealed a robust association between depression polygenic scores and white blood cell count (β, 0.03; SE, 0.004; P = 1.07 × 10-17), which was replicated in a meta-analysis across the 4 health care systems (β, 0.03; SE, 0.002; P = 1.03 × 10-136). Mediation analyses suggested a bidirectional association, with white blood cell count accounting for 2.5% of the association of depression polygenic score with depression diagnosis (95% CI, 2.2%-20.8%; P = 2.84 × 10-70) and depression diagnosis accounting for 9.8% of the association of depression polygenic score with white blood cell count (95% CI, 8.4%-11.1%; P = 1.78 × 10-44). Mendelian randomization provided additional support for an association between increased white blood count and depression risk, but depression modeled as the exposure showed no evidence of an influence on white blood cell counts. Conclusions and Relevance This genetic association study found that increased depression polygenic scores were associated with increased white blood cell count, and suggests that this association may be bidirectional. These findings highlight the potential importance of the immune system in the etiology of depression and may motivate future development of clinical biomarkers and targeted treatment options for depression.
Collapse
Affiliation(s)
- Julia M. Sealock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Younga H. Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sanan Venkatesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Georgios Voloudakis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Peter Straub
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yen-Chen A. Feng
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Tian Ge
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| | - Lea K. Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Kong Y, He G, Zhang X, Li J. The Role of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Depression-like Behaviors in Mice. Brain Sci 2021; 11:brainsci11111514. [PMID: 34827513 PMCID: PMC8615738 DOI: 10.3390/brainsci11111514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral inflammation plays a key role in the development of depression-like behaviors. However, the mechanisms underlying these effects remain largely unknown. Here, we found that the level of citrullinated histone H3 (cit-H3) significantly increased in the plasma of wildtype mice treated with lipopolysaccharide (LPS), which indicated that neutrophil extracellular traps (NETs) were formed. Moreover, the LPS-induced depression-like and asocial behaviors were significantly alleviated in the mice deficient of NETs. Mechanistically, NETs formation aggravated peripheral inflammation by increasing the concentrations of TNF-α, IL-1β and IL-6 in plasma, which are major proinflammatory cytokines that can enter the brain, resulting in microglia activation and reduced astrocytes. Following this, increased TNF-α and IL-1β were released into brain, inducing neuroinflammation and finally depression-like behaviors. Prohibiting NETs by PAD4 ablation significantly prevented LPS-induced microglia activation and the loss of astrocytes. Our results propose the role for peripheral NETs in LPS-induced depression-like behavior, and that NETs might be a potential target to prevent inflammation-induced major depressive disorder.
Collapse
Affiliation(s)
- Yue Kong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Correspondence: (Y.K.); (J.L.)
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.H.); (X.Z.)
- Shanghai Clinical Research Center for Mental Health, Shanghai 200032, China
- Correspondence: (Y.K.); (J.L.)
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW From single cells to entire organisms, biological entities are in constant communication with their surroundings, deciding what to 'allow' in, and what to reject. In very different ways, the immune and taste systems both fulfill this function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans to explore our understanding of the interplay between these systems. RECENT FINDINGS Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body. Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and composition. There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity, responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells throughout the body as a form of homeostatic control.
Collapse
Affiliation(s)
- Jason R Goodman
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J Clin Med 2021; 10:jcm10081674. [PMID: 33919670 PMCID: PMC8069768 DOI: 10.3390/jcm10081674] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic Stroke precedes depression. Post-stroke depression (PSD) is a major driver for poor recovery, negative quality of life, poor rehabilitation outcomes and poor functional ability. In this systematic review, we analysed the inflammatory basis of post-stroke depression, which involves bioenergetic failure, deranged iron homeostasis (calcium influx, Na influx, potassium efflux etc), excitotoxicity, acidotoxicity, disruption of the blood brain barrier, cytokine-mediated cytotoxicity, reactive oxygen mediated toxicity, activation of cyclooxygenase pathway and generation of toxic products. This process subsequently results in cell death, maladapted, persistent neuro-inflammation and deranged neuronal networks in mood-related brain regions. Furthermore, an in-depth review likewise reveals that anatomic structures related to post-stroke depression may be localized to complex circuitries involving the cortical and subcortical regions.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne 3000, Australia
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
- Department of Medicine, Faculty of Medicine, University of Rajarata, Saliyapura, Anuradhapura 50000, Sri Lanka
- Correspondence:
| | - Carmela Sales
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
| |
Collapse
|
29
|
Dal-Pizzol F, de Medeiros GF, Michels M, Mazeraud A, Bozza FA, Ritter C, Sharshar T. What Animal Models Can Tell Us About Long-Term Psychiatric Symptoms in Sepsis Survivors: a Systematic Review. Neurotherapeutics 2021; 18:1393-1413. [PMID: 33410107 PMCID: PMC8423874 DOI: 10.1007/s13311-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Aurélien Mazeraud
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
| | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, 75015 Paris, France
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| |
Collapse
|
30
|
Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 152:105292. [PMID: 33556539 DOI: 10.1016/j.nbd.2021.105292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related β-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.
Collapse
|
31
|
Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. Brain Behav Immun 2021; 92:102-114. [PMID: 33242652 DOI: 10.1016/j.bbi.2020.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
The crosstalk between intestinal bacteria and the central nervous system, so called "the gut-brain axis", is critically important for maintaining brain homeostasis and function. This study aimed to investigate the integrity of the blood-brain barrier (BBB) and migration of bone marrow (BM)-derived cells to the brain parenchyma after intestinal microbiota depletion in adult mice. Gut microbiota dysbiosis was induced with 5 non-absorbable antibiotics in drinking water in mice that had received bone marrow transplantation (BMT) from green fluorescent protein (GFP) transgenic mice. Antibiotic-induced microbiome depletion reduced expression of tight-junction proteins of the brain blood vessels and increased BBB permeability. Fecal microbiota transplantation of antibiotics treated mice with pathogen-free gut microbiota decreased BBB permeability and up-regulated the expression of tight junction proteins. The BM-derived GFP+ cells were observed to infiltrate specific brain regions, including the nucleus accumbens (NAc), the septal nucleus (SPT) and the hippocampus (CA3). The infiltrated cells acquired a ramified microglia-like morphology and Iba1, a microglia marker, was expressed in all GFP+ cells, whereas they were negative for the astrocyte marker GFAP. Furthermore, treatment with CCR2 antagonist (RS102895) suppressed the recruitment of BM-derived monocytes to the brain. We report for the first time the migration of BM-derived monocytes to the brain regions involved in regulating emotional behaviors after depletion of intestinal microbiota in BMT background mice. However, mechanisms responsible for the migration and functions of the microglia-like infiltrated cells in the brain need further investigation. These findings indicate that monocyte recruitment to the brain in response to gut microbiota dysbiosis may represent a novel cellular mechanism that contributes to the development of brain disorders.
Collapse
|
32
|
Lu C, Gao R, Zhang Y, Jiang N, Chen Y, Sun J, Wang Q, Fan B, Liu X, Wang F. S-equol, a metabolite of dietary soy isoflavones, alleviates lipopolysaccharide-induced depressive-like behavior in mice by inhibiting neuroinflammation and enhancing synaptic plasticity. Food Funct 2021; 12:5770-5778. [PMID: 34038497 DOI: 10.1039/d1fo00547b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systemic injection with lipopolysaccharide can lead to depressive-like behavior in experimental animals by inducing neuroinflammation and is considered to be a classic model of depression. S-equol is a major metabolite of dietary soy isoflavones with antioxidant and anti-inflammatory effects, and it has many beneficial effects on human health, including alleviation of menopausal symptoms, osteoporosis, cancer, obesity, chronic kidney disease, and cognitive dysfunction. A recent study reported that S-equol inhibited lipopolysaccharide-stimulated neuroinflammation in astrocytes. However, there is no research on the antidepressant-like effects of S-equol. Therefore, the present study was conducted to evaluate the antidepressant-like effects of S-equol in a lipopolysaccharide-induced depression model in mice and explore its underlying mechanisms. Our results demonstrated that treatment with S-equol (10, 20 and 40 mg kg-1) for 19 days markedly reversed the behavior of acute LPS (1.0 mg kg-1) treated mice in sucrose preference, tail suspension and forced swimming tests, exerting antidepressant-like effects. In addition, S-equol administration significantly decreased the levels of pro-inflammatory cytokines (tumor necrosis factor, interleukin-6, interleukin-10, interleukin-1β), increased the levels of 5-hydroxytryptamine and norepinephrine, and normalized the release of tryptophan and kynurenine in the hippocampi of lipopolysaccharide-treated mice. Moreover, treatment with S-equol significantly up-regulated the expression of synaptic plasticity-related proteins (phospho synapsin, synapsin, postsynaptic density-95) and down-regulated the toll-like receptor 4/nuclear factor kappa B signaling pathway in the hippocampi of lipopolysaccharide-treated mice. These findings demonstrated that S-equol significantly alleviated the depressive-like behavior induced by acute systemic injection of LPS, and its antidepressant action was related to mediation of neuroinflammation via the TLR4/NF-κB signaling pathway, normalization of the monoamine neurotransmitter levels, reversal of tryptophan metabolism dysfunction, and enhancement of synaptic plasticity. The current study provides insight into the potential of S-equol in the prevention of depression.
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Rongjing Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100193, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences (CACM), Beijing 100700, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Regulska M, Szuster-Głuszczak M, Trojan E, Leśkiewicz M, Basta-Kaim A. The Emerging Role of the Double-Edged Impact of Arachidonic Acid- Derived Eicosanoids in the Neuroinflammatory Background of Depression. Curr Neuropharmacol 2020; 19:278-293. [PMID: 32851950 PMCID: PMC8033972 DOI: 10.2174/1570159x18666200807144530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Eicosanoids are arachidonic acid (AA) derivatives belonging to a family of lipid signalling mediators that are engaged in both physiological and pathological processes in the brain. Recently, their implication in the prolonged inflammatory response has become a focus of particular interest because, in contrast to acute inflammation, chronic inflammatory processes within the central nervous system (CNS) are crucial for the development of brain pathologies including depression. The synthesis of eicosanoids is catalysed primarily by cyclooxygenases (COX), which are involved in the production of pro-inflammatory AA metabolites, including prostaglandins and thromboxanes. Moreover, eicosanoid synthesis is catalysed by lipoxygenases (LOXs), which generate both leukotrienes and anti-inflammatory derivatives such as lipoxins. Thus, AA metabolites have double- edged pro-inflammatory and anti-inflammatory, pro-resolving properties, and an imbalance between these metabolites has been proposed as a contributor or even the basis for chronic neuroinflammatory effects. This review focuses on important evidence regarding eicosanoid-related pathways (with special emphasis on prostaglandins and lipoxins) that has added a new layer of complexity to the idea of targeting the double-edged AA-derivative pathways for therapeutic benefits in depression. We also sought to explore future research directions that can support a pro-resolving response to control the balance between eicosanoids and thus to reduce the chronic neuroinflammation that underlies at least a portion of depressive disorders.
Collapse
Affiliation(s)
- Magdalena Regulska
- Immunoendocrinology Laboratory, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Immunoendocrinology Laboratory, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Krakow, Poland
| | - Ewa Trojan
- Immunoendocrinology Laboratory, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Immunoendocrinology Laboratory, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Krakow, Poland
| | - Agnieszka Basta-Kaim
- Immunoendocrinology Laboratory, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Krakow, Poland
| |
Collapse
|
34
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
35
|
Ishikawa Y, Kitaoka S, Kawano Y, Ishii S, Suzuki T, Wakahashi K, Kato T, Katayama Y, Furuyashiki T. Repeated social defeat stress induces neutrophil mobilization in mice: maintenance after cessation of stress and strain-dependent difference in response. Br J Pharmacol 2020; 178:827-844. [PMID: 32678951 DOI: 10.1111/bph.15203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation has been associated with stress-related mental disturbances. Rodent studies have reported that blood-borne cytokines are crucial for stress-induced changes in emotional behaviours. However, the roles and regulation of leukocytes in chronic stress remain unclear. EXPERIMENTAL APPROACH Adult male C57BL/6N mice were subjected to repeated social defeat stress (R-SDS) with two protocols which differed in stress durations, stress cycles, and housing conditions, followed by the social interaction test. The numbers of leukocyte subsets in the bone marrow, spleen, and blood were determined by flow cytometry shortly after or several days after R-SDS. These leukocyte changes were studied in two strains of mice with different stress susceptibility, C57BL/6N and BALB/c mice. KEY RESULTS R-SDS with both protocols similarly induced social avoidance in C57BL/6N mice. In the bone marrow, neutrophils and monocytes were increased, and T cells, B cells, NK cells, and dendritic cells were decreased with both protocols. In the blood, neutrophils and monocytes were increased with both protocols, whereas T cells, B cells, NK cells, and dendritic cells were decreased with one of these. Neutrophils and monocytes were also increased in the spleen. Changes in the bone marrow and increased levels of circulating neutrophils were maintained for 6 days after R-SDS. BALB/c mice showed greater social avoidance and increase in circulating neutrophils than C57BL/6N mice. CONCLUSION AND IMPLICATIONS In two strains of mice, chronic stress induced neutrophil mobilization and its maintenance. These effects were strain-related and may contribute to the pathology of mental illness. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Yuka Ishikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yuko Kawano
- Hematology, Department of Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kanako Wakahashi
- Hematology, Department of Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Taro Kato
- Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yoshio Katayama
- Japan Agency for Medical Research and Development, Tokyo, Japan.,Hematology, Department of Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
36
|
Lasselin J, Benson S, Hebebrand J, Boy K, Weskamp V, Handke A, Hasenberg T, Remy M, Föcker M, Unteroberdörster M, Brinkhoff A, Engler H, Schedlowski M. Immunological and behavioral responses to in vivo lipopolysaccharide administration in young and healthy obese and normal-weight humans. Brain Behav Immun 2020; 88:283-293. [PMID: 32485294 DOI: 10.1016/j.bbi.2020.05.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with an increase prevalence of neuropsychiatric symptoms and diseases, such as depression. Based on the facts that pro-inflammatory cytokines are able to modulate behavior, and that obesity is characterized by a chronic low-grade inflammatory state, inflammation has been hypothesized to contribute to the neuropsychiatric comorbidity in obese individuals. However, a causal link between inflammation and the development of neuropsychiatric symptoms is hard to establish in humans. Here, we used an inflammatory stimulus, i.e. the intravenous injection of lipopolysaccharide (LPS), in a double-blind placebo-controlled design, to determine the vulnerability of obese individuals to inflammation-induced behavioral changes. The hypothesis was that obese individuals would show heightened behavioral response compared to normal-weight subjects for the same inflammatory stimulus, reflecting an increased sensitivity to the behavioral effects of pro-inflammatory cytokines. LPS (dose 0.8 ng/kg body weight, adjusted for estimated blood volume in obese subjects) and placebo (saline) were intravenously injected in 14 obese healthy subjects and 23 normal-weight healthy subjects in a within-subject, randomized, crossover design. LPS administration induced, in both groups, an acute increase in blood concentrations of cytokines (interleukin-6, tumor necrosis factor-α, and IL-10), as well as in body temperature, cortisol, norepinephrine, sickness symptoms, fatigue, negative mood, and state anxiety. There were little differences in the immune and behavioral responses to LPS between obese and normal-weight subjects, but the cortisol response to LPS was strongly attenuated in obese individuals. Higher percentage of body fat was related to a lower cortisol response to LPS. Taken together, the population of young and healthy obese individuals in this study did not exhibit an increased behavioral sensitivity to cytokines, but an attenuated cortisol response to the immune challenge. Future studies will need to determine whether additional physiological and psychological factors interact with the state of obesity to increase the risk for inflammation-induced neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Stress Research Institute, Stockholm University, 10691 Stockholm, Sweden; Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden.
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Karoline Boy
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Vera Weskamp
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Analena Handke
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Till Hasenberg
- Helios Adipositas Zentrum West, Helios St. Elisabeth Klinik Oberhausen, Witten/Herdecke University, Josefstr. 3, 46045 Oberhausen, Germany
| | - Miriam Remy
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Meike Unteroberdörster
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Alexandra Brinkhoff
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Nephrology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
37
|
Abstract
Purpose of Review A better understanding of the key molecules/pathways underlying the pathophysiology of depression and schizophrenia may contribute to novel therapeutic strategies. In this review, we have discussed the recent developments on the role of inflammatory pathways in the pathogenesis of depression and schizophrenia. Recent Findings Inflammation is an innate immune response that can be triggered by various factors, including pathogens, stress and injury. Under normal conditions, the inflammatory responses quiet after pathogen clearance and tissue repair. However, abnormal long-term or chronic inflammation can lead to damaging effects. Accumulating evidence suggest that dysregulated inflammation is linked to the pathogenesis of neuropsychiatric disorders. In this review, we have discussed the roles of complement system, infiltration of peripheral immune cells into the central nervous system (CNS), the gut-brain axis, and the kynurenine pathway in depression and schizophrenia. Summary There is a large body of compelling evidence on the role of inflammatory pathways in depression and schizophrenia. Although most of these findings show their roles in the pathophysiology of the above disorders, additional studies are warranted to investigate the therapeutic potential of various immune signaling targets discussed in this article.
Collapse
|
38
|
Lynall ME, Turner L, Bhatti J, Cavanagh J, de Boer P, Mondelli V, Jones D, Drevets WC, Cowen P, Harrison NA, Pariante CM, Pointon L, Clatworthy MR, Bullmore E. Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression. Biol Psychiatry 2020; 88:185-196. [PMID: 32000983 DOI: 10.1016/j.biopsych.2019.11.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Depression has been associated with increased inflammatory proteins, but changes in circulating immune cells are less well defined. METHODS We used multiparametric flow cytometry to count 14 subsets of peripheral blood cells in 206 depression cases and 77 age- and sex-matched controls (N = 283). We used univariate and multivariate analyses to investigate the immunophenotypes associated with depression and depression severity. RESULTS Depression cases, compared with controls, had significantly increased immune cell counts, especially neutrophils, CD4+ T cells, and monocytes, and increased inflammatory proteins (C-reactive protein and interleukin-6). Within-group analysis of cases demonstrated significant associations between the severity of depressive symptoms and increased myeloid and CD4+ T-cell counts. Depression cases were partitioned into 2 subgroups by forced binary clustering of cell counts: the inflamed depression subgroup (n = 81 out of 206; 39%) had increased monocyte, CD4+, and neutrophil counts; increased C-reactive protein and interleukin-6; and more severe depression than the uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven analysis identified 4 subgroups of depression cases, 2 of which (n = 38 and n = 100; 67% collectively) were associated with increased inflammatory proteins and more severe depression but differed in terms of myeloid and lymphoid cell counts. Results were robust to potentially confounding effects of age, sex, body mass index, recent infection, and tobacco use. CONCLUSIONS Peripheral immune cell counts were used to distinguish inflamed and uninflamed subgroups of depression and to indicate that there may be mechanistically distinct subgroups of inflamed depression.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom.
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Junaid Bhatti
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Cavanagh
- Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Peter de Boer
- Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, United Kingdom; National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, London, United Kingdom
| | - Wayne C Drevets
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, California
| | - Philip Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, United Kingdom
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
39
|
Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways. Acta Pharmacol Sin 2020; 41:612-619. [PMID: 31796867 PMCID: PMC7468309 DOI: 10.1038/s41401-019-0317-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Increasing studies show that inflammatory processes may be involved in depressive disorders. Nuclear factor erythroid-2 related factor 2 (Nrf2) modulates tissue microglial M1 phenotypic changes to the M2 phenotype, which is implicated in protection against inflammatory diseases. We have reported that the adipose-derived mesenchymal stem cells (ADSCs) display anti-inflammatory activity. In this study we explored whether the mechanism of anti-inflammatory activity of ADSCs was related to Nrf2. ADSCs were isolated from mouse fat pads and intravenously administered to chronic mild stress (CMS)-exposed C57BL/6 mice at the dose of 1 × 106 once a week for 3 weeks. We showed that ADSC administration significantly remedied CMS-induced depressive-like behaviors in sucrose preference test, tail suspension test, and forced swim test accompanied by suppressing microglial activation and the expression of inflammatory factors including MCP-1, TNF-α, IL-1β, and IL-6. Furthermore, ADSC administration promoted both the expression of BDNF and TrkB, and promoted Nrf2/HO-1 signaling but suppressed TLR4/NF-κB signaling in brain tissue. In order to elucidate the role of Nrf2/HO-1 signaling in ADSC-caused neuroprotection, Nrf2-modified ADSCs were cocultured with BV2 microglial cells, then exposed to lipopolysaccharide (LPS). Downregulation of Nrf2 in ADSCs decreased the protective effects of ADSCs against LPS-induced microglial activation and M1 polarization. Nrf2 overexpression in ADSCs markedly suppressed LPS-induced TLR4 and NF-κB expression in microglial cells. These results suggest a possible antidepressive mechanism correlated with microglial polarization for anti-inflammatory agents, which may provide a new microglia-targeted strategy for depression therapy.
Collapse
|
40
|
He MC, Shi Z, Qin M, Sha NN, Li Y, Liao DF, Lin FH, Shu B, Sun YL, Yuan TF, Wang YJ, Zhang Y. Muscone Ameliorates LPS-Induced Depressive-Like Behaviors and Inhibits Neuroinflammation in Prefrontal Cortex of Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:559-577. [PMID: 32345030 DOI: 10.1142/s0192415x20500287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depression is partially caused by inflammation in the central nervous system. Early study demonstrated that musk, glandular secretion from male musk deer, exerted an antidepressant-like effect. The aim of this study was to investigate if muscone, a bioactive ingredient in musk, could ameliorate neuroinflammation and depressive-like behaviors as well as explore the potential action mechanism. Mice were intraperitoneally (i.p.) injected with muscone for 2 weeks prior to administration of lipopolysaccharides (LPS, 1mg/kg, i.p.). Pre-treatment with muscone reversed the LPS-induced decrease in body weight within 24h and ameliorated depressive-like behaviors shown by sucrose preference, tail suspension test, and forced swimming test. LPS-induced activation of microglial cells and elevation in expression of inflammatory cytokines including IL-1β, RANTES, and MCP-1 in the prefrontal cortex of mice were effectively abrogated by muscone, which significantly down-regulated expression of TLR4, MyD88, Caspase-1, NLRP3, renin, and Ang II. In addition, treatment of BV2 microglia cells with muscone markedly attenuated the LPS-induced rise in protein expression of TLR4, Ang II, and IL-1β. This study revealed that muscone could ameliorate LPS-induced depressive-like behaviors by repressing neuroinflammation in the prefrontal cortex of mice caused by its suppression on microglia activation and production of inflammatory cytokines via acting on TLR4 pathway and RAS cascade.
Collapse
Affiliation(s)
- Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Zhe Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, P. R. China.,Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Nan-Nan Sha
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Yue Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen 518000, P. R. China
| | - Bing Shu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yue-Li Sun
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P. R. China
| | - Yong-Jun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| |
Collapse
|
41
|
Zhang W, Jin Y, Wang D, Cui J. Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 2020; 156:118-130. [PMID: 31935431 DOI: 10.1016/j.brainresbull.2020.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022]
Abstract
Neuroprotective effects of leptin have been shown in mouse model of cerebral ischemia/reperfusion injury and primary cortical neuronal culture with oxygen-glucose deprivation (OGD), while the underlying mechanisms are less understood. In the present study, we investigated whether leptin modulated mitochondrial function through JAK2/STAT3 in vivo mouse model of transient middle cerebral artery occlusion (MCAO) and in OGD-challenged primary neuronal cultures. JAK2/STAT3; mitochondrial biogenesis markers (PGC-1α); and apoptosis-associated proteins (caspase-3, BCL-2, BCL-XL, and cytochrome c) were detected by western blotting and reverse transcription-polymerase chain reaction at 1 h before and after ischemia/reperfusion. P-STAT3 and PGC-1α in neurons and astrocytes were detected. Moreover, mitochondrial morphology of the ischemic ipsilateral penumbra is examined using transmission electron microscopy. Primary cerebral cortical neurons were evaluated for viability, mitochondrial membrane potential (MMP), and apoptosis to assess whether dose-dependent neuroprotective effects of leptin during OGD were mitigated by the JAK2/STAT3 inhibitor AG490. Leptin activated JAK2/STAT3 signaling in neurons and astrocytes distributed in the ischemic ipsilateral penumbra, with peak p-STAT3 levels observed at 1 h after reperfusion. Leptin increased PGC-1α, BCL-2, and BCL-XL protein levels, cell viability, and MMP and decreased apoptosis both in vitro and in vivo; these effects were reversed by AG490 treatment. Our findings suggest that leptin-mediated neuroprotective effects in tMCAO may peak at 1 h to induce the transcription of its target gene PGC-1α, stabilization of MMP, inhibition of mitochondrial permeability transition pore opening, release of cytochrome c, and apoptosis.
Collapse
Affiliation(s)
- Wenfang Zhang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, PR China
| | - Yinchuan Jin
- Department of Clinical Psychology, Fourth Military Medical University, PR China
| | - Dong Wang
- Department of Cardiology, Affiliated Hospital of Binzhou Medical College, NO.661 2 Yellow River Road, Binzhou, Shandong, 256603, PR China.
| | - Jingjing Cui
- Department of Medical Affairs, Affiliated Hospital of Binzhou Medical College, NO.661 2 Yellow River Road, Binzhou, Shandong, 256603, PR China.
| |
Collapse
|
42
|
Bredehöft J, Bhandari DR, Pflieger FJ, Schulz S, Kang JX, Layé S, Roth J, Gerstberger R, Mayer K, Spengler B, Rummel C. Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chem Neurosci 2019; 10:4394-4406. [PMID: 31513369 DOI: 10.1021/acschemneuro.9b00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux 33076, France
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Konstantin Mayer
- University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Klinikstrasse 33, Giessen D-35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| |
Collapse
|
43
|
He MC, Shi Z, Sha NN, Chen N, Peng SY, Liao DF, Wong MS, Dong XL, Wang YJ, Yuan TF, Zhang Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochem Pharmacol 2019; 163:1-8. [DOI: 10.1016/j.bcp.2019.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
|
44
|
Nadeem A, Ahmad SF, Attia SM, Al-Ayadhi LY, Bakheet SA, Al-Harbi NO. Oxidative and inflammatory mediators are upregulated in neutrophils of autistic children: Role of IL-17A receptor signaling. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:204-211. [PMID: 30529000 DOI: 10.1016/j.pnpbp.2018.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by repetitive behaviors, impaired social communication and stereotyped interests, and often associated with dysregulations in innate/adaptive immune cells. IL-17A has been linked with abnormal behavioral patterns observed in autistic children and animal models of autism. However, it is yet to be investigated if IL-17A and its receptors are implicated in regulation of oxidative and inflammatory mediators in neutrophils of ASD patients. Therefore, we pursued to identify the effect of IL-17 receptor (IL-17R), and its inflammatory potential in neutrophils from ASD (n = 45) and typically developing control (TDC; n = 40) subjects. IL-17A, its receptor (IL-17R), associated signaling pathways [nuclear transcription factor nuclear factor-kappa B (NF-κB), IL-6 and oxidative stress parameters such as NADPH oxidase (NOX2), inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), and nitrotyrosine] were determined in the neutrophils from TDC and ASD subjects. Our data show that IL-17A expression, and IL-17R are increased in neutrophils of ASD patients. Further, inflammatory signaling pathways such as such as phospho-NFκB, and ROS generating enzymes, i.e. NOX2/iNOS are increased in neutrophils of ASD patients as compared TDC subjects. Furthermore, activation of IL-17A/IL-17R signaling in neutrophils of ASD subjects leads to upregulation of phospho-NFκB, IL-6 and NOX2/ROS, thus suggesting a compelling role of IL-17A in modulation of inflammation. Our study displays for the first time that IL-17A/IL-17R signaling in neutrophils could play a pivotal role in autism through upregulation of oxidative and inflammatory mediators.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Pflieger FJ, Hernandez J, Schweighöfer H, Herden C, Rosengarten B, Rummel C. The role of neutrophil granulocytes in immune-to-brain communication. Temperature (Austin) 2018; 5:296-307. [PMID: 30574524 DOI: 10.1080/23328940.2018.1538598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022] Open
Abstract
Immune-to-brain communication has been studied in a variety of experimental models. Crucial insights into signalling and mechanisms were previously revealed in studies investigating fever induction pathways. The scientific community has primarily focused on neuronal and humoral pathways in the manifestation of this response. Emerging evidence has now shown that immune-to-brain signalling via immune cells is pivotal for normal brain function and brain pathology. The present manuscript aims to provide a brief overview on the current understanding of how immune cells signal to the brain. Insights are summarized on the potential physiological significance of some immune cells signalling from the periphery to the brain. A particular focus is laid on the role of neutrophil granulocytes. As such, IL-1β expressing neutrophil granulocytes have been shown to transfer inflammatory information to the brain and contribute to prolonged behavioural changes due to septic encephalopathy in rats during severe systemic inflammation induced by the bacterial component and TLR4 agonist lipopolysaccharide. Modulation of immune cell recruitment to the brain is discussed by various confounding factors including sleep, exercise, the nutritional status e.g. obesity, leptin and omega 3 fatty acids, and psychological or inflammatory stressors. The physiological significance of immune cell mediated communication between the immune system and the brain is highlighted by the fact that systemic inflammatory insults can exacerbate ongoing brain pathologies via immune cell trafficking. New insights into mechanisms and mediators of immune cell mediated immune-to-brain communication are important for the development of new therapeutic strategies and the better understanding of existing ones. Abbreviations: ACTH: adrenocorticotropic hormone; BBB: blood-brain barrier; BBI: blood-brain interface; CD: cluster of differentiation; CINC: cytokine-induced neutrophil chemoattractant; CRH: corticotropin releasing hormone; CVOs: circumventricular organs; CXCR: chemokine receptor; DAPI: 40:6-diamidino-2-phenylindole dilactate; DHA: docosahexaenoid acid; ICAM: intracellular adhesion molecule; IL: interleukin; i.p.: intraperitoneal; i.v.: intravenous; KC: keratinocytes-derived chemokine; LPS: lipopolysaccharide; MIP: macrophage inflammatory protein; MS: multiple sclerosis; NFκB: nuclear factor kappa B; NF-IL6: nuclear factor IL-6; PCTR: protectin conjugates in tissue regeneration; PG: prostaglandin; p.i.: post injection; PVN: paraventricular nucleus; ra: receptor antagonist; STAT3: signal transducer and activator of transcription 3; TIMP: tissue inhibitors of metalloproteinases; TLR: toll-like receptor; TNFα: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Hanna Schweighöfer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
47
|
Translational control of depression-like behavior via phosphorylation of eukaryotic translation initiation factor 4E. Nat Commun 2018; 9:2459. [PMID: 29941989 PMCID: PMC6018502 DOI: 10.1038/s41467-018-04883-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
Translation of mRNA into protein has a fundamental role in neurodevelopment, plasticity, and memory formation; however, its contribution in the pathophysiology of depressive disorders is not fully understood. We investigated the involvement of MNK1/2 (MAPK-interacting serine/threonine-protein kinase 1 and 2) and their target, eIF4E (eukaryotic initiation factor 4E), in depression-like behavior in mice. Mice carrying a mutation in eIF4E for the MNK1/2 phosphorylation site (Ser209Ala, Eif4e ki/ki), the Mnk1/2 double knockout mice (Mnk1/2-/-), or mice treated with the MNK1/2 inhibitor, cercosporamide, displayed anxiety- and depression-like behaviors, impaired serotonin-induced excitatory synaptic activity in the prefrontal cortex, and diminished firing of the dorsal raphe neurons. In Eif4e ki/ki mice, brain IκBα, was decreased, while the NF-κB target, TNFα was elevated. TNFα inhibition in Eif4e ki/ki mice rescued, whereas TNFα administration to wild-type mice mimicked the depression-like behaviors and 5-HT synaptic deficits. We conclude that eIF4E phosphorylation modulates depression-like behavior through regulation of inflammatory responses.
Collapse
|
48
|
Souza-Almeida G, D'Avila H, Almeida PE, Luna-Gomes T, Liechocki S, Walzog B, Hepper I, Castro-Faria-Neto HC, Bozza PT, Bandeira-Melo C, Maya-Monteiro CM. Leptin Mediates In Vivo Neutrophil Migration: Involvement of Tumor Necrosis Factor-Alpha and CXCL1. Front Immunol 2018; 9:111. [PMID: 29467755 PMCID: PMC5808117 DOI: 10.3389/fimmu.2018.00111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil activation and migration is still controversial. Here, we investigate the in vivo mechanisms of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg) induces a time- and concentration-dependent neutrophil influx. We did not observe the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we had observed previously in peritoneal macrophages. The participation of leukotriene B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 5-lipoxygenase activity in 5-lipoxygenase (5-LO)-/- mice and after the administration of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover, no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, contrasting with the leptin-induced signaling for lipid body formation in macrophage that is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruitment was inhibited in tumor necrosis factor receptor 1 (TNFR1-/-) mice, indicating a role for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ-/- mice. Accordingly, leptin induced the peritoneal cells to produce CXCL1, both in vivo and in vitro, and the neutrophil influx was ablated after using an antibody against CXCL1. Our results establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for leptin-induced neutrophil migration in vivo.
Collapse
Affiliation(s)
- Glaucia Souza-Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heloisa D'Avila
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Patricia E Almeida
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Tatiana Luna-Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.,Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingrid Hepper
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Liu X, Quan N. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front Neurol 2018; 9:8. [PMID: 29410649 PMCID: PMC5787061 DOI: 10.3389/fneur.2018.00008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and expression of the inflammatory cytokine interleukin-1 (IL-1) in the CNS have become almost synonymous with neuroinflammation. In numerous studies, increased CNS IL-1 expression and altered microglial morphology have been used as hallmarks of CNS inflammation. A central concept of how CNS IL-1 and microglia influence functions of the nervous system was derived from the notion initially generated in the peripheral immune system: IL-1 stimulates monocyte/macrophage (the peripheral counterparts of microglia) to amplify inflammation. It is increasingly clear, however, CNS IL-1 acts on other targets in the CNS and microglia participates in many neural functions that are not related to immunological activities. Further, CNS exhibits immunological privilege (although not as absolute as previously thought), rendering amplification of inflammation within CNS under stringent control. This review will analyze current literature to evaluate the contribution of immunological and non-immunological aspects of microglia/IL-1 interaction in the CNS to gain insights for how these aspects might affect health and disease in the nervous tissue.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Ning Quan
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Yuan X, Caron A, Wu H, Gautron L. Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Front Neuroanat 2018; 12:4. [PMID: 29410615 PMCID: PMC5787097 DOI: 10.3389/fnana.2018.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022] Open
Abstract
Past studies have suggested that non-neuronal brain cells express the leptin receptor. However, the identity and distribution of these leptin receptor-expressing non-neuronal brain cells remain debated. This study assessed the distribution of the long form of the leptin receptor (LepRb) in non-neuronal brain cells using a reporter mouse model in which LepRb-expressing cells are permanently marked by tdTomato fluorescent protein (LepRb-CretdTomato). Double immunohistochemistry revealed that, in agreement with the literature, the vast majority of tdTomato-tagged cells across the mouse brain were neurons (i.e., based on immunoreactivity for NeuN). Non-neuronal structures also contained tdTomato-positive cells, including the choroid plexus and the perivascular space of the meninges and, to a lesser extent, the brain. Based on morphological criteria and immunohistochemistry, perivascular cells were deduced to be mainly pericytes. Notably, tdTomato-positive cells were immunoreactive for vitronectin and platelet derived growth factor receptor beta (PDGFBR). In situ hybridization studies confirmed that most tdTomato-tagged perivascular cells were enriched in leptin receptor mRNA (all isoforms). Using qPCR studies, we confirmed that the mouse meninges were enriched in Leprb and, to a greater extent, the short isoforms of the leptin receptor. Interestingly, qPCR studies further demonstrated significantly altered expression for Vtn and Pdgfrb in the meninges and hypothalamus of LepRb-deficient mice. Collectively, our data demonstrate that the only intracranial non-neuronal cells that express LepRb in the adult mouse are cells that form the blood-brain barrier, including, most notably, meningeal perivascular cells. Our data suggest that pericytic leptin signaling plays a role in the integrity of the intracranial perivascular space and, consequently, may provide a link between obesity and numerous brain diseases.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|