1
|
Weng Y, Xie G. Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease. Biochem Genet 2024:10.1007/s10528-024-11004-z. [PMID: 39724481 DOI: 10.1007/s10528-024-11004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685. Further, overexpression of GABBR2 was achieved in human neuroblastoma cell lines SH-SY5Y and BE(2)-M17 using expression plasmid transfection. GABBR2 was significantly overexpressed in brain tissues of patients with prodromal AD who had developed MCI, as compared to normal brains. Moreover, GABBR2 overexpressing cells showed a significant increase in intracellular Ca2+ concentration, a large amount of reactive oxygen species production, a large opening of the mitochondrial permeability transition pore and a significant increase in apoptosis compared with control cells. GABBR2 overexpression was significantly involved in early AD progression and MCI by causing cellular events such as intracellular Ca2+ imbalance, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Neurology, The Affiliated People's Hospital of Ningbo University, No.251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, No.57 Xingning Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
2
|
Ye W, Zhang RS, Hosang GM, Fabbri C, King N, Strauss J, Jones I, Jones L, Breen G, Kennedy JL, Vincent JB, Zai CC. Association of NTRK2 gene with suicidality: a meta-analysis. Psychiatr Genet 2024; 34:124-133. [PMID: 39527116 DOI: 10.1097/ypg.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous studies have shown that genes in brain development pathways may have important roles in affecting risk of suicidal behaviors, with our previous meta-analysis supporting a role of the brain-derived neurotrophic factor (BDNF) gene. NTRK2 is a gene that encodes the neurotrophic receptor tyrosine kinase 2, which is a receptor for BDNF. In the current study, we aim to examine the potential association between NTRK2 single nucleotide polymorphism (SNPs) and suicidal ideation/behaviors. METHODS We first conducted a literature search using keywords like 'NTRK2', 'TRKB', and 'suicid*' to identify papers on NTRK2 SNPs and suicidal ideation/behaviors. In addition, we have individual-level genotype data for all the identified SNPs in literature search. We used the R meta package to perform meta-analyses on both the genotype count and the allele count data. Moreover, we performed meta-analyses on specific haplotypes within each haplotype block. MAIN RESULTS Following our literature search and meta-analyses on 20 NTRK2 SNPs across up to 8467 samples, we found three SNPs, rs10868235 [N = 5,318, odds ratio (OR) = 1.34, P = 0.02], rs1867283 (N = 5,134, OR = 0.73, P = 0.04), and rs1147198 (N = 5,132, OR = 1.36, P = 0.03) to be nominally associated with suicidal attempts. Those three findings, however, did not survive multiple-testing corrections. Also, none of the haplotype blocks showed significant involvement in suicidality. CONCLUSION Our results suggest that the NTRK2 gene may not have a major role in suicidality. Future efforts, however, should explore gene-gene interaction and pathway analyses.
Collapse
Affiliation(s)
- Wenzhu Ye
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Ruo Su Zhang
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - Georgina M Hosang
- Unit of Psychological Medicine, Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Nicole King
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - John Strauss
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ian Jones
- National Centre for Mental Health, MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff
| | - Lisa Jones
- Department of Psychological Medicine, University of Worcester, Worcester
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto
| | - John B Vincent
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto
- Molecular Neuropsychiatry and Development (MiND) Laboratory, Molecular Brain Science Department, Molecular Brain Science Department, Campbell Family Mental Health Research, Centre for Addiciton and Mental Health
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada and
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, USA
| |
Collapse
|
3
|
Liao YC, Wang LH, Hung MC, Cheng TC, Lin YC, Chang J, Tu SH, Wu CH, Yen Y, Hsieh YC, Chen LC, Ho YS. Investigation of the α9-nicotinic receptor single nucleotide polymorphisms induced oncogenic properties and molecular mechanisms in breast cancer. Hum Mol Genet 2024; 33:1948-1965. [PMID: 39251229 DOI: 10.1093/hmg/ddae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404328, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ying-Chi Lin
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Chen Hsieh
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
4
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Yang Z, Chen J, Han H, Wang Y, Shi X, Zhang B, Mao Y, Li AN, Yuan W, Yao J, Li MD. Single nucleotide polymorphisms rs148582811 regulates its host gene ARVCF expression to affect nicotine-associated hippocampus-dependent memory. iScience 2023; 26:108335. [PMID: 38025780 PMCID: PMC10679859 DOI: 10.1016/j.isci.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Although numerous susceptibility loci are nominated for nicotine dependence (ND), no report showed any association of ARVCF with ND. Through genome-wide sequencing analysis, we first identified genetic variants associated nominally with ND and then replicated them in an independent sample. Of the six replicated variants, rs148582811 in ARVCF located in the enhancer-associated marker peak is attractive. The effective-median-based Mendelian randomization analysis indicated that ARVCF is a causal gene for ND. RNA-seq analysis detected decreased ARVCF expression in smokers compared to nonsmokers. Luciferase reporter assays indicated that rs148582811 and its located DNA fragment allele-specifically regulated ARVCF expression. Immunoprecipitation analysis revealed that transcription factor X-ray repair cross-complementing protein 5 (XRCC5) bound to the DNA fragment containing rs148582811 and allele-specifically regulated ARVCF expression at the mRNA and protein levels. With the Arvcf knockout mouse model, we showed that Arvcf deletion not only impairs hippocampus-dependent learning and memory, but also alleviated nicotine-induced memory deficits.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Andria N. Li
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianhua Yao
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Hill SY, Hostyk J. A whole exome sequencing study to identify rare variants in multiplex families with alcohol use disorder. Front Psychiatry 2023; 14:1216493. [PMID: 37915799 PMCID: PMC10616827 DOI: 10.3389/fpsyt.2023.1216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023] Open
Abstract
Background Alcohol use disorder (AUD) runs in families and is accompanied by genetic variation. Some families exhibit an extreme susceptibility in which multiple cases are found and often with an early onset of the disorder. Large scale genome-wide association studies have identified several genes with impressive statistical probabilities. Most of these genes are common variants. Our goal was to perform exome sequencing in families characterized by multiple cases (multiplex families) to determine if rare variants might be segregating with disease status. Methods A case-control approach was used to leverage the power of a large control sample of unrelated individuals (N = 8,983) with exome sequencing [Institute for Genomic Medicine (IGM)], for comparison with probands with AUD (N = 53) from families selected for AUD multiplex status. The probands were sequenced at IGM using similar protocols to those used for the archival controls. Specifically, the presence of a same-sex pair of adult siblings with AUD was the minimal criteria for inclusion. Using a gene-based collapsing analysis strategy, a search for qualifying variants within the sequence data was undertaken to identify ultra-rare non-synonymous variants. Results We searched 18,666 protein coding genes to identify an excess of rare deleterious genetic variation using whole exome sequence data in the 53 AUD individuals from a total of 282 family members. To complete a case/control analysis of unrelated individuals, probands were compared to unrelated controls. Case enrichment for 16 genes with significance at 10-4 and one at 10-5 are plausible candidates for follow-up studies. Six genes were ultra rare [minor allele frequency (MAF) of 0.0005]: CDSN, CHRNA9, IFT43, TLR6, SELENBP1, and GMPPB. Eight genes with MAF of 0.001: ZNF514, OXGR1, DIEXF, TMX4, MTBP, PON2, CRHBP, and ANKRD46 were identified along with three protein-truncating variants associated with loss-of-function: AGTRAP, ANKRD46, and PPA1. Using an ancestry filtered control group (N = 2,814), nine genes were found; three were also significant in the comparison to the larger control group including CHRNA9 previously implicated in alcohol and nicotine dependence. Conclusion This study implicates ultra-rare loss-of-function genes in AUD cases. Among the genes identified include those previously reported for nicotine and alcohol dependence (CHRNA9 and CRHBP).
Collapse
Affiliation(s)
- Shirley Y. Hill
- Department of Psychiatry, Psychology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
7
|
Karlow JA, Pehrsson EC, Xing X, Watson M, Devarakonda S, Govindan R, Wang T. Non-small Cell Lung Cancer Epigenomes Exhibit Altered DNA Methylation in Smokers and Never-smokers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:991-1013. [PMID: 37742993 PMCID: PMC10928376 DOI: 10.1016/j.gpb.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 09/26/2023]
Abstract
Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.
Collapse
Affiliation(s)
- Jennifer A Karlow
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
8
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single nucleus transcriptomics of ventral midbrain identifies glial activation associated with chronic opioid use disorder. Nat Commun 2023; 14:5610. [PMID: 37699936 PMCID: PMC10497570 DOI: 10.1038/s41467-023-41455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Tova Y Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
- Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.09.23295284. [PMID: 37745582 PMCID: PMC10516045 DOI: 10.1101/2023.09.09.23295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - 23andMe Research Team
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah L Elson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single Nucleus Transcriptomics Reveals Pervasive Glial Activation in Opioid Overdose Cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531400. [PMID: 36945611 PMCID: PMC10028861 DOI: 10.1101/2023.03.07.531400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes, with prominent activation of the immune response including interferon, NFkB signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling and plasticity genes in VM non-dopaminergic neurons. VM transcriptomic reprogramming in the context of opioid exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Tova Y. Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Carl J. Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
- Department of Biology, University of Tor Vergata, Rome, Italy, 00133
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
11
|
Mohammadi S, Mahmoudi J, Farajdokht F, Asadi M, Pirsarabi P, Kazeminiaei SF, Parvizpour S, Sadigh-Eteghad S. Polymorphisms of nicotinic acetylcholine receptors in Alzheimer’s disease: a systematic review and data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
This study was conducted to accomplish a better insight into the impact of single nucleotide polymorphisms (SNPs) of nicotinic acetylcholine receptors (nAChR) at the risk of Alzheimer’s disease (AD) and their possible pathogenicity.
Methods
We carried out a systemic review of accessible studies. The case–control studies were assessed by an electronic search of international and local databases to identify relevant studies on SNPs relating to nAChR genes in AD. Two reviewers evaluated the inclusion/exclusion criteria, summarized, and analyzed the extracted data. We used odds ratios (ORs) with 95% confidence intervals (CIs) for reporting our data. Online databases were checked for possible pathogenicity of statistically significant SNPs. Also, online databases, including NCBI, NIH, ClinVar, RegulomeDB, and Ensemble, were used to analyze and identify structure and function, DNA features, and flank sequencing in SNPs.
Results
Among all collected SNPs, rs4779978 and rs1827294 on CHRNA7, rs1044394 on CHRNA4, and rs1127314 on CHRNB2 showed statistically significant between AD cases and controls.
Conclusions
Some SNPs from the reviewed reports show evidence supporting their possible involvement in AD pathology. However, more comprehensive studies are necessary to identify the exact correlation and their role on the pathogenicity of disease.
Collapse
|
12
|
Han H, Xu M, Wen L, Chen J, Liu Q, Wang J, Li MD, Yang Z. Identification of a Novel Functional Non-synonymous Single Nucleotide Polymorphism in Frizzled Class Receptor 6 Gene for Involvement in Depressive Symptoms. Front Mol Neurosci 2022; 15:882396. [PMID: 35875672 PMCID: PMC9302575 DOI: 10.3389/fnmol.2022.882396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Although numerous susceptibility loci for depression have been identified in recent years, their biological function and molecular mechanism remain largely unknown. By using an exome-wide association study for depressive symptoms assessed by the Center for Epidemiological Studies Depression (CES-D) score, we discovered a novel missense single nucleotide polymorphism (SNP), rs61753730 (Q152E), located in the fourth exon of the frizzled class receptor 6 gene (FZD6), which is a potential causal variant and is significantly associated with the CES-D score. Computer-based in silico analysis revealed that the protein configuration and stability, as well as the secondary structure of FZD6 differed greatly between the wild-type (WT) and Q152E mutant. We further found that rs61753730 significantly affected the luciferase activity and expression of FZD6 in an allele-specific way. Finally, we generated Fzd6-knockin (Fzd6-KI) mice with rs61753730 mutation using the CRISPR/Cas9 genome editing system and found that these mice presented greater immobility in the forced swimming test, less preference for sucrose in the sucrose preference test, as well as decreased center entries, center time, and distance traveled in the open filed test compared with WT mice after exposed to chronic social defeat stress. These results indicate the involvement of rs61753730 in depression. Taken together, our findings demonstrate that SNP rs61753730 is a novel functional variant and plays an important role in depressive symptoms.
Collapse
Affiliation(s)
- Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- Department of Medical Engineering, Tianjin Medical University, Tianjin, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhongli Yang,
| |
Collapse
|
13
|
Yang Z, Yang J, Mao Y, Li MD. Investigation of the genetic effect of 56 tobacco-smoking susceptibility genes on DNA methylation and RNA expression in human brain. Front Psychiatry 2022; 13:924062. [PMID: 36061282 PMCID: PMC9433921 DOI: 10.3389/fpsyt.2022.924062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Although various susceptibility genes have been revealed to influence tobacco smoking, the underlying regulatory mechanisms between genetic variants and smoking are poorly understood. In this study, we investigated cis-expression quantitative trait loci (cis-eQTLs) and methylation quantitative trait loci (mQTLs) for 56 candidate smoking-linked genes using the BrainCloud cohort samples. An eQTL was revealed to significantly affect EGLN2 expression in the European sample and two mQTLs were respectively detected in CpG sites in NRXN1 and CYP2A7. Interestingly, we found for the first time that the minor allele of the single nucleotide polymorphism (SNP) rs3745277 located in CYP2A7P1 (downstream of CYP2B6) significantly decreased methylation at the CpG site for CYP2A7 (cg25427638; P = 5.31 × 10-7), reduced expression of CYP2B6 (P = 0.03), and lowered the percentage of smokers (8.8% vs. 42.3%; Odds Ratio (OR) = 0.14, 95% Confidence Interval (CI): 0.02-0.62; P = 4.47 × 10-3) in a dominant way for the same cohort sample. Taken together, our findings resulted from analyzing genetic variation, DNA methylation, mRNA expression, and smoking status together using the same participants revealed a regulatory mechanism linking mQTLs to the smoking phenotype. Moreover, we demonstrated the presence of different regulatory effects of low-frequency and common variants on mRNA expression and DNA methylation.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiekun Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Conde-Dusman MJ, Dey PN, Elía-Zudaire Ó, Rabaneda LG, García-Lira C, Grand T, Briz V, Velasco ER, Andero R, Niñerola S, Barco A, Paoletti P, Wesseling JF, Gardoni F, Tavalin SJ, Perez-Otaño I. Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. eLife 2021; 10:e71575. [PMID: 34787081 PMCID: PMC8598234 DOI: 10.7554/elife.71575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
Collapse
Affiliation(s)
- María J Conde-Dusman
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | - Partha N Dey
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- National Eye Institute, National Institutes of HealthBethesdaUnited States
| | | | - Luis G Rabaneda
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Teddy Grand
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | - Victor Briz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)MadridSpain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
- ICREABarcelonaSpain
| | | | - Angel Barco
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of MilanMilanItaly
| | - Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science CenterMemphisUnited States
| | - Isabel Perez-Otaño
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
| |
Collapse
|
15
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
16
|
Crawley O, Conde-Dusman MJ, Pérez-Otaño I. GluN3A NMDA receptor subunits: more enigmatic than ever? J Physiol 2021; 600:261-276. [PMID: 33942912 DOI: 10.1113/jp280879] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Non-conventional N-methyl-d-aspartate receptors (NMDARs) containing GluN3A subunits have unique biophysical, signalling and localization properties within the NMDAR family, and are typically thought to counterbalance functions of classical NMDARs made up of GluN1/2 subunits. Beyond their recognized roles in synapse refinement during postnatal development, recent evidence is building a wider perspective for GluN3A functions. Here we draw particular attention to the latest developments for this multifaceted and unusual subunit: from finely timed expression patterns that correlate with plasticity windows in developing brains or functional hierarchies in the mature brain to new insight onto presynaptic GluN3A-NMDARs, excitatory glycine receptors and behavioural impacts, alongside further connections to a range of brain disorders.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - María J Conde-Dusman
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - Isabel Pérez-Otaño
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| |
Collapse
|
17
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Fan R, Cui W, Chen J, Ma Y, Yang Z, Payne TJ, Ma JZ, Li MD. Gene-based association analysis reveals involvement of LAMA5 and cell adhesion pathways in nicotine dependence in African- and European-American samples. Addict Biol 2021; 26:e12898. [PMID: 32281736 DOI: 10.1111/adb.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Nicotine dependence (ND) is a chronic brain disorder that causes heavy social and economic burdens. Although many susceptibility genetic loci have been reported, they can explain only approximately 5%-10% of the genetic variance for the disease. To further explore the genetic etiology of ND, we genotyped 242 764 SNPs using an exome chip from both European-American (N = 1572) and African-American (N = 3371) samples. Gene-based association analysis revealed 29 genes associated significantly with ND. Of the genes in the AA sample, six (i.e., PKD1L2, LAMA5, MUC16, MROH5, ATP8B1, and FREM1) were replicated in the EA sample with p values ranging from 0.0031 to 0.0346. Subsequently, gene enrichment analysis revealed that cell adhesion-related pathways were significantly associated with ND in both the AA and EA samples. Considering that LAMA5 is the most significant gene in cell adhesion-related pathways, we did in vitro functional analysis of this gene, which showed that nicotine significantly suppressed its mRNA expression in HEK293T cells (p < 0.001). Further, our cell migration experiment showed that the migration rate was significantly different in wild-type and LAMA5-knockout (LAMA5-KO)-HEK293T cells. Importantly, nicotine-induced cell migration was abolished in LAMA5-KO cells. Taken together, these findings indicate that LAMA5, as well as cell adhesion-related pathways, play an important role in the etiology of smoking addiction, which warrants further investigation.
Collapse
Affiliation(s)
- Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences University of Mississippi Medical Center Jackson Mississippi USA
| | - Jennie Z. Ma
- Department of Public Health Sciences University of Virginia Charlottesville Virginia USA
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Research Center for Air Pollution and Health Zhejiang University Hangzhou China
| |
Collapse
|
19
|
Murillo A, Navarro AI, Puelles E, Zhang Y, Petros TJ, Pérez-Otaño I. Temporal Dynamics and Neuronal Specificity of Grin3a Expression in the Mouse Forebrain. Cereb Cortex 2020; 31:1914-1926. [PMID: 33290502 PMCID: PMC7945027 DOI: 10.1093/cercor/bhaa330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
GluN3A subunits endow N-Methyl-D-Aspartate receptors (NMDARs) with unique biophysical, trafficking, and signaling properties. GluN3A-NMDARs are typically expressed during postnatal development, when they are thought to gate the refinement of neural circuits by inhibiting synapse maturation, and stabilization. Recent work suggests that GluN3A also operates in adult brains to control a variety of behaviors, yet a full spatiotemporal characterization of GluN3A expression is lacking. Here, we conducted a systematic analysis of Grin3a (gene encoding mouse GluN3A) mRNA expression in the mouse brain by combining high-sensitivity colorimetric and fluorescence in situ hybridization with labeling for neuronal subtypes. We find that, while Grin3a mRNA expression peaks postnatally, significant levels are retained into adulthood in specific brain regions such as the amygdala, medial habenula, association cortices, and high-order thalamic nuclei. The time-course of emergence and down-regulation of Grin3a expression varies across brain region, cortical layer of residence, and sensory modality, in a pattern that correlates with previously reported hierarchical gradients of brain maturation and functional specialization. Grin3a is expressed in both excitatory and inhibitory neurons, with strong mRNA levels being a distinguishing feature of somatostatin interneurons. Our study provides a comprehensive map of Grin3a distribution across the murine lifespan and paves the way for dissecting the diverse functions of GluN3A in health and disease.
Collapse
Affiliation(s)
- Alvaro Murillo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.,UK Dementia Research Institute at Cardiff University, CF24 4HQ Cardiff, UK
| | - Ana I Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Isabel Pérez-Otaño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
20
|
Xu K, Li B, McGinnis KA, Vickers-Smith R, Dao C, Sun N, Kember RL, Zhou H, Becker WC, Gelernter J, Kranzler HR, Zhao H, Justice AC. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat Commun 2020; 11:5302. [PMID: 33082346 PMCID: PMC7598939 DOI: 10.1038/s41467-020-18489-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Here we report a large genome-wide association study (GWAS) for longitudinal smoking phenotypes in 286,118 individuals from the Million Veteran Program (MVP) where we identified 18 loci for smoking trajectory of current versus never in European Americans, one locus in African Americans, and one in Hispanic Americans. Functional annotations prioritized several dozen genes where significant loci co-localized with either expression quantitative trait loci or chromatin interactions. The smoking trajectories were genetically correlated with 209 complex traits, for 33 of which smoking was either a causal or a consequential factor. We also performed European-ancestry meta-analyses for smoking status in the MVP and GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) (Ntotal = 842,717) and identified 99 loci for smoking initiation and 13 loci for smoking cessation. Overall, this large GWAS of longitudinal smoking phenotype in multiple populations, combined with a meta-GWAS for smoking status, adds new insights into the genetic vulnerability for smoking behavior.
Collapse
Affiliation(s)
- Ke Xu
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Boyang Li
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | | | | | - Cecilia Dao
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Ning Sun
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Rachel L Kember
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Hang Zhou
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - William C Becker
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Joel Gelernter
- Yale School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Hongyu Zhao
- Yale School of Medicine, New Haven, CT, 06511, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Amy C Justice
- Yale School of Medicine, New Haven, CT, 06511, USA.
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
21
|
Deconstructing the neurobiology of cannabis use disorder. Nat Neurosci 2020; 23:600-610. [PMID: 32251385 DOI: 10.1038/s41593-020-0611-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
There have been dramatic changes worldwide in the attitudes toward and consumption of recreational and medical cannabis. Cannabinoid receptors, which mediate the actions of cannabis, are abundantly expressed in brain regions known to mediate neural processes underlying reward, cognition, emotional regulation and stress responsivity relevant to addiction vulnerability. Despite debates regarding potential pathological consequences of cannabis use, cannabis use disorder is a clinical diagnosis with high prevalence in the general population and that often has its genesis in adolescence and in vulnerable individuals associated with psychiatric comorbidity, genetic and environmental factors. Integrated information from human and animal studies is beginning to expand insights regarding neurobiological systems associated with cannabis use disorder, which often share common neural characteristics with other substance use disorders, that could inform prevention and treatment strategies.
Collapse
|
22
|
Jiang K, Yang Z, Cui W, Su K, Ma JZ, Payne TJ, Li MD. An Exome-Wide Association Study Identifies New Susceptibility Loci for Age of Smoking Initiation in African- and European-American Populations. Nicotine Tob Res 2020; 21:707-713. [PMID: 29216386 DOI: 10.1093/ntr/ntx262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cigarette smoking is one of the largest causes of preventable death worldwide. This study aimed to identify susceptibility loci for age at smoking initiation (ASI) by performing an exome-wide association analysis. METHODS A total of 2510 smokers of either African-American (AA) or European-American (EA) origin were genotyped and analyzed at both the single nucleotide polymorphism (SNP) and gene levels. After removal of those SNPs with a minor allele frequency (<0.01), 48091 and 34933 SNPs for AAs and EAs, respectively, were used to conduct a SNP-based association analysis. Gene-based analyses were then performed for all SNPs examined within each gene. Further, we estimated the proportion of variance explained by all common SNPs included in the analysis. RESULTS The strongest signals were detected for SNPs rs17849904 in the pitrilysin metallopeptidase 1 gene (PITRM1) in the AA sample (p = 9.02 × 10-7) and rs34722354 in the discoidin domain of the receptor tyrosine kinase 2 gene (DDR2) in the EA sample (p = 9.74 × 10-7). Both SNPs remained significant after Bonferroni correction for the number of SNPs tested. Subsequently, the gene-based association analysis revealed a significantly associated gene, DHRS7, in the AA sample (p = 5.00 × 10-6), a gene previously implicated in nicotine metabolism. CONCLUSIONS Our study revealed two susceptibility loci for age of smoking initiation in the two ethnic samples, with the first being PITRM1 for AA smokers and the second DDR2 for EA smokers. In addition, we found DHRS7 to be a plausible candidate for ASI in the AA sample from our gene-based association analysis. IMPLICATIONS PITRM1 and DHRS7 for African-American smokers and DDR2 for European-American smokers are new candidate genes for smoking initiation. These genes represent new additions to smoking initiation, an important but less studied phenotype in nicotine dependence research.
Collapse
Affiliation(s)
- Keran Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research University of Mississippi Medical Center, Jackson, MS.,Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| |
Collapse
|
23
|
Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020; 12:3. [PMID: 32116639 PMCID: PMC7019863 DOI: 10.3389/fnsyn.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem has traditionally been considered an area of the brain with autonomous control of mostly homeostatic functions such as heart rate, respiration, and the sleep and wakefulness state, which would preclude the necessity to exhibit the high degree of synaptic or cellular mechanisms of plasticity typical of regions of the brain responsible for flexible, executive control, such as the medial prefrontal cortex or the hippocampus. The perception that the brainstem does not share the same degree of flexibility to alter synaptic strength and/or wiring within local circuits makes intuitive sense, as it is not easy to understand how "soft wiring" would be an advantage when considering the importance of faithful and consistent performance of the homeostatic, autonomic functions that are controlled by the brainstem. However, many of the molecular and cellular requirements which underlie strengthening of synapses seen in brain regions involved in higher-level processing are present in brainstem nuclei, and recent research suggest that the view of the brainstem as "hard wired," with rigid and static connectivity and with unchanging synaptic strength, is outdated. In fact, information from studies within the last decades, including work conducted in our group, leads us to propose that the brainstem can dynamically alter synaptic proteins, and change synaptic connections in response to prenatal or postnatal stimuli, and this would likely alter functionality and output. This article reviews recent research that has provided information resulting in our revision of the view of the brainstem as static and non-changing by using as example recent information gleaned from a brainstem pontine nucleus, the laterodorsal tegmentum (LDT). The LDT has demonstrated mechanisms underlying synaptic plasticity, and plasticity has been exhibited in the postnatal LDT following exposure to drugs of abuse. Further, exposure of the brain during gestation to drugs of abuse results in alterations in development of signaling pathways in the LDT. As the LDT provides a high degree of innervation of mesoaccumbal and mesocortical circuits involved in salience, as well as thalamocortical circuits involved in control of arousal and orientation, changes in synaptic strength would be expected to alter output, which would significantly impact behavioral state, motivated behavior and directed attention. Further, alterations in developmental trajectory within the LDT following prenatal exposure to drugs of abuse would be expected to impact on later life expression of motivation and arousal.
Collapse
Affiliation(s)
- Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Chen J, Liu Q, Fan R, Han H, Yang Z, Cui W, Song G, Li MD. Demonstration of critical role of GRIN3A in nicotine dependence through both genetic association and molecular functional studies. Addict Biol 2020; 25:e12718. [PMID: 30741440 DOI: 10.1111/adb.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 01/08/2019] [Indexed: 11/27/2022]
Abstract
Nicotine dependence (ND) is a chronic disease with catastrophic effects on individual and public health. The glutamate receptor subunit gene, ionotropic N-methyl-d-aspartate 3A (GRIN3A), encodes a crucial subunit of N-methyl-d-aspartate receptors (NMDARs), which play an essential role in synaptic plasticity in the brain. Although various variants of GRIN3A have been associated with ND in European-American and African-American samples, no study has been reported for the association between GRIN3A and ND in Chinese Han population. We performed an association study of 16 single nucleotide polymorphisms (SNPs) in GRIN3A with ND in 2616 Chinese individuals. SNP-based association analysis indicated that SNP rs1323423 was significantly associated with the Fagerström Test for Nicotine Dependence (FTND) score after correction for multiple testing (P = 0.0026). Haplotype-based association analysis revealed that Block 3, formed by rs1323423-rs10989591, was significantly associated with the FTND score after correction for multiple testing (global P = 0.0183). Furthermore, luciferase reporter assay demonstrated that the DNA region containing rs1323423 was an enhancer element, the activity of which was significantly impacted by rs1323423 genotype. Considering that rs1323423 is located in a potential enhancer region, we performed GRIN3A editing in HEK293T cells with CRISPR/Cas9 and found that the DNA region around rs1323423 has a regulatory function and the expression of GRIN3A affects the expression of other NMDA subunits. Moreover, we demonstrated that nicotine at a concentration of 100 μM decreased expression of GRIN3A in SH-SY5Y and HEK293T cells at the RNA and protein level, respectively. This study provides novel evidence for the involvement of GRIN3A in ND.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Guohua Song
- Animal Research CenterShanxi Medical University China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
- Research Center for Air Pollution and HealthZhejiang University China
- Institute of NeuroImmune PharmacologySeton Hall University South Orange New Jersey USA
| |
Collapse
|
25
|
Xu Y, Cao L, Zhao X, Yao Y, Liu Q, Zhang B, Wang Y, Mao Y, Ma Y, Ma JZ, Payne TJ, Li MD, Li L. Prediction of Smoking Behavior From Single Nucleotide Polymorphisms With Machine Learning Approaches. Front Psychiatry 2020; 11:416. [PMID: 32477189 PMCID: PMC7241440 DOI: 10.3389/fpsyt.2020.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Smoking is a complex behavior with a heritability as high as 50%. Given such a large genetic contribution, it provides an opportunity to prevent those individuals who are susceptible to smoking dependence from ever starting to smoke by predicting their inherited predisposition with their genomic profiles. Although previous studies have identified many susceptibility variants for smoking, they have limited power to predict smoking behavior. We applied the support vector machine (SVM) and random forest (RF) methods to build prediction models for smoking behavior. We first used 1,431 smokers and 1,503 non-smokers of African origin for model building with a 10-fold cross-validation and then tested the prediction models on an independent dataset consisting of 213 smokers and 224 non-smokers. The SVM model with 500 top single nucleotide polymorphisms (SNPs) selected using logistic regression (p<0.01) as the feature selection method achieved an area under the curve (AUC) of 0.691, 0.721, and 0.720 for the training, test, and independent test samples, respectively. The RF model with 500 top SNPs selected using logistic regression (p<0.01) achieved AUCs of 0.671, 0.665, and 0.667 for the training, test, and independent test samples, respectively. Finally, we used the combined logistic (p<0.01) and LASSO (λ=10-3) regression to select features and the SVM algorithm for model building. The SVM model with 500 top SNPs achieved AUCs of 0.756, 0.776, and 0.897 for the training, test, and independent test samples, respectively. We conclude that machine learning methods are promising means to build predictive models for smoking.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyu Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Li M, Chen Y, Yao J, Lu S, Guan Y, Xu Y, Liu Q, Sun S, Mi Q, Mei J, Li X, Miao M, Zhao S, Zhu Z. Genome-Wide Association Study of Smoking Behavior Traits in a Chinese Han Population. Front Psychiatry 2020; 11:564239. [PMID: 33033484 PMCID: PMC7509597 DOI: 10.3389/fpsyt.2020.564239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
Tobacco use is one of the leading causes of preventable disease worldwide. Genetic studies have elucidated numerous smoking-associated risk loci in American and European populations. However, genetic determinants for cigarette smoking in Chinese populations are under investigated. In this study, a whole-genome sequencing (WGS)-based genome-wide association study (GWAS) was performed in a Chinese Han population comprising 620 smokers and 564 nonsmokers. Thirteen single-nucleotide polymorphisms (SNPs) of the raftlin lipid linker 1 (RFTN1) gene achieved genome-wide significance levels (P < 5 x 10-8) for smoking initiation. The rs139753473 from RFTN1 and six other suggestively significant loci from CUB and sushi multiple domains 1 (CSMD1) gene were also associated with cigarettes per day (CPD) in an independent Chinese sample consisting of 1,329 subjects (805 smokers and 524 nonsmokers). When treating males separately, associations between smoking initiation and PCAT5/ANKRD30A, two genes involved in cancer development, were identified and replicated. Within RFTN1, two haplotypes (i.e., C-A-C-G and A-G-T-C) formed by rs796812630-rs796584733-rs796349027-rs879511366 and three haplotypes (i.e., T-T-C-C-C, T-T-A-T-T, and C-A-A-T-T) formed by rs879401109-rs879453873-rs75180423-rs541378415-rs796757175 were strongly associated with smoking initiation. In addition, we also revealed two haplotypes (i.e., C-A-G-G and T-C-T-T derived from rs4875371-rs4875372-rs17070935-rs11991366) in the CSMD1 gene showing a significant association with smoking initiation. Further bioinformatics functional assessment suggested that RFTN1 may participate in smoking behavior through modulating immune responses or interactions with the glucocorticoid receptor alpha and the androgen receptor. Together, our results may help understand the mechanisms underlying smoking behavior in the Chinese Han population.
Collapse
Affiliation(s)
- Meng Li
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Ying Chen
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Sheming Lu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Yuqiong Xu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Qiang Liu
- Hangzhou Global Biotechnology and Bioinformatics Co. Ltd, Hangzhou, China
| | - Silong Sun
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Qili Mi
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Junpu Mei
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Xuemei Li
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Mingming Miao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Shancen Zhao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| |
Collapse
|
27
|
Polli FS, Kohlmeier KA. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology 2019; 158:107744. [DOI: 10.1016/j.neuropharm.2019.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
|
28
|
Translational Molecular Approaches in Substance Abuse Research. Handb Exp Pharmacol 2019; 258:31-60. [PMID: 31628598 DOI: 10.1007/164_2019_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Excessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators. While animal models are critical for outlining the mechanistic relationships between defined behaviors and genetic and/or molecular changes, the heterogeneous pathophysiology of brain diseases is uniquely human, necessitating the use of human studies and translational research schemes. Translational research describes a cross-species approach in which findings from human patient-based data can be used to guide molecular genetic investigations in preclinical animal models in order to delineate the mechanisms of reward circuitry changes in the addicted state. Results from animal studies can then inform clinical investigations toward the development of novel treatments for SUD. Here we describe the strategies that are used to identify and functionally validate genetic variants in the human genome which may contribute to increased risk for SUD, starting from early candidate gene approaches to more recent genome-wide association studies. We will next examine studies aimed at understanding how transcriptional and epigenetic dysregulation in SUD can persistently alter cellular function in the disease state. In our discussion, we then focus on examples from the literature illustrating molecular genetic methodologies that have been applied to studies of different substances of abuse - from alcohol and nicotine to stimulants and opioids - in order to exemplify how these approaches can both delineate the underlying molecular systems driving drug addiction and provide insights into the genetic basis of SUD.
Collapse
|
29
|
Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Sci Rep 2019; 9:12303. [PMID: 31444392 PMCID: PMC6707325 DOI: 10.1038/s41598-019-48845-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an essential role in mediating excitatory neurotransmission in the mammalian central nervous system (CNS). Functional NMDARs are tetramers composed of GluN1, GluN2A-D, and/or GluN3A-B subunits, giving rise to a wide variety of NMDAR subtypes with unique functional properties. Here, we examined the surface delivery and functional properties of NMDARs containing mutations in the glycine-binding sites in GluN1 and GluN3A subunits expressed in mammalian cell lines and primary rat hippocampal neurons. We found that the structural features of the glycine-binding sites in both GluN1 and GluN3A subunits are correlated with receptor forward trafficking to the cell surface. In addition, we found that a potentially clinically relevant mutation in the glycine-binding site of the human GluN3A subunit significantly reduces surface delivery of NMDARs. Taken together, these findings provide novel insight into how NMDARs are regulated by their glycine-binding sites and may provide important information regarding the role of NMDARs in both physiological and pathophysiological processes in the mammalian CNS.
Collapse
|
30
|
Brazel DM, Jiang Y, Hughey JM, Turcot V, Zhan X, Gong J, Batini C, Weissenkampen JD, Liu M, Barnes DR, Bertelsen S, Chou YL, Erzurumluoglu AM, Faul JD, Haessler J, Hammerschlag AR, Hsu C, Kapoor M, Lai D, Le N, de Leeuw CA, Loukola A, Mangino M, Melbourne CA, Pistis G, Qaiser B, Rohde R, Shao Y, Stringham H, Wetherill L, Zhao W, Agrawal A, Bierut L, Chen C, Eaton CB, Goate A, Haiman C, Heath A, Iacono WG, Martin NG, Polderman TJ, Reiner A, Rice J, Schlessinger D, Scholte HS, Smith JA, Tardif JC, Tindle HA, van der Leij AR, Boehnke M, Chang-Claude J, Cucca F, David SP, Foroud T, Howson JMM, Kardia SLR, Kooperberg C, Laakso M, Lettre G, Madden P, McGue M, North K, Posthuma D, Spector T, Stram D, Tobin MD, Weir DR, Kaprio J, Abecasis GR, Liu DJ, Vrieze S. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biol Psychiatry 2019; 85:946-955. [PMID: 30679032 PMCID: PMC6534468 DOI: 10.1016/j.biopsych.2018.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.
Collapse
Affiliation(s)
- David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jordan M Hughey
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Valérie Turcot
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Xiaowei Zhan
- Department of Clinical Science, Center for Genetics of Host Defense, University of Texas Southwestern, Dallas, Texas
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - J Dylan Weissenkampen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - MengZhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel R Barnes
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jeff Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris Hsu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nhung Le
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Anu Loukola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom; National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, United Kingdom
| | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather Stringham
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington; Department of Otolaryngology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, Rhode Island
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | | | - Tinca J Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Andries R van der Leij
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Sean P David
- Department of Medicine, Stanford University, Stanford, California
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joanna M M Howson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markku Laakso
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Guillaume Lettre
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Clinical Genetics, VU University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Daniel Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gonçalo R Abecasis
- Regeneron Pharmaceuticals, Tarrytown, New York; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
31
|
Garcia‐Rivas V, Deroche‐Gamonet V. Not all smokers appear to seek nicotine for the same reasons: implications for preclinical research in nicotine dependence. Addict Biol 2019; 24:317-334. [PMID: 29480575 DOI: 10.1111/adb.12607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Tobacco use leads to 6 million deaths every year due to severe long-lasting diseases. The main component of tobacco, nicotine, is recognized as one of the most addictive drugs, making smoking cessation difficult, even when 70 percent of smokers wish to do so. Clinical and preclinical studies have demonstrated consistently that nicotine seeking is a complex behavior involving various psychopharmacological mechanisms. Evidence supports that the population of smokers is heterogeneous, particularly as regards the breadth of motives that determine the urge to smoke. Here, we review converging psychological, genetic and neurobiological data from clinical and preclinical studies supporting that the mechanisms controlling nicotine seeking may vary from individual to individual. It appears timely that basic neuroscience integrates this heterogeneity to refine our understanding of the neurobiology of nicotine seeking, as tremendous progress has been made in modeling the various psychopharmacological mechanisms driving nicotine seeking in rodents. For a better understanding of the mechanisms that drive nicotine seeking, we emphasize the need for individual-based research strategies in which nicotine seeking, and eventually treatment efficacy, are determined while taking into account individual variations in the mechanisms of nicotine seeking.
Collapse
Affiliation(s)
- Vernon Garcia‐Rivas
- Université de Bordeaux France
- INSERM U1215, Psychobiology of Drug AddictionNeuroCentre Magendie France
| | - Véronique Deroche‐Gamonet
- Université de Bordeaux France
- INSERM U1215, Psychobiology of Drug AddictionNeuroCentre Magendie France
| |
Collapse
|
32
|
Hancock DB, Guo Y, Reginsson GW, Gaddis NC, Lutz SM, Sherva R, Loukola A, Minica CC, Markunas CA, Han Y, Young KA, Gudbjartsson DF, Gu F, McNeil DW, Qaiser B, Glasheen C, Olson S, Landi MT, Madden PAF, Farrer LA, Vink J, Saccone NL, Neale MC, Kranzler HR, McKay J, Hung RJ, Amos CI, Marazita ML, Boomsma DI, Baker TB, Gelernter J, Kaprio J, Caporaso NE, Thorgeirsson TE, Hokanson JE, Bierut LJ, Stefansson K, Johnson EO. Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol Psychiatry 2018; 23:1911-1919. [PMID: 28972577 PMCID: PMC5882602 DOI: 10.1038/mp.2017.193] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15 studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency=44-77%) was associated with increased risk of nicotine dependence at P=3.7 × 10-8 (odds ratio (OR)=1.06 and 95% confidence interval (CI)=1.04-1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N=48,931) using heavy vs never smoking as a proxy phenotype (P=3.6 × 10-4, OR=1.05, and 95% CI=1.02-1.08). Rs910083-C is also associated with increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N=60,586, meta-analysis P=0.0095, OR=1.05, and 95% CI=1.01-1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant associated with higher DNMT3B methylation in fetal brain (N=166, P=2.3 × 10-26) and a cis-expression QTL variant associated with higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N=103, P=3.0 × 10-6) and the independent Brain eQTL Almanac (N=134, P=0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.
Collapse
Affiliation(s)
- D B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA.
| | - Y Guo
- Center for Genomics in Public Health and Medicine, RTI International, Research Triangle Park, NC, USA
| | | | - N C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, NC, USA
| | - S M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - A Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C C Minica
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - C A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| | - Y Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - K A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - F Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | - D W McNeil
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Dental Practice and Rural Health, West Virginia University, Morgantown, WV, USA
| | - B Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Glasheen
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| | - S Olson
- Public Health Informatics Program, eHealth, Quality and Analytics Division, RTI International, Research Triangle Park, NC, USA
| | - M T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | - P A F Madden
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - L A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - J Vink
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - N L Saccone
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - M C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - H R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Crescenz VA Medical Center, Philadelphia, PA, USA
| | - J McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - R J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - C I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - T B Baker
- Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, Department of Psychiatry, West Haven, CT, USA
| | - J Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - N E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | | | - J E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | | | - E O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
33
|
Blighe K, DeDionisio L, Christie KA, Chawes B, Shareef S, Kakouli-Duarte T, Chao-Shern C, Harding V, Kelly RS, Castellano L, Stebbing J, Lasky-Su JA, Nesbit MA, Moore CBT. Gene editing in the context of an increasingly complex genome. BMC Genomics 2018; 19:595. [PMID: 30086710 PMCID: PMC6081867 DOI: 10.1186/s12864-018-4963-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The reporting of the first draft of the human genome in 2000 brought with it much hope for the future in what was felt as a paradigm shift toward improved health outcomes. Indeed, we have now mapped the majority of variation across human populations with landmark projects such as 1000 Genomes; in cancer, we have catalogued mutations across the primary carcinomas; whilst, for other diseases, we have identified the genetic variants with strongest association. Despite this, we are still awaiting the genetic revolution in healthcare to materialise and translate itself into the health benefits for which we had hoped. A major problem we face relates to our underestimation of the complexity of the genome, and that of biological mechanisms, generally. Fixation on DNA sequence alone and a 'rigid' mode of thinking about the genome has meant that the folding and structure of the DNA molecule -and how these relate to regulation- have been underappreciated. Projects like ENCODE have additionally taught us that regulation at the level of RNA is just as important as that at the spatiotemporal level of chromatin.In this review, we chart the course of the major advances in the biomedical sciences in the era pre- and post the release of the first draft sequence of the human genome, taking a focus on technology and how its development has influenced these. We additionally focus on gene editing via CRISPR/Cas9 as a key technique, in particular its use in the context of complex biological mechanisms. Our aim is to shift the mode of thinking about the genome to that which encompasses a greater appreciation of the folding of the DNA molecule, DNA- RNA/protein interactions, and how these regulate expression and elaborate disease mechanisms.Through the composition of our work, we recognise that technological improvement is conducive to a greater understanding of biological processes and life within the cell. We believe we now have the technology at our disposal that permits a better understanding of disease mechanisms, achievable through integrative data analyses. Finally, only with greater understanding of disease mechanisms can techniques such as gene editing be faithfully conducted.
Collapse
Affiliation(s)
- K Blighe
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA.
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, WC1E 6DD, London, UK.
| | - L DeDionisio
- Avellino Laboratories, Menlo Park, CA, 94025, USA
| | - K A Christie
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - B Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - S Shareef
- University of Raparin, Ranya, Kurdistan Region, Iraq
| | - T Kakouli-Duarte
- Institute of Technology Carlow, Department of Science and Health, Kilkenny Road, Carlow, Ireland
| | - C Chao-Shern
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
- Avellino Laboratories, Menlo Park, CA, 94025, USA
| | - V Harding
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - R S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA
| | - L Castellano
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- JMS Building, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - J Stebbing
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - J A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA
| | - M A Nesbit
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - C B T Moore
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
- Avellino Laboratories, Menlo Park, CA, 94025, USA.
| |
Collapse
|
34
|
Marees AT, Hammerschlag AR, Bastarache L, de Kluiver H, Vorspan F, van den Brink W, Smit DJ, Denys D, Gamazon ER, Li-Gao R, Breetvelt EJ, de Groot MCH, Galesloot TE, Vermeulen SH, Poppelaars JL, Souverein PC, Keeman R, de Mutsert R, Noordam R, Rosendaal FR, Stringa N, Mook-Kanamori DO, Vaartjes I, Kiemeney LA, den Heijer M, van Schoor NM, Klungel OH, Maitland-Van der Zee AH, Schmidt MK, Polderman TJC, van der Leij AR, Posthuma D, Derks EM. Exploring the role of low-frequency and rare exonic variants in alcohol and tobacco use. Drug Alcohol Depend 2018; 188:94-101. [PMID: 29758381 DOI: 10.1016/j.drugalcdep.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcohol and tobacco use are heritable phenotypes. However, only a small number of common genetic variants have been identified, and common variants account for a modest proportion of the heritability. Therefore, this study aims to investigate the role of low-frequency and rare variants in alcohol and tobacco use. METHODS We meta-analyzed ExomeChip association results from eight discovery cohorts and included 12,466 subjects and 7432 smokers in the analysis of alcohol consumption and tobacco use, respectively. The ExomeChip interrogates low-frequency and rare exonic variants, and in addition a small pool of common variants. We investigated top variants in an independent sample in which ICD-9 diagnoses of "alcoholism" (N = 25,508) and "tobacco use disorder" (N = 27,068) had been assessed. In addition to the single variant analysis, we performed gene-based, polygenic risk score (PRS), and pathway analyses. RESULTS The meta-analysis did not yield exome-wide significant results. When we jointly analyzed our top results with the independent sample, no low-frequency or rare variants reached significance for alcohol consumption or tobacco use. However, two common variants that were present on the ExomeChip, rs16969968 (p = 2.39 × 10-7) and rs8034191 (p = 6.31 × 10-7) located in CHRNA5 and AGPHD1 at 15q25.1, showed evidence for association with tobacco use. DISCUSSION Low-frequency and rare exonic variants with large effects do not play a major role in alcohol and tobacco use, nor does the aggregate effect of ExomeChip variants. However, our results confirmed the role of the CHRNA5-CHRNA3-CHRNB4 cluster of nicotinic acetylcholine receptor subunit genes in tobacco use.
Collapse
Affiliation(s)
- Andries T Marees
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; QIMR Berghofer, Translational Neurogenomics Group, Brisbane, Australia.
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisa Bastarache
- Center for Precision Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Hilde de Kluiver
- GGZ inGeest and Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Florence Vorspan
- Assistance Publique-Hôpitaux de Paris, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, 200 Rue du Faubourg Saint-Denis, Paris, France; Inserm umr-s 1144, Université Paris Descartes, Université Paris Diderot, 4 Avenue de l'Observatoire, Paris, France
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Clare Hall, University of Cambridge, Cambridge, CB3 9AL, United Kingdom
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elemi J Breetvelt
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mark C H de Groot
- Department of Clinical Chemistry and Haematology, Division of Laboratory and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan L Poppelaars
- Department of Sociology, VU University, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick C Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Renske Keeman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilonca Vaartjes
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin den Heijer
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-Van der Zee
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tinca J C Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Eske M Derks
- Department of Psychiatry, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; QIMR Berghofer, Translational Neurogenomics Group, Brisbane, Australia
| |
Collapse
|
35
|
Selya AS, Thapa S, Mehta G. Earlier smoking after waking and the risk of asthma: a cross-sectional study using NHANES data. BMC Pulm Med 2018; 18:102. [PMID: 29914472 PMCID: PMC6006732 DOI: 10.1186/s12890-018-0672-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recent research shows that nicotine dependence conveys additional health risks above and beyond smoking behavior. The current study examines whether smoking within 5 min of waking, an indicator of nicotine dependence, is independently associated with asthma outcomes. Methods Data were drawn from five pooled cross-sectional waves (2005–14) of NHANES, and the final sample consisted of N = 4081 current adult smokers. Weighted logistic regressions were run examining the relationship between smoking within 5 min of waking and outcomes of lifetime asthma, past-year asthma, and having had an asthma attack in the past year. Control variables included demographics, smoking behavior, family history of asthma, depression, obesity, and secondhand smoking exposure. Results After adjusting for smoking behavior, smoking within 5 min was associated with an approximately 50% increase in the odds of lifetime asthma (OR = 1.46, p = .008) and past-year asthma (OR = 1.47, p = .024), respectively. After additionally adjusting for demographics and other asthma risk factors, smoking within 5 min of waking was associated with a four-fold increase in the odds of lifetime asthma (OR = 4.05, p = .015). Conclusions Smoking within 5 min of waking, an indicator of nicotine dependence, is associated with a significantly increased risk of lifetime asthma in smokers. These findings could be utilized in refining risk assessment of asthma among smokers. Electronic supplementary material The online version of this article (10.1186/s12890-018-0672-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arielle S Selya
- Master of Public Health Program, Department of Population Health, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA.
| | - Sunita Thapa
- Master of Public Health Program, Department of Population Health, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA.,Department of Public Policy, Vanderbilt University School of Medicine, 2525 West End Ave, Suite 1200, Nashville, TN, 37203, USA
| | - Gaurav Mehta
- Master of Public Health Program, Department of Population Health, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| |
Collapse
|
36
|
Yao Y, Xu Y, Zhao J, Ma Y, Su K, Yuan W, Ma JZ, Payne TJ, Li MD. Detection of Significant Association Between Variants in Cannabinoid Receptor 1 Gene ( CNR1) and Personality in African-American Population. Front Genet 2018; 9:199. [PMID: 29963071 PMCID: PMC6010580 DOI: 10.3389/fgene.2018.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Several studies have revealed significant associations between single nucleotide polymorphisms (SNPs) in the cannabinoid receptor 1 (CNR1) gene and a broad spectrum of psychiatric disorders such as major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. Personality traits that are highly related to susceptibility to these conditions have been associated with the CNR1 variants in subjects of Caucasian origin. However, there are no reported studies regarding the effects of CNR1 polymorphisms on personality traits in the African-American (AA) population. Methods: We performed an imputation-based association analysis for 26 CNR1 variants with five dimensions of personality in 3,046 AAs. Results: SNPs rs806372 and rs2180619 showed a significant association with extraversion after Bonferroni correction for multiple testing (p < 0.0019). Further, several extraversion-associated SNPs were significantly associated with conscientiousness, agreeableness, and openness. SNP priority score analysis indicated that SNPs rs806368, rs806371, and rs2180619 play a role in the modulation of personality and psychiatric conditions. Conclusion:CNR1 is important in determining personality traits in the AA population.
Collapse
Affiliation(s)
- Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
37
|
Saccone NL, Baurley JW, Bergen AW, David SP, Elliott HR, Foreman MG, Kaprio J, Piasecki TM, Relton CL, Zawertailo L, Bierut LJ, Tyndale RF, Chen LS. The Value of Biosamples in Smoking Cessation Trials: A Review of Genetic, Metabolomic, and Epigenetic Findings. Nicotine Tob Res 2018; 20:403-413. [PMID: 28472521 PMCID: PMC5896536 DOI: 10.1093/ntr/ntx096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/01/2017] [Indexed: 02/03/2023]
Abstract
Introduction Human genetic research has succeeded in definitively identifying multiple genetic variants associated with risk for nicotine dependence and heavy smoking. To build on these advances, and to aid in reducing the prevalence of smoking and its consequent health harms, the next frontier is to identify genetic predictors of successful smoking cessation and also of the efficacy of smoking cessation treatments ("pharmacogenomics"). More broadly, additional biomarkers that can be quantified from biosamples also promise to aid "Precision Medicine" and the personalization of treatment, both pharmacological and behavioral. Aims and Methods To motivate ongoing and future efforts, here we review several compelling genetic and biomarker findings related to smoking cessation and treatment. Results These Key results involve genetic variants in the nicotinic receptor subunit gene CHRNA5, variants in the nicotine metabolism gene CYP2A6, and the nicotine metabolite ratio. We also summarize reports of epigenetic changes related to smoking behavior. Conclusions The results to date demonstrate the value and utility of data generated from biosamples in clinical treatment trial settings. This article cross-references a companion paper in this issue that provides practical guidance on how to incorporate biosample collection into a planned clinical trial and discusses avenues for harmonizing data and fostering consortium-based, collaborative research on the pharmacogenomics of smoking cessation. Implications Evidence is emerging that certain genotypes and biomarkers are associated with smoking cessation success and efficacy of smoking cessation treatments. We review key findings that open potential avenues for personalizing smoking cessation treatment according to an individual's genetic or metabolic profile. These results provide important incentive for smoking cessation researchers to collect biosamples and perform genotyping in research studies and clinical trials.
Collapse
Affiliation(s)
- Nancy L Saccone
- Department of Genetics and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | | | | | - Sean P David
- Department of Medicine, Stanford University, Stanford, CA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Marilyn G Foreman
- Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas M Piasecki
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Laurie Zawertailo
- Nicotine Dependence Service, Centre for Addiction and Mental Health, and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Laura J Bierut
- Siteman Cancer Center, Institute of Public Health, and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Li-Shiun Chen
- Siteman Cancer Center, Institute of Public Health, and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10-8) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci. RECENT FINDINGS Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., cerebellum). GWAS analyses have discovered several novel, replicable variants contributing to addiction. Using larger sample sizes from harmonized datasets and new approaches to integrate GWAS with multiple 'omics data across human brain tissues holds great promise to significantly advance our understanding of the biology underlying addiction.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA.
| | - Christina A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Chen J, Ma Y, Fan R, Yang Z, Li MD. Implication of Genes for the N-Methyl-D-Aspartate (NMDA) Receptor in Substance Addictions. Mol Neurobiol 2018; 55:7567-7578. [PMID: 29429049 DOI: 10.1007/s12035-018-0877-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Drug dependence is a chronic brain disease with harmful consequences for both individual users and society. Glutamate is a primary excitatory neurotransmitter in the brain, and both in vivo and in vitro experiments have implicated N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, as an element in various types of addiction. Recent findings from genetics-based approaches such as genome-wide linkage, candidate gene association, genome-wide association (GWA), and next-generation sequencing have demonstrated the significant association of NMDA receptor subunit genes such as GluN3A, GluN2B, and GluN2A with various addiction-related phenotypes. Of these genes, GluN3A has been the most studied, and it has been revealed to play crucial roles in the etiology of addictions. In this communication, we provide an updated view of the genetic effects of NMDA receptor subunit genes and their functions in the etiology of addictions based on the findings from investigation of both common and rare variants as well as SNP-SNP interactions. To better understand the molecular mechanisms underlying addiction-related behaviors and to promote the development of specific medicines for the prevention and treatment of addictions, current efforts aim not only to identify more causal variants in NMDA receptor subunits by using large independent samples but also to reveal the molecular functions of these variants in addictions.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
40
|
Foucan L, Larifla L, Durand E, Rambhojan C, Armand C, Michel CT, Billy R, Dhennin V, De Graeve F, Rabearivelo I, Sand O, Lacorte JM, Froguel P, Bonnefond A. High Prevalence of Rare Monogenic Forms of Obesity in Obese Guadeloupean Afro-Caribbean Children. J Clin Endocrinol Metab 2018; 103:539-545. [PMID: 29216354 DOI: 10.1210/jc.2017-01956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT The population of Guadeloupe Island exhibits a high prevalence of obesity. OBJECTIVE We aimed to investigate whether rare genetic mutations in genes involved in monogenic obesity (or diabetes) might be causal in this population of Afro-Caribbean ancestry. DESIGN AND SETTING This was a secondary analysis of a study on obesity conducted in schoolchildren from Guadeloupe in 2013 that aimed to assess changes in children's profiles after a lifestyle intervention program. Through next-generation sequencing, we sequenced coding regions of 59 genes involved in monogenic obesity or diabetes in participants from this study. PARTICIPANTS AND INTERVENTIONS A total of 25 obese schoolchildren from Guadeloupe were screened for rare mutations (nonsynonymous, splice-site, or insertion/deletion) in 59 genes. MAIN OUTCOME MEASURES Correlation between phenotypes and mutations of interest. RESULTS We detected five rare heterozygous mutations in five different children with obesity: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations that were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations that were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutations in ABCC8 (p.Lys1521Asn and p.Ala625Val) or KCNJ11 (p.Val13Met and p.Val151Met) that were of uncertain significance. CONCLUSIONS We were able to detect pathogenic or likely pathogenic mutations linked to severe obesity in >15% of this population, which is much higher than what we observed in Europeans (∼5%).
Collapse
Affiliation(s)
- Lydia Foucan
- Research Team on Cardiometabolic Risk, University of Antilles, Pointe-à-Pitre, Guadeloupe, France
- Department of Public Health, University Hospital, Pointe-à-Pitre, Guadeloupe, France
| | - Laurent Larifla
- Research Team on Cardiometabolic Risk, University of Antilles, Pointe-à-Pitre, Guadeloupe, France
- Cardiology Unit, University Hospital, Pointe-à-Pitre, Guadeloupe, France
| | - Emmanuelle Durand
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Christine Rambhojan
- Research Team on Cardiometabolic Risk, University of Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Christophe Armand
- Research Team on Cardiometabolic Risk, University of Antilles, Pointe-à-Pitre, Guadeloupe, France
- Department of Public Health, University Hospital, Pointe-à-Pitre, Guadeloupe, France
| | - Carl-Thony Michel
- Cardiology Unit, University Hospital, Pointe-à-Pitre, Guadeloupe, France
| | - Rachel Billy
- Cardiology Unit, University Hospital, Pointe-à-Pitre, Guadeloupe, France
| | - Véronique Dhennin
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Franck De Graeve
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Iandry Rabearivelo
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Olivier Sand
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jean-Marc Lacorte
- Department of Endocrine and Oncological Biochemistry, University Hospitals of Pitié-Salpétrière‒Charles Foix, Paris, France
- Inserm, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Paris, France
| | - Philippe Froguel
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
| | - Amélie Bonnefond
- CNRS, European Genomic Institute for Diabetes, Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Melroy-Greif WE, Simonson MA, Corley RP, Lutz SM, Hokanson JE, Ehringer MA. Examination of the Involvement of Cholinergic-Associated Genes in Nicotine Behaviors in European and African Americans. Nicotine Tob Res 2017; 19:417-425. [PMID: 27613895 DOI: 10.1093/ntr/ntw200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
Introduction Cigarette smoking is a physiologically harmful habit. Nicotinic acetylcholine receptors (nAChRs) are bound by nicotine and upregulated in response to chronic exposure to nicotine. It is known that upregulation of these receptors is not due to a change in mRNA of these genes, however, more precise details on the process are still uncertain, with several plausible hypotheses describing how nAChRs are upregulated. We have manually curated a set of genes believed to play a role in nicotine-induced nAChR upregulation. Here, we test the hypothesis that these genes are associated with and contribute risk for nicotine dependence (ND) and the number of cigarettes smoked per day (CPD). Methods Studies with genotypic data on European and African Americans (EAs and AAs, respectively) were collected and a gene-based test was run to test for an association between each gene and ND and CPD. Results Although several novel genes were associated with CPD and ND at P < 0.05 in EAs and AAs, these associations did not survive correction for multiple testing. Previous associations between CHRNA3, CHRNA5, CHRNB4 and CPD in EAs were replicated. Conclusions Our hypothesis-driven approach avoided many of the limitations inherent in pathway analyses and provided nominal evidence for association between cholinergic-related genes and nicotine behaviors. Implications We evaluated the evidence for association between a manually curated set of genes and nicotine behaviors in European and African Americans. Although no genes were associated after multiple testing correction, this study has several strengths: by manually curating a set of genes we circumvented the limitations inherent in many pathway analyses and tested several genes that had not yet been examined in a human genetic study; gene-based tests are a useful way to test for association with a set of genes; and these genes were collected based on literature review and conversations with experts, highlighting the importance of scientific collaboration.
Collapse
Affiliation(s)
- Whitney E Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | | | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
42
|
Wen Y, Burt A, Lu Q. Risk Prediction Modeling on Family-Based Sequencing Data Using a Random Field Method. Genetics 2017; 207:63-73. [PMID: 28679544 PMCID: PMC5586386 DOI: 10.1534/genetics.117.199752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Family-based design is one of the most popular designs in genetic studies and has many unique features for risk-prediction research. It is robust against genetic heterogeneity, and the relatedness among family members can be informative for predicting an individual's risk for disease with polygenic and shared environmental components of risk. Despite these strengths, family-based designs have been used infrequently in current risk-prediction studies, and their related statistical methods have not been well developed. In this article, we developed a generalized random field (GRF) method for family-based risk-prediction modeling on sequencing data. In GRF, subjects' phenotypes are viewed as stochastic realizations of a random field in a space, and a subject's phenotype is predicted by adjacent subjects, where adjacencies between subjects are determined by their genetic and within-family similarities. Different from existing methods that adjust for familial correlations, the GRF uses this information to form surrogates to further improve prediction accuracy. It also uses within-family information to capture predictors (e.g., rare mutations) that are homogeneous in families. Through simulations, we have demonstrated that the GRF method attained better performance than an existing method by considering additional information from family members and accounting for genetic heterogeneity. We further provided practical recommendations for designing family-based risk prediction studies. Finally, we illustrated the GRF method with an application to a whole-genome exome data set from the Michigan State University Twin Registry study.
Collapse
Affiliation(s)
- Yalu Wen
- Institute of Cancer Stem Cell, Dalian Medical University, Liaoning, 116044, China
- Department of Statistics, University of Auckland, 1010, New Zealand
| | - Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824
| | - Qing Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
43
|
Yin X, Bizon C, Tilson J, Lin Y, Gizer IR, Ehlers CL, Wilhelmsen KC. Genome-wide meta-analysis identifies a novel susceptibility signal at CACNA2D3 for nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 2017; 174:557-567. [PMID: 28440896 PMCID: PMC5656555 DOI: 10.1002/ajmg.b.32540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/07/2017] [Indexed: 11/11/2022]
Abstract
Nicotine dependence (ND) has a reported heritability of 40-70%. Low-coverage whole-genome sequencing was conducted in 1,889 samples from the UCSF Family study. Linear mixed models were used to conduct genome-wide association (GWA) tests of ND in this and five cohorts obtained from the database of Genotypes and Phenotypes. Fixed-effect meta-analysis was carried out separately for European (n = 14,713) and African (n = 3,369) participants, and then in a combined analysis of both ancestral groups. The meta-analysis of African participants identified a significant and novel susceptibility signal (rs56247223; p = 4.11 × 10-8 ). Data from the Genotype-Tissue Expression (GTEx) study suggested the protective allele is associated with reduced mRNA expression of CACNA2D3 in three human brain tissues (p < 4.94 × 10-2 ). Sequence data from the UCSF Family study suggested that a rare nonsynonymous variant in this gene conferred increased risk for ND (p = 0.01) providing further support for CACNA2D3 involvement in ND. Suggestive associations were observed in six additional regions in both European and merged populations (p < 5.00 × 10-6 ). The top variants were found to regulate mRNA expression levels of genes in human brains using GTEx data (p < 0.05): HAX1 and CHRNB2 (rs1760803), ADAMTSL1 (rs17198023), PEX2 (rs12680810), GLIS3 (rs12348139), non-coding RNA for LINC00476 (rs10759883), and GABBR1 (rs56020557 and rs62392942). A gene-based association test further supported the relation between GABBR1 and ND (p = 6.36 × 10-7 ). These findings will inform the biological mechanisms and development of therapeutic targets for ND.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, United States
| | - Chris Bizon
- Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, United States
| | - Jeffrey Tilson
- Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, United States
| | - Yuan Lin
- Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, United States
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211, United States
| | - Cindy L. Ehlers
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kirk C. Wilhelmsen
- Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, United States,Correspondence to: Kirk C. Wilhelmsen, MD, PhD, Department of Genetics, and Renaissance Computing Institute, University of North Carolina at Chapel Hill, 120 Mason Farm Road 5000 D, Chapel Hill, NC 27599-7264, USA. Tel: 1-919-966-1373; Fax: 1-919-843-4682;
| |
Collapse
|
44
|
Ma Y, Wen L, Cui W, Yuan W, Yang Z, Jiang K, Jiang X, Huo M, Sun Z, Han H, Su K, Yang S, Payne TJ, Wang J, Li MD. Prevalence of Cigarette Smoking and Nicotine Dependence in Men and Women Residing in Two Provinces in China. Front Psychiatry 2017; 8:254. [PMID: 29249991 PMCID: PMC5716983 DOI: 10.3389/fpsyt.2017.00254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Although it is known that there is a high smoking prevalence among Chinese, key issues such as social and environmental factors impacting smoking initiation and persistence, the percentage of smokers considered nicotine dependence (ND), and the availability and use of ND treatments have rarely been investigated. METHODS To address these issues, from 2012 to 2014, we conducted a large-scale study in the Zhejiang and Shanxi provinces of China using the Fagerström Test for Nicotine Dependence and other validated questionnaires. RESULTS Of the 17,057 subjects, consisting of 13,476 males and 3,581 females aged 15 years or older, the prevalence of male smoking was 66.1% [95% confidence interval (CI) 65.5%, 66.9%] and that of female smoking was 3.2% (95% CI 3.0%, 3.8%). Among males, 25.8% (95% CI 25.0%, 26.5%) were low-to-moderate ND, and 11.8% (95% CI 11.2%, 12.3%) were high ND (H-ND), persons who have significant difficulty quitting without treatment. The degrees of ND were related to age, extent of education, and annual family income. The social-environmental factors examined conveyed a higher risk for smoking initiation, which is particularly true for the influence of smoking by friends. Furthermore, current smokers had a significantly higher risk of suffering respiratory and digestive symptoms. CONCLUSION These data not only show a high smoking prevalence in Chinese men but also reveal that a relatively large number of smokers are H-ND. Considering that few Chinese smokers seek ND treatment, a comprehensive smoking prevention and treatment program designed specifically for Chinese is greatly needed.
Collapse
Affiliation(s)
- Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Keran Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijun Huo
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zilong Sun
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United Sates
| |
Collapse
|
45
|
Chan D, McGraw S, Klein K, Wallock LM, Konermann C, Plass C, Chan P, Robaire B, Jacob RA, Greenwood CMT, Trasler JM. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation. Hum Reprod 2016; 32:272-283. [PMID: 27994001 DOI: 10.1093/humrep/dew308] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Do short-term and long-term exposures to low-dose folic acid supplementation alter DNA methylation in sperm? SUMMARY ANSWER No alterations in sperm DNA methylation patterns were found following the administration of low-dose folic acid supplements of 400 μg/day for 90 days (short-term exposure) or when pre-fortification of food with folic acid and post-fortification sperm samples (long-term exposure) were compared. WHAT IS KNOWN ALREADY Excess dietary folate may be detrimental to health and DNA methylation profiles due to folate's role in one-carbon metabolism and the formation of S-adenosyl methionine, the universal methyl donor. DNA methylation patterns are established in developing male germ cells and have been suggested to be affected by high-dose (5 mg/day) folic acid supplementation. STUDY DESIGN, SIZE, DURATION This is a control versus treatment study where genome-wide sperm DNA methylation patterns were examined prior to fortification of food (1996-1997) in men with no history of infertility at baseline and following 90-day exposure to placebo (n = 9) or supplement containing 400 μg folic acid/day (n = 10). Additionally, pre-fortification sperm DNA methylation profiles (n = 19) were compared with those of a group of post-fortification (post-2004) men (n = 8) who had been exposed for several years to dietary folic acid fortification. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood and seminal plasma folate levels were measured in participants before and following the 90-day treatment with placebo or supplement. Sperm DNA methylation was assessed using the whole-genome and genome-wide techniques, MassArray epityper, restriction landmark genomic scanning, methyl-CpG immunoprecipitation and Illumina HumanMethylation450 Bead Array. MAIN RESULTS AND THE ROLE OF CHANCE Following treatment, supplemented individuals had significantly higher levels of blood and seminal plasma folates compared to placebo. Initial first-generation genome-wide analyses of sperm DNA methylation showed little evidence of changes when comparing pre- and post-treatment samples. With Illumina HumanMethylation450 BeadChip arrays, no significant changes were observed in individual probes following low-level supplementation; when compared with those of the post-fortification cohort, there were also few differences in methylation despite exposure to years of fortified foods. LARGE SCALE DATA Illumina HumanMethylation450 BeadChip data from this study have been submitted to the NCBI Gene Expression Omnibus under the accession number GSE89781. LIMITATIONS, REASONS FOR CAUTION This study was limited to the number of participants available in each cohort, in particular those who were not exposed to early (pre-1998) fortification of food with folic acid. While genome-wide DNA methylation was assessed with several techniques that targeted genic and CpG-rich regions, intergenic regions were less well interrogated. WIDER IMPLICATIONS OF THE FINDINGS Overall, our findings provide evidence that short-term exposure to low-dose folic acid supplements of 400 μg/day, over a period of 3 months, a duration of time that might occur during infertility treatments, has no major impact on the sperm DNA methylome. STUDY FUNDING/COMPETING INTERESTS This work was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR: MOP-89944). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- D Chan
- Departments of Pediatrics and of Human Genetics of McGill University, Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Boulevard Block E- Room EM0.2236 Montreal, QC H4A 3J1, Canada
| | - S McGraw
- Department of Obstetrics and Gynaecology, Biochemistry and Molecular Medicine of Université de Montréal, Research Center of the Sainte-Justine University Hospital, Montreal, QC H3T 1C5, Canada
| | - K Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - L M Wallock
- Department of Biological Sciences, Diablo Valley College, Pleasant Hill, CA 94523, USA
| | - C Konermann
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - P Chan
- Royal Victoria Hospital of the McGill University Health Centre and Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 0G4, Canada
| | - R A Jacob
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - C M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.,Departments of Oncology, Epidemiology, Biostatistics and Occupational Health, and Human Genetics, McGill University, Montréal, QC H4A 3J1, Canada
| | - J M Trasler
- Departments of Pediatrics and of Human Genetics of McGill University, Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Boulevard Block E- Room EM0.2236 Montreal, QC H4A 3J1, Canada .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 0G4, Canada
| |
Collapse
|
46
|
Zuo L, Tan Y, Li CSR, Wang Z, Wang K, Zhang X, Lin X, Chen X, Zhong C, Wang X, Guo X, Wang J, Lu L, Luo X. Associations of rare nicotinic cholinergic receptor gene variants to nicotine and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1057-1071. [PMID: 27473937 PMCID: PMC5587505 DOI: 10.1002/ajmg.b.32476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Nicotine's rewarding effects are mediated through distinct subunits of nAChRs, encoded by different nicotinic cholinergic receptor (CHRN) genes and expressed in discrete regions in the brain. In the present study, we aimed to test the associations between rare variants at CHRN genes and nicotine dependence (ND), and alcohol dependence (AD). A total of 26,498 subjects with nine different neuropsychiatric disorders in 15 independent cohorts, which were genotyped on Illumina, Affymetrix, or PERLEGEN microarray platforms, were analyzed. Associations between rare variants (minor allele frequency (MAF) <0.05) at CHRN genes and nicotine dependence, and alcohol dependence were tested. The mRNA expression of all Chrn genes in whole mouse brain and 10 specific brain areas was investigated. All CHRN genes except the muscle-type CHRNB1, including eight genomic regions containing 11 neuronal CHRN genes and three genomic regions containing four muscle-type CHRN genes, were significantly associated with ND, and/or AD. All of these genes were expressed in the mouse brain. We conclude that CHRNs are associated with ND (mainly) and AD, supporting the hypothesis that the full catalog of ND/AD risk genes may contain most neuronal nAChRs-encoding genes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xiangyang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Chunlong Zhong
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People’s Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Jijun Wang
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Lu Lu
- Provincial Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, China
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
47
|
Nicotinic regulation of experience-dependent plasticity in visual cortex. ACTA ACUST UNITED AC 2016; 110:29-36. [PMID: 27840212 DOI: 10.1016/j.jphysparis.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.
Collapse
|
48
|
Pérez-Otaño I, Larsen RS, Wesseling JF. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci 2016; 17:623-35. [DOI: 10.1038/nrn.2016.92] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Mol Psychiatry 2016; 21:992-1008. [PMID: 27166759 PMCID: PMC4956568 DOI: 10.1038/mp.2016.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Experimental approaches to genetic studies of complex traits evolve with technological advances. How do discoveries using different approaches advance our knowledge of the genetic architecture underlying complex diseases/traits? Do most of the findings of newer techniques, such as genome-wide association study (GWAS), provide more information than older ones, for example, genome-wide linkage study? In this review, we address these issues by developing a nicotine dependence (ND) genetic susceptibility map based on the results obtained by the approaches commonly used in recent years, namely, genome-wide linkage, candidate gene association, GWAS and targeted sequencing. Converging and diverging results from these empirical approaches have elucidated a preliminary genetic architecture of this intractable psychiatric disorder and yielded new hypotheses on ND etiology. The insights we obtained by putting together results from diverse approaches can be applied to other complex diseases/traits. In sum, developing a genetic susceptibility map and keeping it updated are effective ways to keep track of what we know about a disease/trait and what the next steps may be with new approaches.
Collapse
|
50
|
Bernardi RE, Zohsel K, Hirth N, Treutlein J, Heilig M, Laucht M, Spanagel R, Sommer WH. A gene-by-sex interaction for nicotine reward: evidence from humanized mice and epidemiology. Transl Psychiatry 2016; 6:e861. [PMID: 27459726 PMCID: PMC5545715 DOI: 10.1038/tp.2016.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 02/03/2023] Open
Abstract
It has been proposed that vulnerability to nicotine addiction is moderated by variation at the μ-opioid receptor locus (OPRM1), but results from human studies vary and prospective studies based on genotype are lacking. We have developed a humanized mouse model of the most common functional OPRM1 polymorphism rs1799971_A>G (A118G). Here we use this model system together with a cohort of German youth to examine the role of the OPRM1 A118G variation on nicotine reward. Nicotine reinforcement was examined in the humanized mouse model using i.v. self-administration. Male (n=17) and female (n=26) mice homozygous either for the major human A allele (AA) or the minor G allele (GG) underwent eight daily 2 h sessions of nicotine self-administration. Furthermore, male (n=104) and female (n=118) subjects homozygous for the A allele or carrying the G allele from the Mannheim Study of Children at Risk were evaluated for pleasurable and unpleasant experiences during their initial smoking experience. A significant sex-by-genotype effect was observed for nicotine self-administration. Male 118GG mice demonstrated higher nicotine intake than male 118AA mice, suggesting increased nicotine reinforcement. In contrast, there was no genotype effect in female mice. Human male G allele carriers reported increased pleasurable effects from their first smoking experience, as compared to male homozygous A, female G and female homozygous A allele carriers. The 118G allele appears to confer greater sensitivity to nicotine reinforcement in males, but not females.
Collapse
Affiliation(s)
- R E Bernardi
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - K Zohsel
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - N Hirth
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - J Treutlein
- Genetic Epidemiology, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany
| | - M Heilig
- Center for Social and Affective
Neuroscience, Linköping University, Linköping,
Sweden
| | - M Laucht
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - R Spanagel
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany,Addiction Medicine, Central Institute of
Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental
Health, Medical Faculty Mannheim/Heidelberg University, Square
J5, Mannheim
68159, Germany; E-mail:
| |
Collapse
|