1
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
2
|
Makino Y, Wang Y, McHugh TJ. Multi-regional control of amygdalar dynamics reliably reflects fear memory age. Nat Commun 2024; 15:10283. [PMID: 39653694 PMCID: PMC11628566 DOI: 10.1038/s41467-024-54273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The basolateral amygdala (BLA) is crucial for the encoding and expression of fear memory, yet it remains unexplored how neural activity in this region is dynamically influenced by distributed circuits across the brain to facilitate expression of fear memory of different ages. Using longitudinal multisite electrophysiological recordings in male mice, we find that the recall of older contextual fear memory is accompanied by weaker, yet more rhythmic, BLA gamma activity which is distally entrained by theta oscillations in both the hippocampal CA1 and the anterior cingulate cortex. Computational modeling with Light Gradient Boosting Machine using extracted oscillatory features from these three regions, as well as with Transformer using raw local field potentials, accurately classified remote from recent memory recall primarily based on BLA gamma and CA1 theta. These results demonstrate in a non-biased manner that multi-regional control of BLA activity serves as reliable neural signatures for memory age-dependent recall mechanisms.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- International Research Center for Neurointelligence, UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yi Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
| |
Collapse
|
3
|
Zou GJ, Chen ZR, Wang XQ, Cui YH, Li F, Li CQ, Wang LF, Huang FL. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction. Eur J Pharmacol 2024; 978:176759. [PMID: 38901527 DOI: 10.1016/j.ejphar.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Excessive or inappropriate fear responses can lead to anxiety-related disorders, such as post-traumatic stress disorder (PTSD). Studies have shown that microglial activation occurs after fear conditioning and that microglial inhibition impacts fear memory. However, the role of microglia in fear memory recall remains unclear. In this study, we investigated the activated profiles of microglia after the recall of remote-cued fear memory and the role of activated microglia in the extinction of remote-cued fear in adult male C57BL/6 mice. The results revealed that the expression of the microglia marker Iba1 increased in the medial prefrontal cortex (mPFC) at 10 min and 1 h following remote-cued fear recall, which was accompanied by amoeboid morphology. Inhibiting microglial activation through PLX3397 treatment before remote fear recall did not affect recall, reconsolidation, or regular extinction but facilitated recall-extinction and mitigated spontaneous recovery. Moreover, our results demonstrated reduced co-expression of Iba1 and postsynaptic density protein 95 (PSD95) in the mPFC, along with decreases in the p-PI3K/PI3K ratio, p-Akt/Akt ratio, and KLF4 expression after PLX3397 treatment. Our results suggest that microglial activation after remote fear recall impedes fear extinction through the pruning of synapses in the mPFC, accompanied by alterations in the expression of the PI3K/AKT/KLF4 pathway. This finding can help elucidate the mechanism involved in remote fear extinction, contributing to the theoretical foundation for the intervention and treatment of PTSD.
Collapse
Affiliation(s)
- Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan, 413000, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; Hunan University of Chinese Medicine, Changsha, Hunan, 410219, China
| | - Xue-Qin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lai-Fa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Fu-Lian Huang
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan, 413000, China.
| |
Collapse
|
4
|
Teng Y, Niu J, Liu Y, Wang H, Chen J, Kong Y, Wang L, Lian B, Wang W, Sun H, Yue K. Ketamine alleviates fear memory and spatial cognition deficits in a PTSD rat model via the BDNF signaling pathway of the hippocampus and amygdala. Behav Brain Res 2024; 459:114792. [PMID: 38048914 DOI: 10.1016/j.bbr.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.
Collapse
Affiliation(s)
- Yue Teng
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JiaYao Niu
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Han Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JinHong Chen
- School of Continuing Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - WeiWen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| | - KuiTao Yue
- The Medical imaging Center, Affiliated Hospital of Weifang Medical University, 2428# Yuhe Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
5
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
6
|
Ortega-de San Luis C, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. Curr Biol 2023; 33:5368-5380.e5. [PMID: 37992719 DOI: 10.1016/j.cub.2023.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
7
|
Ling R, Wang Y, Zheng W, Min C, Chen M, Xia D, Li X. Effects of different types of neonatal pain on somatosensory and cognitive development in male juvenile rats. Brain Behav 2023; 13:e3309. [PMID: 37968885 PMCID: PMC10726798 DOI: 10.1002/brb3.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Premature infants are inevitably exposed to painful events, including repetitive procedures, inflammation, or mixed stimulation that may induce long-term behavioral outcomes. Here, we set up three neonatal painful models to investigate their long-term effect on somatosensation and cognition. METHODS Three types of neonatal pain models in rat were set up. Rat pups were randomly assigned to four groups. The needling pain (NP) group received repetitive needle pricks on the paws from the day of birth (PD0) to postnatal day 7 (PD7) to mimic the diagnostic and therapeutic procedures. The inflammatory pain (IP) group received the injection of carrageenan into the left hindpaw at PD3 to induce IP in peripheral tissues. The mixed pain group received a combination of the NP and IP (NIP). The control (CON) group was untreated. We performed behavioral and biochemical testing of juvenile rats (PD21-PD26). RESULTS The NIP group showed a longer hypersensitivity than the NP group, when given a secondary inflammatory stimulation. NP led to insensitivity to anxiety-causing stimuli and impairment of fear memory both aggravated by NIP. NP reduced the expression of synapse-related molecules (GluN1/PSD95/GFAP) in the medial prefrontal cortex, and NIP exacerbated this decrease. The corticosterone secretion in the NIP group increased after the behavioral task, compared with those in other three groups. CONCLUSION A combination of NP with inflammation occurring in the neonatal period might aggravate the adverse effects of each on somatosensory and cognitive development of rats, the mechanism of which might be associated with the increase of corticosterone secretion and the dysregulation of synaptic molecules.
Collapse
Affiliation(s)
- Ru Ling
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yueshu Wang
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Wen Zheng
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Cuiting Min
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Mengying Chen
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Dongqing Xia
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Xiaonan Li
- Department of Child Health CareChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
8
|
Nachtigall EG, de Freitas JDR, Marcondes LA, Furini CRG. Memory persistence induced by environmental enrichment is dependent on different brain structures. Physiol Behav 2023; 272:114375. [PMID: 37806510 DOI: 10.1016/j.physbeh.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Lucas Aschidamini Marcondes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular Vesicle-Serpine-1 Affects Neural Progenitor Cell Mitochondrial Networks and Synaptic Density: Modulation by Amyloid Beta and HIV-1. Mol Neurobiol 2023; 60:6441-6465. [PMID: 37458985 PMCID: PMC10533645 DOI: 10.1007/s12035-023-03456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells (HBMEC) to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nelson Serrano
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Irina Djuraskovic
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
10
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Butler MJ, Sengupta S, Muscat SM, Amici SA, Biltz RG, Deems NP, Dravid P, Mackey-Alfonso S, Ijaz H, Bettes MN, Godbout JP, Kapoor A, Guerau-de-Arellano M, Barrientos RM. CD8 + T cells contribute to diet-induced memory deficits in aged male rats. Brain Behav Immun 2023; 109:235-250. [PMID: 36764399 PMCID: PMC10124165 DOI: 10.1016/j.bbi.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
We have previously shown that short-term (3-day) high fat diet (HFD) consumption induces a neuroinflammatory response and subsequent impairment of long-term memory in aged, but not young adult, male rats. However, the immune cell phenotypes driving this proinflammatory response are not well understood. Previously, we showed that microglia isolated from young and aged rats fed a HFD express similar levels of priming and proinflammatory transcripts, suggesting that additional factors may drive the exaggerated neuroinflammatory response selectively observed in aged HFD-fed rats. It is established that T cells infiltrate both the young and especially the aged central nervous system (CNS) and contribute to immune surveillance of the parenchyma. Thus, we investigated the modulating role of short-term HFD on T cell presence in the CNS in aged rats using bulk RNA sequencing and flow cytometry. RNA sequencing results indicate that aging and HFD altered the expression of genes and signaling pathways associated with T cell signaling, immune cell trafficking, and neuroinflammation. Moreover, flow cytometry data showed that aging alone increased CD4+ and CD8+ T cell presence in the brain and that CD8+, but not CD4+, T cells were further increased in aged rats fed a HFD. Based on these data, we selectively depleted circulating CD8+ T cells via an intravenous injection of an anti-CD8 antibody in aged rats prior to 3 days of HFD to infer the functional role these cells may be playing in long-term memory and neuroinflammation. Results indicate that peripheral depletion of CD8+ T cells lowered hippocampal cytokine levels and prevented the HFD-induced i) increase in brain CD8+ T cells, ii) memory impairment, and iii) alterations in pre- and post-synaptic structures in the hippocampus and amygdala. Together, these data indicate a substantial role for CD8+ T cells in mediating diet-induced memory impairments in aged male rats.
Collapse
Affiliation(s)
- Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| | - Shouvonik Sengupta
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Rebecca G Biltz
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Piyush Dravid
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Haanya Ijaz
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Amit Kapoor
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular vesicle-Serpine-1 affects neural progenitor cell mitochondrial functions and synaptic density: modulation by amyloid beta and HIV-1. RESEARCH SQUARE 2023:rs.3.rs-2551245. [PMID: 36824983 PMCID: PMC9949237 DOI: 10.21203/rs.3.rs-2551245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology and mitochondrial function alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E András
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nelson Serrano
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Irina Djuraskovic
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michal Toborek
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
13
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
14
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
de Souza JM, Ferreira-Vieira TH, Maciel EMA, Silva NC, Lima IBQ, Doria JG, Olmo IG, Ribeiro FM. mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype. Sci Rep 2022; 12:8982. [PMID: 35643779 PMCID: PMC9148310 DOI: 10.1038/s41598-022-13029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5−/−, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5−/−/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5−/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5−/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5−/− and BACHD/mGluR5−/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.
Collapse
|
16
|
Li C, Liu S, Mei Y, Wang Q, Lu X, Li H, Tao F. Differential Effects of Sevoflurane Exposure on Long-Term Fear Memory in Neonatal and Adult Rats. Mol Neurobiol 2022; 59:2799-2807. [PMID: 35201592 DOI: 10.1007/s12035-021-02629-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
It remains unclear whether exposure to sevoflurane produces different effects on long-term cognitive function in developing and mature brains. In the present study, Sprague-Dawley neonatal rats at postnatal day (PND) 7 and adult rats (PND 56) were used in all experiments. We performed fear conditioning testing to examine long-term fear memory following 4-h sevoflurane exposure. We assessed hippocampal synapse ultrastructure with a transmission electron microscope. Moreover, we investigated the effect of sevoflurane exposure on the expression of postsynaptic protein 95 (PSD-95) and its binding protein kalirin-7 in the hippocampus. We observed that early exposure to sevoflurane in neonatal rats impairs hippocampus-dependent fear memory, reduces hippocampal synapse density, and dramatically decreases the expressions of PSD-95 and kalirin-7 in the hippocampus of the developing brain. However, sevoflurane exposure in adult rats has no effects on hippocampus-dependent fear memory and hippocampal synapse density, and the expressions of PSD-95 and kalirin-7 in the adult hippocampus are not significantly altered following sevoflurane treatment. Our results indicate that sevoflurane exposure produces differential effects on long-term fear memory in neonatal and adult rats and that PSD-95 signaling may be involved in the molecular mechanism for early sevoflurane exposure-caused long-term fear memory impairment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Anesthesiology and Perioperative Cognitive Function, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA
| | - Yixin Mei
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA.
| |
Collapse
|
17
|
Curran OE, Qiu Z, Smith C, Grant SGN. A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions. Eur J Neurosci 2021; 54:6864-6881. [PMID: 32492218 PMCID: PMC7615673 DOI: 10.1111/ejn.14846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Mapping the molecular composition of individual excitatory synapses across the mouse brain reveals high synapse diversity with each brain region showing a distinct composition of synapse types. As a first step towards systematic mapping of synapse diversity across the human brain, we have labelled and imaged synapses expressing the excitatory synapse protein PSD95 in twenty human brain regions, including 13 neocortical, two subcortical, one hippocampal, one cerebellar and three brainstem regions, in four phenotypically normal individuals. We quantified the number, size and intensity of individual synaptic puncta and compared their regional distributions. We found that each region showed a distinct signature of synaptic puncta parameters. Comparison of brain regions showed that cortical and hippocampal structures are similar, and distinct from those of cerebellum and brainstem. Comparison of synapse parameters from human and mouse brain revealed conservation of parameters, hierarchical organization of brain regions and network architecture. This work illustrates the feasibility of generating a systematic single-synapse resolution atlas of the human brain, a potentially significant resource in studies of brain health and disease.
Collapse
Affiliation(s)
- Olimpia E Curran
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Zhen Qiu
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Academic Neuropathology, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| |
Collapse
|
18
|
Sah A, Kharitonova M, Mlyniec K. Neuronal correlates underlying the role of the zinc sensing receptor (GPR39) in passive-coping behaviour. Neuropharmacology 2021; 198:108752. [PMID: 34390690 DOI: 10.1016/j.neuropharm.2021.108752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 01/13/2023]
Abstract
The Zn2+ receptor GPR39 is proposed to be involved in the pathophysiology of depression. GPR39 knockout (KO) animals show depressive- and anxiety-like behaviour, and resistance to conventional monoamine-based antidepressants. However, it is unclear as to which brain regions are involved in the pro-depressive phenotype of GPR39KO mice and the resistance to monoamine-targeting antidepressant treatment. Our current study confirmed previous results, showing that mice lacking GPR39 display enhanced passive coping-like behaviour compared with their wild-type controls. Furthermore, this study shows for the first time that GPR39KO displayed aberrant challenge-induced neuronal activity in key brain regions associated with passive coping behaviour. Imipramine induced only a marginal reduction in the enhanced passive coping behaviour in GPR39KO mice, which was associated with attenuation of the hyperactive prefrontal cortex. Similarly, the aberrant activity within the amygdalar subregions was normalized following imipramine treatment in the GPR39KO mice, indicating that imipramine mediates these effects independently of GPR39 in the prefrontal cortex and amygdala. However, imipramine failed to modulate the aberrant brain activity in other brain regions, such as the anterior CA3 and the dentate gyrus, in GPR39KO mice. Normalization of aberrant activity in these areas has been shown previously to accompany successful behavioural effects of antidepressants. Taken together, our data suggest that monoamine-based antidepressants such as imipramine exert their action via GPR39-dependent and -independent pathways. Failure to modulate passive-coping related aberrant activity in important brain areas of the depression circuitry is proposed to mediate/contribute to the greatly reduced antidepressant action of monoamine-based antidepressants in GPR39KO mice.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020, Innsbruck, Austria
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| |
Collapse
|
19
|
Fu CH, Han XY, Tong L, Nie PY, Hu YD, Ji LL. miR-142 downregulation alleviates the impairment of spatial learning and memory, reduces the level of apoptosis, and upregulates the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2021; 414:113485. [PMID: 34302879 DOI: 10.1016/j.bbr.2021.113485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023]
Abstract
MicroRNA-142-5p (miR-142-5p) has been found to be dysregulated in several neurodegenerative disorders. However, little is known about the involvement of miR-142-5p in Alzheimer's disease (AD). Brain angiogenesis inhibitor 3 (BAI3), which belongs to the adhesion-G protein-coupled receptor subgroup, contributes to a variety of neuropsychiatric disorders. Despite its very high expression in neurons, the role of BAI3 in AD remains elusive, and its mechanism at the cellular and molecular levels needs to be further elucidated. The current study sought to investigate whether miR-142-5p influenced BAI3 expression and neuronal synaptotoxicity induced by Aβ, both in APP/PS1 transgenic mice and a cellular model of Alzheimer's disease. Altered expression of miR-142-5p was found in the hippocampus of AD mice. Inhibition of miR-142 could upregulate BAI3 expression, enhance neuronal viability and prevent neurons from undergoing apoptosis. In addition, the reduction of phosphorylation of Synapsin I and calcium/calmodulin-dependent protein kinase II (CaMKII), as well as the expression of PSD-95 in the hippocampus of APP/PS1 transgenic mice, were significantly restored by inhibiting miR-142. Meanwhile, the levels of Aβ1-42, β-APP, BACE-1 and PS-1 in cultured neurons were detected, and the effects of inhibiting miR-142 on spatial learning and memory were also observed. Interestingly, we found that BAI3, an important regulator of excitatory synapses, was a potential target gene of miR-142-5p. Collectively, our findings suggest that miR-142 inhibition can alleviate the impairment of spatial learning and memory, reduce the level of apoptosis, and upregulate the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice; thus, appropriate interference of miR-142 may provide a potential therapeutic approach to rescue cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Yan Han
- Department of Neurology, Seventh People's Hospital of Jinan City, Jinan, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue-Dong Hu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Rao-Ruiz P, Visser E, Mitrić M, Smit AB, van den Oever MC. A Synaptic Framework for the Persistence of Memory Engrams. Front Synaptic Neurosci 2021; 13:661476. [PMID: 33841124 PMCID: PMC8024575 DOI: 10.3389/fnsyn.2021.661476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
Collapse
Affiliation(s)
- Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
PSD-95 in CA1 Area Regulates Spatial Choice Depending on Age. J Neurosci 2021; 41:2329-2343. [PMID: 33472821 DOI: 10.1523/jneurosci.1996-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive processes that require spatial information rely on synaptic plasticity in the dorsal CA1 area (dCA1) of the hippocampus. Since the function of the hippocampus is impaired in aged individuals, it remains unknown how aged animals make spatial choices. Here, we used IntelliCage to study behavioral processes that support spatial choices of aged female mice living in a group. As a proxy of training-induced synaptic plasticity, we analyzed the morphology of dendritic spines and the expression of a synaptic scaffold protein, PSD-95. We observed that spatial choice training in young adult mice induced correlated shrinkage of dendritic spines and downregulation of PSD-95 in dCA1. Moreover, long-term depletion of PSD-95 by shRNA in dCA1 limited correct choices to a reward corner, while reward preference was intact. In contrast, old mice used behavioral strategies characterized by an increased tendency for perseverative visits and social interactions. This strategy resulted in a robust preference for the reward corner during the spatial choice task. Moreover, training decreased the correlation between PSD-95 expression and the size of dendritic spines. Furthermore, PSD-95 depletion did not impair place choice or reward preference in old mice. Thus, our data indicate that while young mice require PSD-95-dependent synaptic plasticity in dCA1 to make correct spatial choices, old animals observe cage mates and stick to a preferred corner to seek the reward. This strategy is resistant to the depletion of PSD-95 in the CA1 area. Overall, our study demonstrates that aged mice combine alternative behavioral and molecular strategies to approach and consume rewards in a complex environment.SIGNIFICANCE STATEMENT It remains poorly understood how aging affects behavioral and molecular processes that support cognitive functions. It is, however, essential to understand these processes to develop therapeutic interventions that support successful cognitive aging. Our data indicate that while young mice require PSD-95-dependent synaptic plasticity in dCA1 to make correct spatial choices (i.e., choices that require spatial information), old animals observe cage mates and stick to a preferred corner to seek the reward. This strategy is resistant to the depletion of PSD-95 in the CA1 area. Overall, our study demonstrates that aged mice combine alternative behavioral and molecular strategies to approach and consume rewards in a complex environment. Second, the contribution of PSD-95-dependent synaptic functions in spatial choice changes with age.
Collapse
|
22
|
Pulya S, Mahale A, Bobde Y, Routholla G, Patel T, Swati, Biswas S, Sharma V, Kulkarni OP, Ghosh B. PT3: A Novel Benzamide Class Histone Deacetylase 3 Inhibitor Improves Learning and Memory in Novel Object Recognition Mouse Model. ACS Chem Neurosci 2021; 12:883-892. [PMID: 33577290 DOI: 10.1021/acschemneuro.0c00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The importance of HDAC3 in transcriptional regulation of genes associated with long-term memory is well established. Here, we report a novel HDAC3 inhibitor, PT3, with an excellent blood-brain barrier permeability and ability to enhance long-term memory in mouse model of novel object recognition (NOR). PT3 exhibited higher selectivity for HDAC3 over HDAC1, HDAC6, and HDAC8 compared to the reference compound CI994. PT3 has significant distribution into the brain tissue with Cmax at 0.5 h and t1/2 of 2.5 h. Treatment with PT3 significantly improved the discrimination index in C57/BL6 mice in the NOR model. Brain tissue analysis of mice treated with PT3 for NOR test showed significant increase in H3K9 acetylation in hippocampus. Gene expression analysis by RT-qPCR of the hippocampus tissue revealed upregulation of CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43, PSD 95 and MMP9 expression in mice treated with PT3. Similar to the phenotype observed in the in vivo experiment, we found upregulation of H3K9 acetylation, CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43 and MMP9 expression in mouse neuronal (N2A) cells treated with PT3. Thus, our preclinical studies identify PT3 as a potential HDAC3 selective inhibitor that crosses the blood-brain barrier and improves the long-term memory formation in C57/BL6 mice. We propose PT3 as a candidate with therapeutic potential to treat age-related memory loss as well as other disorders with declined memory function like Alzheimer's disease.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ashutosh Mahale
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Yamini Bobde
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Onkar P. Kulkarni
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
23
|
Varinthra P, Ganesan K, Huang SP, Chompoopong S, Eurtivong C, Suresh P, Wen ZH, Liu IY. The 4-(Phenylsulfanyl) butan-2-one Improves Impaired Fear Memory Retrieval and Reduces Excessive Inflammatory Response in Triple Transgenic Alzheimer's Disease Mice. Front Aging Neurosci 2021; 13:615079. [PMID: 33613267 PMCID: PMC7888344 DOI: 10.3389/fnagi.2021.615079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by an excessive inflammatory response and impaired memory retrieval, including spatial memory, recognition memory, and emotional memory. Acquisition and retrieval of fear memory help one avoid dangers and natural threats. Thus, it is crucial for survival. AD patients with impaired retrieval of fear memory are vulnerable to dangerous conditions. Excessive expression of inflammatory markers is known to impede synaptic transmission and reduce the efficiency of memory retrieval. In wild-type mice, reducing inflammation response can improve fear memory retrieval; however, this effect of this approach is not yet investigated in 3xTg-AD model mice. To date, no satisfactory drug or treatment can attenuate the symptoms of AD despite numerous efforts. In the past few years, the direction of therapeutic drug development for AD has been shifted to natural compounds with anti-inflammatory effect. In the present study, we demonstrate that the compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) is effective in enhancing fear memory retrieval of wild-type and 3xTg-AD mice by reducing the expression of TNF-α, COX-2, and iNOS. We also found that 4-PSB-2 helps increase dendritic spine density, postsynaptic density protein-95 (PSD-95) expression, and long-term potentiation (LTP) in the hippocampus of 3xTg-AD mice. Our study indicates that 4-PSB-2 may be developed as a promising therapeutic compound for treating fear memory impairment of AD patients.
Collapse
Affiliation(s)
| | - Kiruthika Ganesan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok, Thailand
| | - Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
24
|
Glover LR, McFadden KM, Bjorni M, Smith SR, Rovero NG, Oreizi-Esfahani S, Yoshida T, Postle AF, Nonaka M, Halladay LR, Holmes A. A prefrontal-bed nucleus of the stria terminalis circuit limits fear to uncertain threat. eLife 2020; 9:60812. [PMID: 33319747 PMCID: PMC7899651 DOI: 10.7554/elife.60812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
In many cases of trauma, the same environmental stimuli that become associated with aversive events are experienced on other occasions without adverse consequence. We examined neural circuits underlying partially reinforced fear (PRF), whereby mice received tone-shock pairings on half of conditioning trials. Tone-elicited freezing was lower after PRF conditioning than fully reinforced fear (FRF) conditioning, despite an equivalent number of tone-shock pairings. PRF preferentially activated medial prefrontal cortex (mPFC) and bed nucleus of the stria terminalis (BNST). Chemogenetic inhibition of BNST-projecting mPFC neurons increased PRF, not FRF, freezing. Multiplexing chemogenetics with in vivo neuronal recordings showed elevated infralimbic cortex (IL) neuronal activity during CS onset and freezing cessation; these neural correlates were abolished by chemogenetic mPFC→BNST inhibition. These data suggest that mPFC→BNST neurons limit fear to threats with a history of partial association with an aversive stimulus, with potential implications for understanding the neural basis of trauma-related disorders.
Collapse
Affiliation(s)
- Lucas R Glover
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Kerry M McFadden
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Max Bjorni
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sawyer R Smith
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Takayuki Yoshida
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Abagail F Postle
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Mio Nonaka
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| |
Collapse
|
25
|
Kainate Receptor Auxiliary Subunit NETO2-Related Cued Fear Conditioning Impairments Associate with Defects in Amygdala Development and Excitability. eNeuro 2020; 7:ENEURO.0541-19.2020. [PMID: 32788298 PMCID: PMC7470932 DOI: 10.1523/eneuro.0541-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
NETO2 is an auxiliary subunit for kainate-type glutamate receptors that mediate normal cued fear expression and extinction. Since the amygdala is critical for these functions, we asked whether Neto2 -/- mice have compromised amygdala function. We measured the abundance of molecular markers of neuronal maturation and plasticity, parvalbumin-positive (PV+), perineuronal net-positive (PNN+), and double positive (PV+PNN+) cells in the Neto2 -/- amygdala. We found that Neto2 -/- adult, but not postnatal day (P)23, mice had 7.5% reduction in the fraction of PV+PNN+ cells within the total PNN+ population, and 23.1% reduction in PV staining intensity compared with Neto2 +/+ mice, suggesting that PV interneurons in the adult Neto2 -/- amygdala remain in an immature state. An immature PV inhibitory network would be predicted to lead to stronger amygdalar excitation. In the amygdala of adult Neto2 -/- mice, we identified increased glutamatergic and reduced GABAergic transmission using whole-cell patch-clamp recordings. This was accompanied by increased spine density of thin dendrites in the basal amygdala (BA) compared with Neto2 +/+ mice, indicating stronger glutamatergic synapses. Moreover, after fear acquisition Neto2 -/- mice had a higher number of c-Fos-positive cells than Neto2 +/+ mice in the lateral amygdala (LA), BA, and central amygdala (CE). Altogether, our findings indicate that Neto2 is involved in the maturation of the amygdala PV interneuron network. Our data suggest that this defect, together with other processes influencing amygdala principal neurons, contribute to increased amygdalar excitability, higher fear expression, and delayed extinction in cued fear conditioning, phenotypes that are common in fear-related disorders, including the posttraumatic stress disorder (PTSD).
Collapse
|
26
|
Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci 2020; 14:213. [PMID: 32765222 PMCID: PMC7380267 DOI: 10.3389/fncel.2020.00213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Critical periods are postnatal, restricted time windows of heightened plasticity in cortical neural networks, during which experience refines principal neuron wiring configurations. Here, we propose a model with two distinct types of synapses, innate synapses that establish rudimentary networks with innate function, and gestalt synapses that govern the experience-dependent refinement process. Nascent gestalt synapses are constantly formed as AMPA receptor-silent synapses which are the substrates for critical period plasticity. Experience drives the unsilencing and stabilization of gestalt synapses, as well as synapse pruning. This maturation process changes synapse patterning and consequently the functional architecture of cortical excitatory networks. Ocular dominance plasticity (ODP) in the primary visual cortex (V1) is an established experimental model for cortical plasticity. While converging evidence indicates that the start of the critical period for ODP is marked by the maturation of local inhibitory circuits, recent results support our model that critical periods end through the progressive maturation of gestalt synapses. The cooperative yet opposing function of two postsynaptic signaling scaffolds of excitatory synapses, PSD-93 and PSD-95, governs the maturation of gestalt synapses. Without those proteins, networks do not progress far beyond their innate functionality, resulting in rather impaired perception. While cortical networks remain malleable throughout life, the cellular mechanisms and the scope of critical period and adult plasticity differ. Critical period ODP is initiated with the depression of deprived eye responses in V1, whereas adult ODP is characterized by an initial increase in non-deprived eye responses. Our model proposes the gestalt synapse-based mechanism for critical period ODP, and also predicts a different mechanism for adult ODP based on the sparsity of nascent gestalt synapses at that age. Under our model, early life experience shapes the boundaries (the gestalt) for network function, both for its optimal performance as well as for its pathological state. Thus, reintroducing nascent gestalt synapses as plasticity substrates into adults may improve the network gestalt to facilitate functional recovery.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Oliver M. Schlüter
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Kumari P, Wadhwa M, Chauhan G, Alam S, Roy K, Kumar Jha P, Kishore K, Ray K, Kumar S, Nag TC, Panjwani U. Hypobaric hypoxia induced fear and extinction memory impairment and effect of Ginkgo biloba in its amelioration: Behavioral, neurochemical and molecular correlates. Behav Brain Res 2020; 387:112595. [PMID: 32194184 DOI: 10.1016/j.bbr.2020.112595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Regulated fear and extinction memory is essential for balanced behavioral response. Limbic brain regions are susceptible to hypobaric hypoxia (HH) and are putative target for fear extinction deficit and dysregulation. The present study aimed to examine the effect of HH and Ginkgo biloba extract (GBE) on fear and extinction memory with the underlying mechanism. Adult male Sprague-Dawley rats were evaluated for fear extinction and anxious behavior following GBE administration during HH exposure. Blood and tissue (PFC, hippocampus and amygdala) samples were collected for biochemical, morphological and molecular studies. Results revealed deficit in contextual and cued fear extinction following 3 days of HH exposure. Increased corticosterone, glutamate with decreased GABA level was found with marked pyknosis, decrease in apical dendritic length and number of functional spines. Decline in mRNA expression level of synaptic plasticity genes and immunoreactivity of BDNF, synaptophysin, PSD95, spinophilin was observed following HH exposure. GBE administration during HH exposure improved fear and extinction memory along with decline in anxious behavior. It restored corticosterone, glutamate and GABA levels with an increase in apical dendritic length and number of functional spines with a reduction in pyknosis. It also improved mRNA expression level and immunoreactivity of neurotrophic and synaptic proteins. The present study is the first which demonstrates fear extinction deficit and anxious behavior following HH exposure. GBE administration ameliorated fear and extinction memory dysregulation by restoration of neurotransmitter levels, neuronal pyknosis and synaptic connections along with improved neurotrophic and synaptic protein expressions.
Collapse
Affiliation(s)
- Punita Kumari
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Meetu Wadhwa
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Garima Chauhan
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Shahnawaz Alam
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Koustav Roy
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Prabhash Kumar Jha
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Krishna Kishore
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Koushik Ray
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Sanjeev Kumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Usha Panjwani
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
28
|
Bergstrom HC. Assaying Fear Memory Discrimination and Generalization: Methods and Concepts. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 91:e89. [PMID: 31995285 PMCID: PMC7000165 DOI: 10.1002/cpns.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generalization describes the transfer of conditioned responding to stimuli that perceptually differ from the original conditioned stimulus. One arena in which discriminant and generalized responding is of particular relevance is when stimuli signal the potential for harm. Aversive (fear) conditioning is a leading behavioral model for studying associative learning and memory processes related to threatening stimuli. This article describes a step-by-step protocol for studying discrimination and generalization using cued fear conditioning in rodents. Alternate conditioning paradigms, including context generalization, differential generalization, discrimination training, and safety learning, are also described. The protocol contains instructions for constructing a cued fear memory generalization gradient and methods for isolating discrete cued-from-context cued conditioned responses (i.e., "the baseline issue"). The preclinical study of generalization is highly pertinent in the context of fear learning and memory because a lack of fear discrimination (overgeneralization) likely contributes to the etiology of anxiety-related disorders and post-traumatic stress disorder. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Tone cued fear generalization gradient Basic Protocol 2: Quantification of freezing Support Protocol: Alternate conditioning paradigms.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, New York
| |
Collapse
|
29
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
30
|
Mennesson M, Rydgren E, Lipina T, Sokolowska E, Kulesskaya N, Morello F, Ivakine E, Voikar V, Risbrough V, Partanen J, Hovatta I. Kainate receptor auxiliary subunit NETO2 is required for normal fear expression and extinction. Neuropsychopharmacology 2019; 44:1855-1866. [PMID: 30770891 PMCID: PMC6784901 DOI: 10.1038/s41386-019-0344-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 11/09/2022]
Abstract
NETO1 and NETO2 are auxiliary subunits of kainate receptors (KARs). They interact with native KAR subunits to modulate multiple aspects of receptor function. Variation in KAR genes has been associated with psychiatric disorders in humans, and in mice, knockouts of the Grik1 gene have increased, while Grik2 and Grik4 knockouts have reduced anxiety-like behavior. To determine whether the NETO proteins regulate anxiety and fear through modulation of KARs, we undertook a comprehensive behavioral analysis of adult Neto1-/- and Neto2-/- mice. We observed no differences in anxiety-like behavior. However, in cued fear conditioning, Neto2-/-, but not Neto1-/- mice, showed higher fear expression and delayed extinction compared to wild type mice. We established, by in situ hybridization, that Neto2 was expressed in both excitatory and inhibitory neurons throughout the fear circuit including the medial prefrontal cortex, amygdala, and hippocampus. Finally, we demonstrated that the relative amount of synaptosomal KAR GLUK2/3 subunit was 20.8% lower in the ventral hippocampus and 36.5% lower in the medial prefrontal cortex in Neto2-/- compared to the Neto2+/+ mice. The GLUK5 subunit abundance was reduced 23.8% in the ventral hippocampus and 16.9% in the amygdala. We conclude that Neto2 regulates fear expression and extinction in mice, and that its absence increases conditionability, a phenotype related to post-traumatic stress disorder and propose that this phenotype is mediated by reduced KAR subunit abundance at synapses of fear-associated brain regions.
Collapse
Affiliation(s)
- Marie Mennesson
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland ,0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Emilie Rydgren
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Tatiana Lipina
- 0000 0004 0626 6184grid.250674.2Lunenfeld Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON Canada ,grid.473784.bFederal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia ,0000000121896553grid.4605.7Novosibirsk State University, Novosibirsk, Russia ,0000 0001 2157 2938grid.17063.33Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ewa Sokolowska
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Francesca Morello
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Evgueni Ivakine
- 0000 0004 0473 9646grid.42327.30Program of Genetics and Genome biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vootele Voikar
- 0000 0004 0410 2071grid.7737.4Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Victoria Risbrough
- Veterans Affairs, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California, San Diego, CA USA
| | - Juha Partanen
- 0000 0004 0410 2071grid.7737.4Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland. .,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
31
|
Lee JS, Lee Y, André EA, Lee KJ, Nguyen T, Feng Y, Jia N, Harris BT, Burns MP, Pak DTS. Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer's disease model mice. PLoS One 2019; 14:e0219691. [PMID: 31306446 PMCID: PMC6629081 DOI: 10.1371/journal.pone.0219691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by pathological hallmarks of neurofibrillary tangles and amyloid plaques. The plaques are formed by aggregation and accumulation of amyloid β (Aβ), a cleavage fragment of amyloid precursor protein (APP). Enhanced neuronal activity and seizure events are frequently observed in AD, and elevated synaptic activity promotes Aβ production. However, the mechanisms that link synaptic hyperactivity to APP processing and AD pathogenesis are not well understood. We previously found that Polo-like kinase 2 (Plk2), a homeostatic repressor of neuronal overexcitation, promotes APP β-processing in vitro. Here, we report that Plk2 stimulates Aβ production in vivo, and that Plk2 levels are elevated in a spatiotemporally regulated manner in brains of AD mouse models and human AD patients. Genetic disruption of Plk2 kinase function reduces plaque deposits and activity-dependent Aβ production. Furthermore, pharmacological Plk2 inhibition hinders Aβ formation, synapse loss, and memory decline in an AD mouse model. Thus, Plk2 links synaptic overactivity to APP β-processing, Aβ production, and disease-relevant phenotypes in vivo, suggesting that Plk2 may be a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Emily A. André
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kea Joo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Thien Nguyen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yang Feng
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Nuo Jia
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Brent T. Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Daniel T. S. Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
32
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Gunduz-Cinar O, Brockway E, Lederle L, Wilcox T, Halladay LR, Ding Y, Oh H, Busch EF, Kaugars K, Flynn S, Limoges A, Bukalo O, MacPherson KP, Masneuf S, Pinard C, Sibille E, Chesler EJ, Holmes A. Identification of a novel gene regulating amygdala-mediated fear extinction. Mol Psychiatry 2019; 24:601-612. [PMID: 29311651 PMCID: PMC6035889 DOI: 10.1038/s41380-017-0003-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Emma Brockway
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Lauren Lederle
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Troy Wilcox
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Lindsay R. Halladay
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Ying Ding
- Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA USA
| | - Hyunjung Oh
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Erica F. Busch
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Katie Kaugars
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Shaun Flynn
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Aaron Limoges
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Olena Bukalo
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Kathryn P. MacPherson
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sophie Masneuf
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Courtney Pinard
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Etienne Sibille
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Elissa J. Chesler
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
34
|
Jara C, Aránguiz A, Cerpa W, Tapia-Rojas C, Quintanilla RA. Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol 2018; 18:279-294. [PMID: 30077079 PMCID: PMC6072970 DOI: 10.1016/j.redox.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Tau is a key protein for microtubule stability; however, post-translationally modified tau contributes to neurodegenerative diseases by forming tau aggregates in the neurons. Previous reports from our group and others have shown that pathological forms of tau are toxic and impair mitochondrial function, whereas tau deletion is neuroprotective. However, the effects of tau ablation on brain structure and function in young mice have not been fully elucidated. Therefore, the aim of this study was to investigate the implications of tau ablation on the mitochondrial function and cognitive abilities of a litter of young mice (3 months old). Our results showed that tau deletion had positive effects on hippocampal cells by decreasing oxidative damage, favoring a mitochondrial pro-fusion state, and inhibiting mitochondrial permeability transition pore (mPTP) formation by reducing cyclophilin D (Cyp-D) protein. More importantly, tau deletion increased ATP production and improved the recognition memory and attentive capacity of juvenile mice. Therefore, the absence of tau enhanced brain function by improving mitochondrial health, which supplied more energy to the synapses. Thus, our work opens the possibility that preventing negative tau modifications could enhance brain function through the improvement of mitochondrial health.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Alejandra Aránguiz
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| | | |
Collapse
|
35
|
Ramos-Fernández E, Tapia-Rojas C, Ramírez VT, Inestrosa NC. Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling. Mol Neurobiol 2018; 56:1870-1882. [DOI: 10.1007/s12035-018-1162-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023]
|
36
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
37
|
Pollack GA, Bezek JL, Lee SH, Scarlata MJ, Weingast LT, Bergstrom HC. Cued fear memory generalization increases over time. Learn Mem 2018; 25:298-308. [PMID: 29907637 PMCID: PMC6004064 DOI: 10.1101/lm.047555.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Fear memory is a highly stable and durable form of memory, even over vast (remote) time frames. Nevertheless, some elements of fear memory can be forgotten, resulting in generalization. The purpose of this study is to determine how cued fear memory generalizes over time and measure underlying patterns of cortico-amygdala synaptic plasticity. We established generalization gradients at recent (1-d) and remote (30-d) retention intervals following auditory cued fear conditioning in adult male C57BL/6 mice. Results revealed a flattening of the generalization gradient (increased generalization) that was dissociated from contextual fear generalization, indicating a specific influence of time on cued fear memory performance. This effect reversed after a brief exposure to the novel stimulus soon after learning. Measurements from cortico-amygdala imaging of the activity-regulated cytoskeletal Arc/arg 3.1 (Arc) protein using immunohistochemistry after cued fear memory retrieval revealed a stable pattern of Arc expression in the dorsolateral amygdala, but temporally dynamic expression in the cortex. Over time, increased fear memory generalization was associated with a reduction in Arc expression in the agranular insular and infralimbic cortices while discrimination learning was associated with increased Arc expression in the prelimbic cortex. These data identify the dorsolateral amygdala, medial prefrontal, and insular cortices as loci for synaptic plasticity underlying cued fear memory generalization over time.
Collapse
Affiliation(s)
- Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Serena H Lee
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Miranda J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Leah T Weingast
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| |
Collapse
|
38
|
Fernández E, Collins MO, Frank RAW, Zhu F, Kopanitsa MV, Nithianantharajah J, Lemprière SA, Fricker D, Elsegood KA, McLaughlin CL, Croning MDR, Mclean C, Armstrong JD, Hill WD, Deary IJ, Cencelli G, Bagni C, Fromer M, Purcell SM, Pocklington AJ, Choudhary JS, Komiyama NH, Grant SGN. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Rep 2018; 21:679-691. [PMID: 29045836 PMCID: PMC5656750 DOI: 10.1016/j.celrep.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function. TAP tag and purification of endogenous Arc protein complexes from the mouse brain PSD95 is the major Arc binding protein, and both assemble into 1.5-MDa supercomplexes PSD95 is essential for recruitment of Arc to synapses Mutations and genetic variants in Arc-PSD95 are linked to cognition
Collapse
Affiliation(s)
- Esperanza Fernández
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium
| | - Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - René A W Frank
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fei Zhu
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Maksym V Kopanitsa
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Jess Nithianantharajah
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Sarah A Lemprière
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David Fricker
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Kathryn A Elsegood
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Catherine L McLaughlin
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Mike D R Croning
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Colin Mclean
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - J Douglas Armstrong
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Giulia Cencelli
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Menachem Fromer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Pocklington
- Institute of Psychological Medicine & Clinical Neurosciences, University of Cardiff, Cardiff, Wales, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Noboru H Komiyama
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
39
|
Thompson EH, Lensjø KK, Wigestrand MB, Malthe-Sørenssen A, Hafting T, Fyhn M. Removal of perineuronal nets disrupts recall of a remote fear memory. Proc Natl Acad Sci U S A 2018; 115:607-612. [PMID: 29279411 PMCID: PMC5776974 DOI: 10.1073/pnas.1713530115] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Throughout life animals learn to recognize cues that signal danger and instantaneously initiate an adequate threat response. Memories of such associations may last a lifetime and far outlast the intracellular molecules currently found to be important for memory processing. The memory engram may be supported by other more stable molecular components, such as the extracellular matrix structure of perineuronal nets (PNNs). Here, we show that recall of remote, but not recent, visual fear memories in rats depend on intact PNNs in the secondary visual cortex (V2L). Supporting our behavioral findings, increased synchronized theta oscillations between V2L and basolateral amygdala, a physiological correlate of successful recall, was absent in rats with degraded PNNs in V2L. Together, our findings suggest a role for PNNs in remote memory processing by stabilizing the neural network of the engram.
Collapse
Affiliation(s)
- Elise Holter Thompson
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
| | - Kristian Kinden Lensjø
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
| | - Mattis Brænne Wigestrand
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
| | - Anders Malthe-Sørenssen
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
- Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - Torkel Hafting
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Center for Integrative Neuroplasticity, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
40
|
Horner AE, McLaughlin CL, Afinowi NO, Bussey TJ, Saksida LM, Komiyama NH, Grant SGN, Kopanitsa MV. Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD-95. Eur J Neurosci 2018; 47:164-176. [DOI: 10.1111/ejn.13792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/25/2023]
Affiliation(s)
| | - Catherine L. McLaughlin
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | | - Timothy J. Bussey
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Lisa M. Saksida
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Noboru H. Komiyama
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | - Seth G. N. Grant
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | |
Collapse
|
41
|
Ferrara NC, Cullen PK, Pullins SP, Rotondo EK, Helmstetter FJ. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination. Learn Mem 2017; 24:414-421. [PMID: 28814467 PMCID: PMC5580525 DOI: 10.1101/lm.044131.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Patrick K Cullen
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Shane P Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Elena K Rotondo
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
42
|
Jury NJ, Pollack GA, Ward MJ, Bezek JL, Ng AJ, Pinard CR, Bergstrom HC, Holmes A. Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior. Alcohol Clin Exp Res 2017; 41:1298-1308. [PMID: 28614590 PMCID: PMC5509059 DOI: 10.1111/acer.13422] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Risk for alcohol use disorders (AUDs) in adulthood is linked to alcohol drinking during adolescence, but understanding of the neural and behavioral consequences of alcohol exposure during adolescence remains incomplete. Here, we examined the neurobehavioral impact of adolescent chronic intermittent EtOH (CIE) vapor exposure in mice. METHODS C57BL/6J-background Thy1-EGFP mice were CIE-exposed during adolescence or adulthood and examined, as adults, for alterations in the density and morphology of dendritic spines in infralimbic (IL) cortex, prelimbic (PL) cortex, and basolateral amygdala (BLA). In parallel, adolescent- and adult-exposed C57BL/6J mice were tested as adults for 2-bottle EtOH drinking, sensitivity to EtOH intoxication (loss of righting reflex [LORR]), blood EtOH clearance, and measures of operant responding for food reward. RESULTS CIE during adolescence decreased IL neuronal spine density and increased the head width of relatively wide-head IL and BLA spines, whereas CIE decreased head width of relatively narrow-head BLA spines. Adolescents had higher EtOH consumption prior to CIE than adults, while CIE during adulthood, but not adolescence, increased EtOH consumption relative to pre-CIE baseline. CIE produced a tolerance-like decrease in LORR sensitivity to EtOH challenge, irrespective of the age at which mice received CIE exposure. Mice exposed to CIE during adolescence, but not adulthood, required more sessions than AIR controls to reliably respond for food reward on a fixed-ratio (FR) 1, but not subsequent FR3, reinforcement schedule. On a progressive ratio reinforcement schedule, break point responding was higher in the adolescent- than the adult-exposed mice, regardless of CIE. Finally, footshock punishment markedly suppressed responding for reward in all groups. CONCLUSIONS Exposure to CIE during adolescence altered dendritic spine density and morphology in IL and BLA neurons, in parallel with a limited set of behavioral alterations. Together, these data add to growing evidence that key corticolimbic circuits are vulnerable to the effects of alcohol during adolescence, with lasting, potentially detrimental, consequences for behavior.
Collapse
Affiliation(s)
- Nicholas J Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Meredith J Ward
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Alexandra J Ng
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Courtney R Pinard
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Radke AK, Jury NJ, Kocharian A, Marcinkiewcz CA, Lowery-Gionta EG, Pleil KE, McElligott ZA, McKlveen JM, Kash TL, Holmes A. Chronic EtOH effects on putative measures of compulsive behavior in mice. Addict Biol 2017; 22:423-434. [PMID: 26687341 PMCID: PMC4916036 DOI: 10.1111/adb.12342] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Addictions, including alcohol use disorders, are characterized by the loss of control over drug seeking and consumption, but the neural circuits and signaling mechanisms responsible for the transition from controlled use to uncontrolled abuse remain incompletely understood. Prior studies have shown that 'compulsive-like' behaviors in rodents, for example, persistent responding for ethanol (EtOH) despite punishment, are increased after chronic exposure to EtOH. The main goal of the current study was to assess the effects of chronic intermittent EtOH (CIE) exposure on multiple, putative measures of compulsive-like EtOH seeking in C57BL/6 J mice. Mice were exposed to two or four weekly cycles of CIE and then, post-withdrawal, tested for progressive ratio responding for EtOH, sustained responding during signaled EtOH unavailability and (footshock) punished suppression of responding for EtOH. Results showed that mice exposed to CIE exhibited attenuated suppression of EtOH seeking during punishment, as compared with air-exposed controls. By contrast, CIE exposure affected neither punished food reward-seeking behavior, nor other putative measures of compulsive-like EtOH seeking. Ex vivo reverse transcription polymerase chain reaction analysis of brain tissue found reduced sensitivity to punished EtOH seeking after CIE exposure was accompanied by a significant increase in gene expression of the GluN1 and GluN2A subunits of the N-methyl-d-aspartate receptor, specifically in the medial orbitofrontal cortex. Moreover, slice electrophysiological analysis revealed increased N-methyl-d-aspartate receptor-mediated currents in the orbitofrontal cortex after CIE exposure in test-naïve mice. Collectively, the current findings add to the growing body of evidence demonstrating that chronic exposure to EtOH fosters resistance to punished EtOH seeking in association with adaptations in cortical glutamatergic transmission.
Collapse
Affiliation(s)
- Anna K. Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Nicholas J. Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Adrina Kocharian
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Psychiatry, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Jessica M. McKlveen
- Bowles Center for Alcohol Studies and Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Shukla A, Beroun A, Panopoulou M, Neumann PA, Grant SG, Olive MF, Dong Y, Schlüter OM. Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference. EMBO J 2017; 36:458-474. [PMID: 28077487 DOI: 10.15252/embj.201695465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) after drug withdrawal results in profound remodeling of NAc neuro-circuits. Silent synapse-based NAc remodeling was shown to be critical for several drug-induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug-associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD-93, PSD-95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine-conditioned place preference (CPP). Wild-type and knockout mice alike all acquired cocaine-CPP and exhibited increased levels of silent synapses after drug-context conditioning. However, the mice differed in CPP retention and CP-AMPAR incorporation. Collectively, our results indicate that CP-AMPAR-mediated maturation of silent synapses in the NAc is a signature of drug-context association, but this maturation is not required for establishing or retaining cocaine-CPP.
Collapse
Affiliation(s)
- Avani Shukla
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, Göttingen, Germany
| | - Anna Beroun
- Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Laboratory of Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Myrto Panopoulou
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, Göttingen, Germany
| | - Peter A Neumann
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth Gn Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA .,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany
| |
Collapse
|
45
|
Ammassari-Teule M. Is structural remodeling in regions governing memory an univocal correlate of memory? Neurobiol Learn Mem 2016; 136:28-33. [DOI: 10.1016/j.nlm.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
|
46
|
Taguchi YH. Principal component analysis based unsupervised feature extraction applied to publicly available gene expression profiles provides new insights into the mechanisms of action of histone deacetylase inhibitors. NEUROEPIGENETICS 2016; 8:1-18. [DOI: 10.1016/j.nepig.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Bergstrom HC. The neurocircuitry of remote cued fear memory. Neurosci Biobehav Rev 2016; 71:409-417. [PMID: 27693699 DOI: 10.1016/j.neubiorev.2016.09.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
Memories of threatening, fear-evoking events can persist even over a lifetime. While fear memory is widely considered to be a highly persistent and durable form of memory, its circuits are not. This article reviews the dynamic temporal representation of remote fear memory in the brain, at the level of local circuits and distributed networks. Data from the study of Pavlovian cued fear conditioning suggests memory retrieval remains amygdala-dependent, even over protracted time scales, all the while interconnected cortical and subcortical circuits are newly recruited and progressively reorganized. A deeper understanding into how the neurocircuitry of cued fear memory reorganizes with the passage of time will advance our ongoing search for the elusive physical changes representing fear memories in the brain. Considering that persistent, pathological fear memories are a hallmark feature of post-traumatic stress disorder (PTSD), the behavioral and circuit-level study of remote cued fear memory retrieval adds a key element towards a systems understanding of PTSD.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, United States.
| |
Collapse
|
48
|
ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016; 6:33609. [PMID: 27640997 PMCID: PMC5027525 DOI: 10.1038/srep33609] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity.
Collapse
|
49
|
Inaba H, Kishimoto T, Oishi S, Nagata K, Hasegawa S, Watanabe T, Kida S. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome. Biosci Biotechnol Biochem 2016; 80:2425-2436. [PMID: 27576603 PMCID: PMC5213968 DOI: 10.1080/09168451.2016.1224639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Takuya Kishimoto
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoru Oishi
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Kan Nagata
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Shunsuke Hasegawa
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan.,b Core Research for Evolutional Science and Technology , Japan Science and Technology Agency , Saitama , Japan
| | - Tamae Watanabe
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoshi Kida
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan.,b Core Research for Evolutional Science and Technology , Japan Science and Technology Agency , Saitama , Japan
| |
Collapse
|
50
|
Matchynski-Franks JJ, Susick LL, Schneider BL, Perrine SA, Conti AC. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder. PLoS One 2016; 11:e0155759. [PMID: 27186643 PMCID: PMC4871361 DOI: 10.1371/journal.pone.0155759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/13/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired striatal neuroplasticity may underlie increased alcoholism documented in those with posttraumatic stress disorder (PTSD). Cannabinoid receptor-1 (CB1) is sensitive to the effects of ethanol (EtOH) and traumatic stress, and is a critical regulator of striatal plasticity. To investigate CB1 involvement in the PTSD-alcohol interaction, this study measured the effects of traumatic stress using a model of PTSD, mouse single-prolonged stress (mSPS), on EtOH-induced locomotor sensitization and striatal CB1 levels. METHODS Mice were exposed to mSPS, which includes: 2-h restraint, 10-min group forced swim, 15-min exposure to rat bedding odor, and diethyl ether exposure until unconsciousness or control conditions. Seven days following mSPS exposure, the locomotor sensitizing effects of EtOH were assessed. CB1, post-synaptic density-95 (PSD95), and dopamine-2 receptor (D2) protein levels were then quantified in the dorsal striatum using standard immunoblotting techniques. RESULTS Mice exposed to mSPS-EtOH demonstrated impaired EtOH-induced locomotor sensitization compared to Control-EtOH mice, which was accompanied by reduced striatal CB1 levels. EtOH increased striatal PSD95 in control and mSPS-exposed mice. Additionally, mSPS-Saline exposure increased striatal PSD95 and decreased D2 protein expression, with mSPS-EtOH exposure alleviating these changes. CONCLUSIONS These data indicate that the mSPS model of PTSD blunts the behavioral sensitizing effects of EtOH, a response that suggests impaired striatal neuroplasticity. Additionally, this study demonstrates that mice exposed to mSPS and repeated EtOH exposure decreases CB1 in the striatum, providing a mechanism of interest for understanding the effects of EtOH following severe, multimodal stress exposure.
Collapse
Affiliation(s)
- Jessica J. Matchynski-Franks
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Laura L. Susick
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brandy L. Schneider
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Alana C. Conti
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|