1
|
Xing C, Yu X. Oxytocin and autism: Insights from clinical trials and animal models. Curr Opin Neurobiol 2025; 92:103015. [PMID: 40157057 DOI: 10.1016/j.conb.2025.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Autism spectrum disorder is a highly heritable and heterogeneous neurodevelopmental disorder, characterized by impaired social interactions and repetitive behaviors. Despite its complex etiology, increasing evidence has linked autism to the oxytocin system. The oxytocin peptide has long been known as the "social hormone," and has been shown to increase attention to social cues, elevate salience of socially relevant stimuli, and increase learning and reward in social situations. Reduced oxytocin levels and mutations in the oxytocin system have been reported in autism patients, while exogenously delivered oxytocin has been shown to alleviate social interaction deficits in both patients and animal models. Here, we summarize the results of recent clinical trials using oxytocin nasal spray to treat individuals with autism, as well as studies of autism animal models with oxytocin system deficits, and the rescue of their social behavior deficits by oxytocin. Finally, we discuss factors influencing clinical outcomes and reflect on future directions.
Collapse
Affiliation(s)
- Chuan Xing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
2
|
Matsushita H, Nishiki TI. Human social behavior and oxytocin: Molecular and neuronal mechanisms. Neuroscience 2025; 570:48-54. [PMID: 39961388 DOI: 10.1016/j.neuroscience.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Oxytocin (OT) is a hormone that is crucial for regulating various human social behaviors, such as maternal instinct, empathy, and trust. Its secretion in the brain is triggered by social stimuli. Recent research demonstrated impaired regulation of OT secretion and reduced social behaviors in patients with arginine vasopressin deficiency (central diabetes insipidus). OT interacts with other hormones to regulate human trust. Moreover, it has been shown to generate feelings of attachment and trust toward other and familiar consumer brands, thereby, potentially impacting personal consumption, which is a significant aspect of economic activity. This review provided insights into the molecular and neural mechanisms of OT in regulating human social behavior, including both social and economic activities.
Collapse
Affiliation(s)
- Hiroaki Matsushita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Tei-Ichi Nishiki
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoi no Oka 1-3, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
3
|
Mehta R. Extended kangaroo mother care - Examining the utility of skin-to-skin contact over the first year of life. Infant Behav Dev 2025; 79:102055. [PMID: 40147103 DOI: 10.1016/j.infbeh.2025.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Kangaroo mother care which involves skin-to-skin contact (SSC) between mothers and newborns with support for exclusive breastfeeding, is an important innovation if practiced beyond the first week of life up to 1-year of age. We posit that extended SSC can benefit postpartum metabolic health. STUDY DESIGN Using a narrative literature review, we examine the interaction between hormones oxytocin and cortisol, which are either released or antagonized by the neural actions of skin-to-skin contact. RESULTS Oxytocin is released during SSC, which promotes attachment, improves parent-infant interactions and lowers levels of cortisol. No studies to date have reported SSC use beyond the first 5 to 7 weeks postpartum. Although no differences have been observed in infant body weight, increased head circumference has been noted among pre-term and low birth weight infants. Improved breastfeeding outcomes have also been observed. Oxytocin release is protective against type-2 diabetes and obesity in postpartum women, given its effects on β-cell function, improved insulin response and reduction of plasma glucose levels. Oxytocin has anti-inflammatory, analgesic and thermoregulatory effects. Hypothetical benefits due to oxytocin-cortisol dynamics, can be assumed for maternal posttraumatic stress, postpartum depression and anxiety. Sleep patterns, duration of crying and length of sleep are dose-dependent in effect. Postnatal skin-brain connection and thermoregulation via epidermal keratinocytes may mediate the relationship between SSC and autism spectrum disorder. CONCLUSIONS The extended use of SSC can lower dependence on pharmacotherapeutic options concerning postpartum mental health and galactagogue use while supporting maternal-infant psychosocial well-being and lowering stress via hormonal action and HPA-axis activation.
Collapse
|
4
|
Eleftheriades A, Koulouraki S, Belegrinos A, Eleftheriades M, Pervanidou P. Maternal Obesity and Neurodevelopment of the Offspring. Nutrients 2025; 17:891. [PMID: 40077761 PMCID: PMC11901708 DOI: 10.3390/nu17050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND An increasing amount of evidence, derived from both human epidemiological studies and animal research, suggests that exposure to maternal obesity in utero is linked to adverse neurodevelopmental outcomes in the offspring. These can include attention deficit hyperactivity disorder, autism spectrum disorders, intellectual disability, and cerebral palsy. METHODS A thorough search in Medline/PubMed and Google Scholar databases was performed by two independent reviewers in order to investigate the link between the exposure to maternal obesity and neurodevelopmental outcomes in the offspring. A list of keywords, including maternal obesity, maternal overweight, maternal diet, neurodevelopment, and neuropsychiatric disorders, was used in the search algorithm. RESULTS The existing evidence regarding the potential mechanisms through which maternal obesity may impact offspring neurodevelopment and programming, such as inflammation, hormone dysregulation, alterations to the microbiome, and epigenetics, as well as evidence from animal studies, was summarized in this narrative review. CONCLUSIONS Maternal obesity seems to be overall associated with various neuropsychiatric and neurodevelopmental disorders. However, more robust data from future studies are needed to establish this association, which will take into account the role of potential confounders such as genetic factors and gene-environment interactions.
Collapse
Affiliation(s)
- Anna Eleftheriades
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Sevasti Koulouraki
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Antonios Belegrinos
- Unit of Developmental and Behavioral Paediatrics, First Department of Paediatrics, Agia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Paediatrics, First Department of Paediatrics, Agia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Bölte S. Social cognition in autism and ADHD. Neurosci Biobehav Rev 2025; 169:106022. [PMID: 39832687 DOI: 10.1016/j.neubiorev.2025.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Social cognition is a crucial capacity for social functioning. The last decades have seen a plethora of social cognition research in neurodevelopmental conditions, foremost autism and, to a lesser extent, ADHD, both characterized by social challenges. Social cognition is a multifaceted construct comprising various overlapping subdomains, such as Theory of Mind/mentalizing, emotion recognition, and social perception. Mechanisms underpinning social cognition are complex, including implicit and explicit, cognitive and affective, and hyper- and hypo-social information processing. This review explores the intricacies of social cognition in the context of autism and ADHD. Research indicates altered performance on social cognition tests in autism, compared to neurotypical groups, with social cognition alterations having a small but robust effect on the defining features of autism. The nature of such alterations in autism appears primarily in relation to implicit processing. ADHD groups show intermediate social cognition performance, appearing to be influenced by executive function difficulties. Social cognition varies with intellectual and verbal abilities and seems to improve with age in autism and ADHD. Social skills interventions in autism, and stimulant medication in ADHD have been shown to improve social cognition test performance, while mentalizing training effects in autism are less conclusive. A limitation of the field is that social cognition constructs and tests are not well delineated. Further, most research has been embedded in a nativist approach rather than a constructivist approach. The former has been questioned for ignoring environmental contributions, especially the dimension of mutual miscommunication between neurodivergent and neurotypical individuals.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Department of Women's and Children's Health, Centre for Psychiatry Research, Karolinska Institutet & Region Stockholm, Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Australia.
| |
Collapse
|
6
|
Ma SL, Bowen MT, Dadds MR. Functional significance of some common oxytocin receptor SNPs involved in complex human traits. BMC Mol Cell Biol 2025; 26:3. [PMID: 39762756 PMCID: PMC11705901 DOI: 10.1186/s12860-024-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Oxytocin function is associated with a range of human traits and is often indexed by common polymorphisms of the receptor gene OXTR. Little is known however about the functional significance of these polymorphisms. OBJECTIVES To examine the effects of common polymorphisms of OXTR on transcription expression in human neural cells. METHOD The impact of four common OXTR SNPs (rs1042778, rs4686302, rs2254298 and rs237887) on OXTR gene expression were tested in human neuroblastoma cell line, SH-SY5Y, a commonly used cell line for neurological disease. SNPs were chosen as having robust evidence for associations with complex human traits after consideration of linkage patterns across OXTR. RESULTS The expression level of GG genotype of rs1042778 was significantly lower than TT genotypes. None of the other SNPs were related to functional transcription. CONCLUSIONS OXTR polymorphisms showing robust associations with complex human traits are not reliably associated with changes in transcription of OXTR. Increasing cooperation between behavioral and biological scientists is needed to bridge the gap between human trait and functional biological studies to improve our understanding of oxytocin and other important mammalian neuroendocrine processes.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Michael Thomas Bowen
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Mark R Dadds
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Liu X, Cherepanov S, Abouzari M, Zuko A, Yang S, Sayadi J, Jia X, Terao C, Sasaki T, Yokoyama S. R150S mutation in the human oxytocin receptor: Gain-of-function effects and implication in autism spectrum disorder. Peptides 2024; 182:171301. [PMID: 39395443 DOI: 10.1016/j.peptides.2024.171301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
This study investigates the rs547238576 (R150S) missense variant in the oxytocin receptor (OXTR) gene, previously observed through screening of rare variants in Japanese individuals with autism spectrum disorders (ASD). Contrary to the anticipated loss-of-function, R150S exhibits gain-of-function effects, enhancing oxytocin (OXT) sensitivity, ligand-binding affinity, and OXT-induced Ca2+ mobilization in vitro. This suggests R150S may alter OXT signaling, potentially contributing to the excitatory/inhibitory imbalance seen in ASD and other psychiatric disorders. Our findings underscore the significance of genetic variations in OXTR on functional activity and highlight the necessity for population-specific genetic study and in vitro analysis to elucidate genetic susceptibilities to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Stanislav Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan; Institute for Functional Genomics, French National Centre for Scientific Research, Montpellier, Occitanie, France
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Jamasb Sayadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xiaoyuan Jia
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan.
| |
Collapse
|
8
|
Xiao S, Fischer H, Ebner NC, Rukh G, Dang J, Westberg L, Schiöth HB. Oxytocin pathway gene variation and corticostriatal resting-state functional connectivity. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100255. [PMID: 39211730 PMCID: PMC11357861 DOI: 10.1016/j.cpnec.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic variations in single nucleotide polymorphisms (SNPs) within oxytocin pathway genes have been linked to social behavior and neurodevelopmental conditions. However, the neurobiological mechanisms underlying these associations remain elusive. In this study, we investigated the relationship between variations of 10 SNPs in oxytocin pathway genes and resting-state functional connectivity among 55 independent components using a large sample from the UK Biobank (N ≈ 30,000). Our findings revealed that individuals with the GG genotype at rs4813627 within the oxytocin structural gene (OXT) exhibited weaker resting-state functional connectivity in the corticostriatal circuit compared to those with the GA/AA genotypes. Empirical evidence has linked the GG genotype at OXT rs4813627 with a behavioral tendency of insensitivity to others. These results inform the neural mechanisms by which oxytocin-related genetic factors can influence social behavior.
Collapse
Affiliation(s)
- Shanshan Xiao
- Department of Psychology, Stockholm University, Campus Albano house 4, Albanovägen, SE-114 19, Stockholm, Sweden
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Campus Albano house 4, Albanovägen, SE-114 19, Stockholm, Sweden
- Stockholm University Brain Imaging Centre (SUBIC), SE-106 91, Stockholm, Sweden
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 77, Stockholm, Sweden
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611-2250, USA
- Cognitive Aging and Memory Program, Clinical Translational Research Program (CAM-CTRP), University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive Gainesville, FL, 32610, USA
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| | - Junhua Dang
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30, Gothenburg, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| |
Collapse
|
9
|
Gora C, Dudas A, Vaugrente O, Drobecq L, Pecnard E, Lefort G, Pellissier LP. Deciphering autism heterogeneity: a molecular stratification approach in four mouse models. Transl Psychiatry 2024; 14:416. [PMID: 39366951 PMCID: PMC11452541 DOI: 10.1038/s41398-024-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Lucile Drobecq
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | |
Collapse
|
10
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
11
|
Audunsdottir K, Sartorius AM, Kang H, Glaser BD, Boen R, Nærland T, Alaerts K, Kildal ESM, Westlye LT, Andreassen OA, Quintana DS. The effects of oxytocin administration on social and routinized behaviors in autism: A preregistered systematic review and meta-analysis. Psychoneuroendocrinology 2024; 167:107067. [PMID: 38815399 DOI: 10.1016/j.psyneuen.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Oxytocin administration has demonstrated considerable promise for providing individualized support for autistic people. However, studies evaluating the effects of oxytocin administration on autistic characteristics have yielded inconsistent results. This systematic review and meta-analysis investigates the effect of oxytocin administration on social and routinized behaviors in autism using recently developed methods to accurately assess the potential impact of effect size dependency and publication bias. Our frequentist meta-analysis yielded a significant summary effect size estimate for the impact of oxytocin administration on social outcomes in autism (d = 0.22, p < 0.001). The summary effect size estimate for routinized behavior outcomes was not statistically significant (d = 0.14, p = 0.22), with a follow up test indicating that the effect size estimate was not either statistically equivalent (Z = -1.06, p = 0.2), assuming a smallest effect size of interest of 0.25. Frequentist and Bayesian assessments for publication bias, as well as results from Robust Bayesian meta-analysis of oxytocin effects on social outcomes in autism, indicated that summary effect sizes might be inflated due to publication bias. Future studies should aim to reduce bias by preregistering analysis plans and to increase precision with larger sample sizes.
Collapse
Affiliation(s)
- Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alina M Sartorius
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Rune Boen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
12
|
Garrido-Torres N, Guzmán-Torres K, García-Cerro S, Pinilla Bermúdez G, Cruz-Baquero C, Ochoa H, García-González D, Canal-Rivero M, Crespo-Facorro B, Ruiz-Veguilla M. miRNAs as biomarkers of autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2024; 33:2957-2990. [PMID: 36735095 PMCID: PMC11424746 DOI: 10.1007/s00787-023-02138-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex clinical manifestations that arise between 18 and 36 months of age. Social interaction deficiencies, a restricted range of interests, and repetitive stereotyped behaviors are characteristics which are sometimes difficult to detect early. Several studies show that microRNAs (miRs/miRNAs) are strongly implicated in the development of the disorder and affect the expression of genes related to different neurological pathways involved in ASD. The present systematic review and meta-analysis addresses the current status of miRNA studies in different body fluids and the most frequently dysregulated miRNAs in patients with ASD. We used a combined approach to summarize miRNA fold changes in different studies using the mean values. In addition, we summarized p values for differential miRNA expression using the Fisher method. Our literature search yielded a total of 133 relevant articles, 27 of which were selected for qualitative analysis based on the inclusion and exclusion criteria, and 16 studies evaluating miRNAs whose data were completely reported were ultimately included in the meta-analysis. The most frequently dysregulated miRNAs across the analyzed studies were miR-451a, miR-144-3p, miR-23b, miR-106b, miR150-5p, miR320a, miR92a-2-5p, and miR486-3p. Among the most dysregulated miRNAs in individuals with ASD, miR-451a is the most relevant to clinical practice and is associated with impaired social interaction. Other miRNAs, including miR19a-3p, miR-494, miR-142-3p, miR-3687, and miR-27a-3p, are differentially expressed in various tissues and body fluids of patients with ASD. Therefore, all these miRNAs can be considered candidates for ASD biomarkers. Saliva may be the optimal biological fluid for miRNA measurements, because it is easy to collect from children compared to other biological fluids.
Collapse
Affiliation(s)
- Nathalia Garrido-Torres
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | | | - Susana García-Cerro
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | | | | | - Hansel Ochoa
- Epidemiology Research Group (EpiAndes), Los Andes University, Bogotá, Colombia
| | - Diego García-González
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
| | - Manuel Canal-Rivero
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain.
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain.
| | - Miguel Ruiz-Veguilla
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| |
Collapse
|
13
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
14
|
George K, Hoang HT, Tibbs T, Nagaraja RY, Li G, Troyano-Rodriguez E, Ahmad M. Robust GRK2/3/6-dependent desensitization of oxytocin receptor in neurons. iScience 2024; 27:110047. [PMID: 38883814 PMCID: PMC11179071 DOI: 10.1016/j.isci.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain. Both cell autonomous spiking response and presynaptic activation undergo similar agonist-induced desensitization. G-protein-coupled receptor kinases (GRK) GRK2, GRK3, and GRK6 are recruited to the activated OXTR in neurons, followed by recruitment of β-arrestin-1 and -2. Neuronal OXTR desensitization was impaired by suppression of GRK2/3/6 kinase activity but remained unaltered with double knockout of β-arrestin-1 and -2. Additionally, we observed robust agonist-induced internalization of neuronal OXTR and its Rab5-dependent recruitment to early endosomes, which was impaired by GRK2/3/6 inhibition. This work defines distinctive aspects of the mechanisms governing OXTR desensitization and internalization in neurons compared to prior studies in heterologous cells.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hanh T.M. Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Taryn Tibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eva Troyano-Rodriguez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zheng X, Zhou F, Fu M, Xu L, Wang J, Li J, Li K, Sindermann C, Montag C, Becker B, Zhan Y, Kendrick KM. Patterns of neural activity in response to threatening faces are predictive of autistic traits: modulatory effects of oxytocin receptor genotype. Transl Psychiatry 2024; 14:168. [PMID: 38553454 PMCID: PMC10980722 DOI: 10.1038/s41398-024-02889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zhou
- Southwest University, Chongqing, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiayuan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Keshuang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cornelia Sindermann
- University of Stuttgart, Computational Digital Psychology, Interchange Forum for Reflecting on Intelligent Systems, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hongkong, Hongkong, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Procyshyn TL, Leclerc Bédard LA, Crespi BJ, Bartz JA. CD38 genetic variation is associated with increased personal distress to an emotional stimulus. Sci Rep 2024; 14:2571. [PMID: 38297097 PMCID: PMC10831108 DOI: 10.1038/s41598-024-53081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Genetic variation in CD38-a putative oxytocin pathway gene-has been linked to higher oxytocin levels, empathy, and sensitive parenting, but also to more negative interpersonal outcomes (e.g., alienation from friends and family, poorer romantic relationship quality). To reconcile these seemingly contradictory findings, we drew upon the idea that CD38 variation may heighten social-emotional sensitivity and, consequently, make individuals prone to negative emotions in distressing interpersonal situations. To test this hypothesis, we performed a secondary analysis of a dataset including participants' (n = 171; 94 females) empathic concern ("sympathetic") and distress-related ("anxious") responses to an emotional video. Distress responses were higher for the CD38 rs3796863 AA/AC group vs. the CC group (p = 0.03, η2 = 0.027); however, there was no significant effect of genotype for empathic concern responses to the video or for indices of trait empathy. These findings provide preliminary evidence that, in the face of an interpersonal stressor, CD38 genetic variation may predict more self-focused, aversive emotional reactions. More broadly, this finding highlights the need to adopt a more nuanced perspective in which the influence of oxytocin system variation (assessed by oxytocin-related genetic variation) should be considered in light of the social context.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| | - Laury-Ann Leclerc Bédard
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, H3A 1G1, Canada
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Jennifer A Bartz
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, H3A 1G1, Canada
| |
Collapse
|
18
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
19
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. METHODS Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. RESULTS From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. INTERPRETATION Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
20
|
Ghamari R, Tahmaseb M, Sarabi-Jamab A, Etesami SA, Mohammadzadeh A, Alizadeh F, Tehrani-Doost M. Association of verbal and non-verbal theory of mind abilities with non-coding variants of OXTR in youth with autism spectrum disorder and typically developing individuals: a case-control study. BMC Psychiatry 2024; 24:30. [PMID: 38191308 PMCID: PMC10773038 DOI: 10.1186/s12888-023-05461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The ability to attribute mental states to others is called theory of mind (ToM) and is a substantial component of social cognition. This ability is abnormally developed in individuals with autism spectrum disorder (ASD). Several studies over the past decade have identified the oxytocin receptor gene (OXTR) and its variants as promising components for explaining the molecular mechanisms underlying Theory of Mind (ToM). The main aim of this study is to examine the association between rs2268498 and rs53576, two functional single nucleotide polymorphisms (SNPs), and verbal and non-verbal ToM in children and adolescents with ASD and a group of typically developing youth. METHODS The study involved 44 children and adolescents with high-functioning ASD aged 8 to 18 years old and 44 TD individuals who were matched on age and sex. In all participants, blood samples were collected and rs2268498 and rs53576 were genotyped. Happe's Strange Stories test and the moving shapes paradigm were used to measure verbal and non-verbal ToM in all participants. RESULTS The results of permutation tests and logistic regression suggested that in TD group, rs2268498 AA carriers showed significant higher scores in variables representing verbal ToM (ToM stories and appropriateness score) whereas, in ASD group, rs53576 AA carriers exhibited significant better performance in parameters related to non-verbal ToM (ToM general rule and intentionality score). The results of hierarchical clustering in both groups support the findings by distinguishing between language-related and language-independent aspects of ToM. CONCLUSIONS In the present study, we examined the association between rs2268498 and rs53576 and social functioning in individuals with ASD and TD group. We found preliminary evidence that rs2268498 and rs53576 are associated with ToM related abilities in healthy individuals as well as in autistic individuals. Accordingly, rs2268498 and rs53576 may play an important role in predicting ToM capabilities. It will be necessary to conduct further research to address the association of genetic variants with a deficit in ToM in individuals with ASD.
Collapse
Affiliation(s)
- Rana Ghamari
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Tahmaseb
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Atiye Sarabi-Jamab
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), School of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
23
|
Wieting J, Jahn K, Bleich S, Frieling H, Deest M. A targeted long-read sequencing approach questions the association of OXTR methylation with high-functioning autism. Clin Epigenetics 2023; 15:195. [PMID: 38124130 PMCID: PMC10734107 DOI: 10.1186/s13148-023-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND DNA sequence variation and altered epigenetic regulation of the oxytocin receptor gene (OXTR) have been implicated in autism and autistic-like behaviors. While previous studies have examined subsegments of OXTR, nanopore Cas9-targeted sequencing (nCATS) allows deep characterization of entire genes with simultaneous assessment of epigenetic 5-methylcytosine (5mC) modification and without the need for prior DNA amplification or bisulfite conversion. This pilot study uses an nCATS approach to sequence the entire OXTR gene and its regulatory construct and screen for 5mC modification to compare results between individuals with high-functioning autism (HFA) and neurotypical controls (NC). METHODS Using DNA extracted from peripheral blood, OXTR (Hg38, chr3: 8750381-8770434, 20,054 base pairs) was analyzed by nCATS. 5mC modification probabilities were calculated and visualized across the gene and differential methylation analysis was performed. RESULTS Twenty adults with HFA (10 males, 10 females) and 20 age- and sex-matched NC (± 5 years) were included. There were no apparent group differences in the entire OXTR gene sequence, except for the intron variant rs918316, which was clustered in the HFA group. However, differential methylation analysis did not reveal a single significant group-dependent differentially methylated site among the 412 CpG sites captured. LIMITATIONS Limitations of this study include the small number of samples due to the pilot nature of the study, which particularly limits the relevance of the sequence variants found. It should also be noted that the use of peripheral blood material limits the ability to draw conclusions about central processes. CONCLUSIONS Previous findings of autism-associated OXTR epigenetic alterations were not reproducible with our method. In our opinion, this may lead to a reconsideration of the relevance of altered methylation at individual OXTR CpG positions in autism research. However, given the pilot nature of the study, these results need to be replicated in independent cohorts and with larger sample sizes.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| |
Collapse
|
24
|
Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, Liu N, Cai C, Wang M. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887:147723. [PMID: 37598788 DOI: 10.1016/j.gene.2023.147723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is neurodevelopmental disorder characterized by stereotyped behavior and deficits in communication and social interactions. To date, numerous studies have investigated the associations between genetic variants and ASD risk. However, the results of these published studies lack a clear consensus. In the present study, we performed a systematic review on the association between genetic variants and ASD risk. Meanwhile, we conducted a meta-analysis on available data to identify the association between the single nucleotide polymorphisms (SNPs) of candidate genes and ASD risk. METHODS We systematically searched public databases including English and Chinese from their inception to August 1, 2022. Two independent reviewers extracted data and assessed study quality. Odds ratio and 95 % confidence interval were used as effect indexes to evaluate the association between the SNPs of candidate genes and the risk of ASD. Heterogeneity was explored through subgroup, sensitivity, and meta-regression analyses. Publication bias was assessed by using Egger's and Begg's tests for funnel plot asymmetry. In addition, TSA analysis were performed to confirm the study findings. RESULTS We summarized 84 SNPs of 32 candidate genes from 81 articles included in the study. Subsequently, we analyzed 16 SNPs of eight genes by calculating pooled ORs, and identified eight significant SNPs of contactin associated protein 2 (CNTNAP2), methylentetrahydrofolate reductase (MTHFR), oxytocin receptor (OXTR), and vitamin D receptor (VDR). Results showed that seven SNPs, including the CNTNAP2 rs2710102 (homozygote, heterozygote, dominant and allelic models) and rs7794745 (heterozygote and dominant models), MTHFR C677T (homozygote, heterozygote, dominant, recessive and allelic models) and A1298C (dominant and allelic models), OXTR rs2254298 (homozygote and recessive models), VDR rs731236 (homozygote, dominant, recessive and allelic models) and rs2228570 (homozygote and recessive models), were showed to be correlated with an increased ASD risk. By contrast, the VDR rs7975232 was correlated with a decreased the risk of ASD under the homozygote and allelic models. CONCLUSION Our study summarized research evidence on the genetic variants of ASD and provides a broad and detailed overview of ASD risk genes. The C677T and A1298C polymorphisms of MTHFR, rs2710102 and rs7794745 polymorphisms of CNTNAP2, rs2254298 polymorphism of OXTR, and rs731236 and rs2228570 polymorphisms of VDR were genetic risk factors. The rs7975232 polymorphism of VDR was a genetic protective factor for ASD. Our study provides novel clues to clinicians and healthcare decision-makers to predict ASD susceptibility.
Collapse
Affiliation(s)
- Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Nan Liu
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute of Environment and Health, South China Hospital, Medical School, Shenzhen 518116, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Mingbang Wang
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
25
|
Miyahara K, Tatehana M, Kikkawa T, Osumi N. Investigating the impact of paternal aging on murine sperm miRNA profiles and their potential link to autism spectrum disorder. Sci Rep 2023; 13:20608. [PMID: 38062235 PMCID: PMC10703820 DOI: 10.1038/s41598-023-47878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Paternal aging has consistently been linked to an increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Recent evidence has highlighted the involvement of epigenetic factors. In this study, we aimed to investigate age-related alterations in microRNA (miRNA) profiles of mouse sperm and analyze target genes regulated by differentially expressed miRNAs (DEmiRNAs). Microarray analyses were conducted on sperm samples from mice at different ages: 3 months (3 M), over 12 M, and beyond 20 M. We identified 26 miRNAs with differential expression between the 3 and 20 M mice, 34 miRNAs between the 12 and 20 M mice, and 2 miRNAs between the 3 and 12 M mice. The target genes regulated by these miRNAs were significantly associated with apoptosis/ferroptosis pathways and the nervous system. We revealed alterations in sperm miRNA profiles due to aging and suggest that the target genes regulated by these DEmiRNAs are associated with apoptosis and the nervous system, implying a potential link between paternal aging and an increased risk of neurodevelopmental disorders such as ASD. The observed age-related changes in sperm miRNA profiles have the potential to impact sperm quality and subsequently affect offspring development.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
26
|
Fry R, Li X, Evans TC, Esterman M, Tanaka J, DeGutis J. Investigating the Influence of Autism Spectrum Traits on Face Processing Mechanisms in Developmental Prosopagnosia. J Autism Dev Disord 2023; 53:4787-4808. [PMID: 36173532 PMCID: PMC10812037 DOI: 10.1007/s10803-022-05705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 10/14/2022]
Abstract
Autism traits are common exclusionary criteria in developmental prosopagnosia (DP) studies. We investigated whether autism traits produce qualitatively different face processing in 43 DPs with high vs. low autism quotient (AQ) scores. Compared to controls (n = 27), face memory and perception were similarly deficient in the high- and low-AQ DPs, with the high-AQ DP group additionally showing deficient face emotion recognition. Task-based fMRI revealed reduced occipito-temporal face selectivity in both groups, with high-AQ DPs additionally demonstrating decreased posterior superior temporal sulcus selectivity. Resting-state fMRI showed similar reduced face-selective network connectivity in both DP groups compared with controls. Together, this demonstrates that high- and low-AQ DP groups have very similar face processing deficits, with additional facial emotion deficits in high-AQ DPs.
Collapse
Affiliation(s)
- Regan Fry
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Xian Li
- Psychological and Brain Science Department, Johns Hopkins University, Baltimore, MD, USA
| | - Travis C Evans
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - James Tanaka
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
28
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
29
|
Delikishkina E, Cohen-Zimerman S, Kachian ZR, Krueger F, Gordon B, Grafman J. Understanding altruistic behavior: The joint role of prefrontal damage and OXTR genotype. Neuropsychologia 2023; 190:108686. [PMID: 37741549 DOI: 10.1016/j.neuropsychologia.2023.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Altruism is a type of prosocial behavior that is carried out in the absence of personal benefit or even at an expense to self. Trait altruism varies greatly across individuals, and the reasons for this variability are still not fully understood. Growing evidence suggests that altruism may be partly determined by the oxytocin receptor (OXTR) gene, which regulates the emotions underlying altruistic attitudes, such as empathy and trust. Neuroimaging and lesion studies have also implied several higher-order brain regions, including the prefrontal cortex, in altruistic behaviors. Yet the existing reports are contradictory and suggest that the top-down control exercised by the prefrontal cortex may promote both altruistic and self-interested behaviors and, thus, could obscure one's natural proclivity towards altruism encoded by OXTR. Here, we hypothesized that extensive prefrontal damage would result in an increased influence of the OXTR genotype on one's altruistic attitudes and actions. To test this hypothesis, we recruited 115 male combat veterans with penetrating traumatic brain injury to the prefrontal cortex and other brain regions, as well as 35 demographically matched control subjects without brain injury. Participants completed a self-report altruism questionnaire and were genotyped for four OXTR single nucleotide polymorphisms implicated in prosocial behavior, including rs53576, rs1042778, rs2254298 and rs7632287. Consistent with the previous studies, we found that individuals homozygotic for the G allele of rs53576 and rs7632287 were significantly more altruistic than carriers of at least one "vulnerable" A allele. Remarkably, in patients with prefrontal cortex damage, greater lesion extent was associated with significantly lower altruism scores in carriers of the A allele of rs7632287, but not in G-homozygotes, suggesting that significant disruption of the prefrontal cortex increased the influence of genetic polymorphisms on prosocial behavior. This study presents the first account of an interaction effect between the OXTR genotype and the location and extent of brain damage.
Collapse
Affiliation(s)
- Ekaterina Delikishkina
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary R Kachian
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Department of Psychology, University of Mannheim, Mannheim, 68161, Germany
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease Center, Feinberg School of Medicine, Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
30
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. eQTL colocalization analysis highlights novel susceptibility genes in Autism Spectrum Disorders (ASD). Transl Psychiatry 2023; 13:336. [PMID: 37907504 PMCID: PMC10618232 DOI: 10.1038/s41398-023-02621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. ASD has proven to have a strong genetic component. However, defining causal genes is still one of the main challenges in GWAS, since the vast majority (>90%) of detected signals lie within the non-coding genome. Expression quantitative trait locus (eQTL) colocalization analysis determines whether a specific variant is responsible for both a local eQTL and GWAS association and has helped leverage data and rendering gene discovery for a wide array of diseases. Here we further mine the largest ASD GWAS performed to date (18,381 cases and 27,969 controls) altogether with GWAS summary statistics from the main PGC studies (Schizophrenia, MD (Major Depression) and ADHD (Attention Deficit/Hyperactivity Disorder)), by using eQTpLot, a newly developed tool that illustrates the colocalization of GWAS and eQTL signals in a locus, and the enrichment of and correlation between the candidate gene eQTLs and trait-significant variants. This analysis points up 8 genes with a significant eQTL colocalization signal in ASD (CRHR1, KANSL1, MANBA, MAPT, MMP12, NKX2-2, PTPRE and WNT3) and one gene (SRPK2) with a marginally significant colocalization signal (r = 0.69, p < 1 × 10-6), and specifically highlights the potentially causal role of MAPT (r = 0.76, p < 1 × 10-6), NKX2-2 (r = 0.71, p-value = 2.26-02) and PTPRE (r = 0.97, p-value = 2.63-04) when restricting the analysis to brain tissue.
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Pandamooz S, Salehi MS, Jurek B, Meinung CP, Azarpira N, Dianatpour M, Neumann ID. Oxytocin Receptor Expression in Hair Follicle Stem Cells: A Promising Model for Biological and Therapeutic Discovery in Neuropsychiatric Disorders. Stem Cell Rev Rep 2023; 19:2510-2524. [PMID: 37548806 DOI: 10.1007/s12015-023-10603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Benjamin Jurek
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carl-Philipp Meinung
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Inga D Neumann
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
32
|
Kong XJ, Kang J, Liu K. Probiotic and intra-nasal oxytocin combination therapy on autonomic function and gut-brain axis signaling in young children and teens with autism spectrum disorder. J Psychiatr Res 2023; 166:1-9. [PMID: 37639877 DOI: 10.1016/j.jpsychires.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Autonomic dysfunction has been widely studied in individuals with autism spectral disorder (ASD); however, the autonomic response to probiotic and oxytocin (OT) combination intervention has not yet been explored. We conducted the present study that includes 35 individuals with ASD aged 3-20 years to explore autonomic responses to daily Lactobacillus plantarum probiotic supplementation and OT nasal spray treatment both alone and in combination. We identified significant improvements in autonomic indices from subjects receiving combination treatment relative to those receiving placebo. Parameters that were observed to improve following combination treatment are time domain metrics of heart rate variability (HRV), including the root mean square of successive differences between normal heartbeats (RMSSD), standard deviation of normal-to-normal R-R intervals (SDNN), and proportion of the number of pairs of adjacent NN intervals that differ by more than 50ms (pNN50, p < 0.05). Furthermore, individuals that received either probiotics or OT alone demonstrated fewer changes in RMSSD, pNN50, and SDNN. Several parameters that demonstrated significant improvements in combination therapy were found to be correlated with baseline levels of OT (LF power: r = -0.86, p = 0.024; mean HR: r = 0.89, p = 0.012). Additionally, Social Responsiveness Scale (SRS) raw total scores (mean HR, r = 0.86, p = 0.024) and Aberrant Behavior Checklist (ABC) raw total scores (mean HR r = 0.94, p = 0.017) were correlated with mean heart rate (HR) and HRV-derived parameters. These results provide further evidence of synergy of probiotic and OT combination and help us gain a better understanding of the role of the gut-brain axis in ASD phenotypes and pathogenesis.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jiayi Kang
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kevin Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
33
|
Shariatpanahi M, Sojoudi Z, Khodagholi F, Rahmati H, Jameie SB, Eftekharzadeh M, Karizmeh MS, Shabani M, Zamani E. Effect of sex differences and time of oxytocin administration on treatment of rat model of autism spectrum disorder: Focused on necroptosis markers. Int J Dev Neurosci 2023; 83:552-570. [PMID: 37503701 DOI: 10.1002/jdn.10286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Autism is a neurodevelopmental disorder. A variety of molecular and cellular abnormalities leads to behavioral deficits in autism. Nevertheless, its etiology and treatment strategy are not completely understood. Oxytocin has recently shown improvements in social functioning. This study aimed to evaluate the necroptosis pathway for the neuroprotective effects of oxytocin in the valproic acid-induced autism spectrum disorder model. The autism spectrum disorder was induced by valproic acid on gestational day 12.5 (600 mg/kg, intraperitoneally). Offspring received intranasal oxytocin (1 μg/μL) on the 21st and 40th days after birth. The offspring behaviors were scrutinized by self-grooming, marble-burying, three-chamber, and Morris water maze tests. Western blot was performed on the hippocampus and amygdala tissues to investigate the expression of RIP3 and MLKL markers. The valproic acid group demonstrated more anxiety, repetitive behaviors, and expression of RIP3 and MLKL markers, and less social interaction and spatial memory compared with the control group. Oxytocin considerably improved social interactions, preference for social novelty, and memory. The elevated expression of RIP3 and MLKL markers in valproic acid-induced autistic rats were alleviated after treatment with oxytocin. We also highlighted the importance of age and gender in autism spectrum disorder interventions. Our findings suggested that oxytocin administration was as an effective treatment in two areas of repetitive/stereotyped behaviors, social interactions/cognitive function. Notably, early administration of oxytocin resulted in better therapeutic responses in autism-like behaviors. The molecular tests introduce oxytocin as a potential candidate for reducing the expression of necroptosis mediators in the brain. This reinforced our hypothesis that the necroptosis pathway takes part in autism spectrum disorder.
Collapse
Affiliation(s)
- Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sojoudi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hiva Rahmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani Karizmeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mostafa Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
Hickman AR, Selee B, Pauly R, Husain B, Hang Y, Feltus FA. Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case-Control Study. J Autism Dev Disord 2023; 53:3595-3612. [PMID: 35739433 PMCID: PMC10465380 DOI: 10.1007/s10803-022-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by challenges in social communication as well as repetitive or restrictive behaviors. Many genetic associations with ASD have been identified, but most associations occur in a fraction of the ASD population. Here, we searched for eQTL-associated DNA variants with significantly different allele distributions between ASD-affected and control. Thirty significant DNA variants associated with 174 tissue-specific eQTLs from ASD individuals in the SPARK project were identified. Several significant variants fell within brain-specific regulatory regions or had been associated with a significant change in gene expression in the brain. These eQTLs are a new class of biomarkers that could control the myriad of brain and non-brain phenotypic traits seen in ASD-affected individuals.
Collapse
Affiliation(s)
- Allison R. Hickman
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Bradley Selee
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
| | - Rini Pauly
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Benafsh Husain
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Yuqing Hang
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Frank Alex Feltus
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646 USA
- Biosystems Research Complex, 302C, 105 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
35
|
Sorenson K, Kendall E, Grell H, Kang M, Shaffer C, Hwang S. Intranasal Oxytocin in Pediatric Populations: Exploring the Potential for Reducing Irritability and Modulating Neural Responses: A Mini Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230008. [PMID: 37990750 PMCID: PMC10662790 DOI: 10.20900/jpbs.20230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Endogenous neuropeptide Oxytocin (OXT) plays a crucial role in modulating pro-social behavior and the neural response to social/emotional stimuli. Intranasal administration is the most common method of delivering OXT. Intranasal OXT has been implemented in clinical studies of various psychiatric disorders with mixed results, mainly related to lack of solid pharmacodynamics and pharmacokinetics model. Due to intranasal OXT's mechanism of reducing the activation of neural areas implicated in emotional responding and emotion regulation, a psychopathology with this target mechanism could be potentially excellent candidate for future clinical trial. In this regard, irritability in youth may be a very promising target for clinical studies of intranasal OXT. Here we provide a mini-review of fifteen randomized controlled trials in pediatric patients with diagnoses of autism spectrum disorder (ASD), Prader-Willi syndrome (PWS), or Phelan-McDermid syndrome (PMS). Most studies had small sample sizes and varying dosages, with changes in irritability, mainly as adverse events (AEs). Neuroimaging results showed modulation of the reward processing system and the neural areas implicated in social-emotional information processing by intranasal OXT administration. Further research is needed to determine the most effective dose and duration of OXT treatment, carefully select target psychopathologies, verify target engagement, and measure adverse event profiles.
Collapse
Affiliation(s)
- Kennet Sorenson
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Emilee Kendall
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hannah Grell
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minjoo Kang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher Shaffer
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Sato M, Nakai N, Fujima S, Choe KY, Takumi T. Social circuits and their dysfunction in autism spectrum disorder. Mol Psychiatry 2023; 28:3194-3206. [PMID: 37612363 PMCID: PMC10618103 DOI: 10.1038/s41380-023-02201-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Social behaviors, how individuals act cooperatively and competitively with conspecifics, are widely seen across species. Rodents display various social behaviors, and many different behavioral paradigms have been used for investigating their neural circuit bases. Social behavior is highly vulnerable to brain network dysfunction caused by neurological and neuropsychiatric conditions such as autism spectrum disorders (ASDs). Studying mouse models of ASD provides a promising avenue toward elucidating mechanisms of abnormal social behavior and potential therapeutic targets for treatment. In this review, we outline recent progress and key findings on neural circuit mechanisms underlying social behavior, with particular emphasis on rodent studies that monitor and manipulate the activity of specific circuits using modern systems neuroscience approaches. Social behavior is mediated by a distributed brain-wide network among major cortical (e.g., medial prefrontal cortex (mPFC), anterior cingulate cortex, and insular cortex (IC)) and subcortical (e.g., nucleus accumbens, basolateral amygdala (BLA), and ventral tegmental area) structures, influenced by multiple neuromodulatory systems (e.g., oxytocin, dopamine, and serotonin). We particularly draw special attention to IC as a unique cortical area that mediates multisensory integration, encoding of ongoing social interaction, social decision-making, emotion, and empathy. Additionally, a synthesis of studies investigating ASD mouse models demonstrates that dysfunctions in mPFC-BLA circuitry and neuromodulation are prominent. Pharmacological rescues by local or systemic (e.g., oral) administration of various drugs have provided valuable clues for developing new therapeutic agents for ASD. Future efforts and technological advances will push forward the next frontiers in this field, such as the elucidation of brain-wide network activity and inter-brain neural dynamics during real and virtual social interactions, and the establishment of circuit-based therapy for disorders affecting social functions.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo, 060-8638, Japan
| | - Nobuhiro Nakai
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Shuhei Fujima
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Katrina Y Choe
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
37
|
Mann A, Aghababaie A, Kalitsi J, Martins D, Paloyelis Y, Kapoor RR. Neurodevelopmental impairments in children with septo-optic dysplasia spectrum conditions: a systematic review. Mol Autism 2023; 14:26. [PMID: 37491272 PMCID: PMC10369759 DOI: 10.1186/s13229-023-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Septo-optic dysplasia (SOD) is a rare condition diagnosed in children with two or more of the following: hypopituitarism, midline brain abnormalities, and optic nerve hypoplasia. Children with SOD experience varied visual impairment and endocrine dysfunction. Autistic-like behaviours have been reported; however, their nature and prevalence remain to be fully understood. The present systematic review aimed to explore the type and prevalence of neurodevelopmental impairments in children with SOD spectrum conditions. METHODS The search was conducted in PubMed, EMBASE, and PsycInfo. Hand-searching reference lists of included studies was conducted. All peer-reviewed, observational studies assessing behavioural and cognitive impairments or autism spectrum disorder (ASD) symptoms in children (< 18 years) with SOD, optic nerve hypoplasia, and SOD-plus were included. Studies were excluded if they did not report standardised measures of neurodevelopmental impairments or ASD outcomes. RESULTS From 2132 screened articles, 20 articles reporting data from a total of 479 children were included in prevalence estimates. Of 14 studies assessing cognitive-developmental outcomes, 175 of 336 (52%) children presented with intellectual disability or developmental delay. A diagnosis of ASD or clinical level of symptoms was observed in 65 of 187 (35%) children across five studies. Only five studies assessed for dysfunction across behavioural, emotional, or social domains and reported impairments in 88 of 184 (48%) of children assessed. LIMITATIONS Importantly, high heterogeneity among the samples in relation to their neuroanatomical, endocrine, and optic nerve involvement meant that it was not possible to statistically assess the relative contribution of these confounding factors to the specific neurodevelopmental phenotype. This was further limited by the variation in study designs and behavioural assessments used across the included studies, which may have increased the risk of information bias. CONCLUSIONS This systematic review suggests that the prevalence of neurodevelopmental impairments in children within the SOD spectrum may be high. Clinicians should therefore consider including formal assessments of ASD symptoms and neurodevelopmental impairments alongside routine care. There is, additionally, a need for further research to define and validate a standardised battery of tools that accurately identify neurodevelopmental impairments in SOD spectrum conditions, and for research to identify the likely causal mechanisms.
Collapse
Affiliation(s)
- Amy Mann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Arameh Aghababaie
- Homerton Healthcare NHS Trust, Homerton University Hospital, London, UK
| | - Jennifer Kalitsi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, Child and Family Health Nursing, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ritika R Kapoor
- Department of Paediatric Endocrinology, Variety Children's Hospital, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
38
|
Boujenah J, Fernandez A, Drozd MM, Askenazy F, Carbonne B. Letter to the Editor: Failed labor induction and early-onset schizophrenia: Toward an oxytocin pathway genetic link? Eur J Obstet Gynecol Reprod Biol 2023; 285:204-205. [PMID: 37080893 DOI: 10.1016/j.ejogrb.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Jeremy Boujenah
- Service de Gynécologie-Obstétrique, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000 Monaco, Monaco.
| | - Arnaud Fernandez
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTek, Nice, France; CNRS UMR7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Malgorzata Marta Drozd
- CNRS UMR7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTek, Nice, France
| | - Bruno Carbonne
- Service de Gynécologie-Obstétrique, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000 Monaco, Monaco.
| |
Collapse
|
39
|
Mohammadi AH, Karimian M, Mirzaei H, Milajerdi A. Epigenetic modifications and obsessive-compulsive disorder: what do we know? Brain Struct Funct 2023:10.1007/s00429-023-02649-4. [PMID: 37204485 DOI: 10.1007/s00429-023-02649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a chronic, severe disabling neuropsychiatric disorder whose pathophysiology is not yet well defined. Generally, the symptom onset occurs during pre-adult life and affects subjects in different life aspects, including professional and social relationships. Although robust evidence indicates the presence of genetic factors in the etiopathology of OCD, the entirely mechanisms are not totally clarified. Thus, the possible interactions between genes and environmental risk factors mediated by epigenetic mechanisms should be sought. Therefore, we provide a review of genetic and epigenetic mechanisms related to OCD with a deep focus on the regulation of critical genes of the central nervous system seeking possible potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Wilczyński KM, Stasik A, Cichoń L, Auguściak-Duma A, Janas-Kozik M. Polymorphisms in Oxytocin and Vasopressin Receptor Genes as a Factor Shaping the Clinical Picture and the Risk of ASD in Males. Brain Sci 2023; 13:brainsci13040689. [PMID: 37190654 DOI: 10.3390/brainsci13040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of disorders affecting virtually every population, regardless of their ethnic or socioeconomic background. Their pathogenesis is multifactorial, based on interactions between genetic and environmental factors. The key symptom of ASD are deficits in social communication, which are the basis of many difficulties in everyday functioning. The aim of the presented study was to analyze the clinical picture of social cognition deficits in boys with autism spectrum disorders and to relate its elements with the frequency of alleles of selected polymorphisms within the oxytocin receptor (OXTR) and vasopressin receptor 1A (AVPR1A) genes. The study included 58 boys with IQ > 90, who were divided into two groups based on a confirmed or excluded ASD diagnosis based on the DSM-5 and ICD-10 criteria and then using the ADOS-2 protocol. The results indicated that polymorphism rs10877969 (T) within the AVPR1a gene was the only one to show a statistically significant association with a higher risk of autism spectrum disorders and has an impact on clinical presentation in the ADOS-2 study, primarily in terms of the social affect subscale. Polymorphisms in the OXTR gene showed no significant association with ASD risk and severity of autistic traits in the ADOS-2 study. In the group of people with ASD and those who are neurotypical, the rs53572 (A) genotype in the OXTR gene significantly increased the severity of the clinical picture of social cognition disorders in reading mind in the eyes test (RMiE) and empathy quotient (EQ) studies.
Collapse
Affiliation(s)
- Krzysztof M Wilczyński
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | - Aleksandra Stasik
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | - Lena Cichoń
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| | | | - Małgorzata Janas-Kozik
- Department of Developmental Age Psychiatry and Psychotherapy SUM, 40-055 Katowice, Poland
- John Paul II Children's and Family Health Center, sp. z o.o, 41-218 Sosnowiec, Poland
| |
Collapse
|
41
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Hopkins WD, Staes N, Guevara EE, Mulholland MM, Sherwood CC, Bradley BJ. Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes). Autism Res 2023; 16:713-722. [PMID: 36738470 PMCID: PMC10308317 DOI: 10.1002/aur.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023]
Abstract
Joint attention (JA) is an important milestone in human infant development and is predictive of the onset of language later in life. Clinically, it has been reported that children at risk for or with a diagnosis of autism spectrum disorder (ASD) perform more poorly on measures of JA compared to neurotypical controls. JA is not unique to humans but has also been reported in great apes and to a lesser extent in more distantly related monkeys. Further, individual differences in JA among chimpanzees are associated with polymorphisms in the vasopressin and oxytocin genes, AVPR1A and OXTR. Here, we tested whether individual variation in DNA methylation of OXTR and AVPR1A were associated with performance on JA tasks in chimpanzees. We found that individual differences in JA performance was associated with AVPR1A methylation, but not OXTR methylation in the chimpanzees. The collective results provide further evidence of the role of AVPR1A in JA abilities in chimpanzees. The results further suggest that methylation values for AVPR1A may be useful biomarkers for identifying individuals at risk for ASD or related neurodevelopmental disorders associated with impairments in JA abilities.
Collapse
Affiliation(s)
- William D Hopkins
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Nicky Staes
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Elaine E Guevara
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Michele M Mulholland
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
43
|
Schmitt LM, Smith EG, Pedapati EV, Horn PS, Will M, Lamy M, Barber L, Trebley J, Meyer K, Heiman M, West KHJ, Hughes P, Ahuja S, Erickson CA. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Sci Rep 2023; 13:5192. [PMID: 36997569 PMCID: PMC10061375 DOI: 10.1038/s41598-023-30909-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by core impairments in social communication as well as restricted, repetitive patterns of behavior and/or interests. Individuals with ASD, which includes about 2% of the US population, have challenges with activities of daily living and suffer from comorbid medical and mental health concerns. There are no drugs indicated for the core impairments of ASD. As such, there is a significant need for the development of new medication strategies for individuals with ASD. This first-in-human placebo-controlled, double-blind, crossover study investigated the safety (primary objective) and efficacy of oral SB-121, a combination of L. reuteri, Sephadex® (dextran microparticles), and maltose administered once daily for 28 days in 15 autistic participants. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted. These results provide support for further clinical evaluation of SB-121 as a treatment in autistic patients. To evaluate the safety and tolerability of multiple doses of SB-121 in subjects with autism spectrum disorder. Single-center, randomized, placebo-controlled, double-blind, crossover trial. 15 patients with autism spectrum disorder were randomized and analyzed. Daily dosing of SB-121 or placebo for 28 days, followed by approximately a 14 day washout, then 28 days of dosing with other treatment. Incidence and severity of adverse events, presence of Limosilactobacillus reuteri and Sephadex® in stool, and incidence of bacteremia with positive L. reuteri identification. Additional outcomes include changes from baseline on cognitive and behavior tests as well as biomarker levels. Adverse event rates were similar between SB-121 and placebo, with most reported as mild. There were no severe or serious adverse events. No participants had features of suspected bacteremia or notable changes in vital signs, safety laboratory, or ECG parameters from baseline. There was a statistically significant increase from baseline in the Vineland-3 Adaptive Behavior Composite score (p = 0.03) during SB-121 treatment. There was a trend for increased social/geometric viewing ratio following SB-121 treatment compared to placebo. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted.Trial registration: clinicaltrials.gov Identifier: NCT04944901.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth G Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith Will
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lillian Barber
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joe Trebley
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Kevin Meyer
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Mark Heiman
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | | | | | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Siecinski SK, Giamberardino SN, Spanos M, Hauser AC, Gibson JR, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Cundiff AW, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Kwee LC, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, King BH, McDougle CJ, Sanders KB, Kim SJ, Kolevzon A, Veenstra-VanderWeele J, Hauser ER, Sikich L, Gregory SG. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res 2023; 16:502-523. [PMID: 36609850 PMCID: PMC10023458 DOI: 10.1002/aur.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.
Collapse
Affiliation(s)
- Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Marina Spanos
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Annalise C Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tara Chandrasekhar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - M D Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol M Rockhill
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Michelle L Palumbo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Paige Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mendy Minjarez
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Lisa A Nowinski
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Marler
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Lydia C Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Cheryl Alderman
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jordana Weissman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke Zappone
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer E Mullett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hope Crosson
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Natalie Hong
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Sheng Luo
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lilin She
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Manjushri Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Russell Dean
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abby Scheer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jacqueline L Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan H King
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Christopher J McDougle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin B Sanders
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Soo-Jeong Kim
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
45
|
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int J Mol Sci 2023; 24:ijms24043887. [PMID: 36835321 PMCID: PMC9966686 DOI: 10.3390/ijms24043887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.
Collapse
|
46
|
Li Y, Wang Y, Guan X, Yue J, Wu HE, Zhen S, He SC, Zhang XY. Genotype-genotype interactions of the OXTR gene polymorphisms are associated with self-reported daytime dysfunction, sleep latency and personal distress. J Sleep Res 2023; 32:e13668. [PMID: 35706410 DOI: 10.1111/jsr.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 02/03/2023]
Abstract
The oxytocin receptors located in the corticotropin-releasing factor neurons of the paraventricular nucleus are stimulated by oxytocin. Oxytocin functions as the regulator of the corticotropin-releasing factor system and in turn promotes sleep quality. The objective of this study was to examine the main and genotype-genotype interactive effects of the oxytocin receptor gene (OXTR) polymorphisms on sleep quality. A total of 324 participants were randomly recruited from a university in Beijing, China. Sleep quality was measured with the Pittsburgh Sleep Quality Index. The OXTR single-nucleotide polymorphisms (rs2254298, rs2268498, rs13316193, rs2268490 and rs2268491) were genotyped. The results showed that gender and age were associated with various empathy traits (all p < 0.001). The Pittsburgh Sleep Quality Index was positively correlated with the Personal Distress subscale of empathy (p < 0.001). Both rs2254298 and rs2268491 interacted with rs13316193 to influence daytime dysfunction and Personal Distress (all p < 0.05), indicating that in individuals with rs13316193 CC/CT genotype, those with rs2254298 AA/AG or rs2268491 TT/TC genotypes displayed higher daytime dysfunction and Personal Distress scores than those with rs2254298 GG or rs2268491 CC genotypes. Conversely, among the individuals with rs2254298 GG or rs2268491 CC genotypes, the rs13316193 C allele carriers had lower daytime dysfunction and Personal Distress scores than rs13316193 TT homozygotes. There was also a significant interaction between rs2268490 and rs2268498 on the sleep latency dimension of the Pittsburgh Sleep Quality Index. Our findings reveal for the first time the genotype-genotype interactions of the OXTR gene on sleep quality, which may open new research avenues for studying psychopathology involving sleep problems.
Collapse
Affiliation(s)
- Yuling Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yuan Wang
- PLA Strategic Support Force Medical Center, Beijing, China
| | - Xin Guan
- PLA Strategic Support Force Medical Center, Beijing, China
| | - Jingyan Yue
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shiqian Zhen
- Institute of Circulation and Consumption, Chinese Academy of International Trade and Economic Cooperation, Beijing, China
| | - Shu-Chang He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
48
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Wang Z, Xu Y, Peng D, Gao J, Lu F. Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression. Cereb Cortex 2022; 33:6407-6419. [PMID: 36587290 DOI: 10.1093/cercor/bhac513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex brain neurodevelopmental disorder related to brain activity and genetics. Most of the ASD diagnostic models perform feature selection at the group level without considering individualized information. Evidence has shown the unique topology of the individual brain has a fundamental impact on brain diseases. Thus, a data-constructing method fusing individual topological information and a corresponding classification model is crucial in ASD diagnosis and biomarker discovery. In this work, we trained an attention-based graph neural network (GNN) to perform the ASD diagnosis with the fusion of graph data. The results achieved an accuracy of 79.78%. Moreover, we found the model paid high attention to brain regions mainly involved in the social-brain circuit, default-mode network, and sensory perception network. Furthermore, by analyzing the covariation between functional magnetic resonance imaging data and gene expression, current studies detected several ASD-related genes (i.e. MUTYH, AADAT, and MAP2), and further revealed their links to image biomarkers. Our work demonstrated that the ASD diagnostic framework based on graph data and attention-based GNN could be an effective tool for ASD diagnosis. The identified functional features with high attention values may serve as imaging biomarkers for ASD.
Collapse
Affiliation(s)
- Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Dawei Peng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
50
|
Dooling SW, Sgritta M, Wang IC, Duque ALRF, Costa-Mattioli M. The Effect of Limosilactobacillus reuteri on Social Behavior Is Independent of the Adaptive Immune System. mSystems 2022; 7:e0035822. [PMID: 36286493 PMCID: PMC9765170 DOI: 10.1128/msystems.00358-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Gut microbes can modulate almost all aspects of host physiology throughout life. As a result, specific microbial interventions are attracting considerable attention as potential therapeutic strategies for treating a variety of conditions. Nonetheless, little is known about the mechanisms through which many of these microbes work. Recently, we and others have found that the commensal bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) reverses social deficits in several mouse models (genetic, environmental, and idiopathic) for neurodevelopmental disorders in a vagus nerve-, oxytocin-, and biopterin-dependent manner. Given that gut microbes can signal to the brain through the immune system and L. reuteri promotes wound healing via the adaptive immune response, we sought to determine whether the prosocial effect mediated by L. reuteri also depends on adaptive immunity. Here, we found that the effects of L. reuteri on social behavior and related changes in synaptic function are independent of the mature adaptive immune system. Interestingly, these findings indicate that the same microbe (L. reuteri) can affect different host phenotypes through distinct mechanisms. IMPORTANCE Because preclinical animal studies support the idea that gut microbes could represent novel therapeutics for brain disorders, it is essential to fully understand the mechanisms by which gut microbes affect their host's physiology. Previously, we discovered that treatment with Limosilactobacillus reuteri selectively improves social behavior in different mouse models for autism spectrum disorder through the vagus nerve, oxytocin reward signaling in the brain, and biopterin metabolites (BH4) in the gut. However, given that (i) the immune system remains a key pathway for host-microbe interactions and that (ii) L. reuteri has been shown to facilitate wound healing through the adaptive immune system, we examined here whether the prosocial effects of L. reuteri require immune signaling. Unexpectedly, we found that the mature adaptive immune system (i.e., conventional B and T cells) is not required for L. reuteri to reverse social deficits and related changes in synaptic function. Overall, these findings add new insight into the mechanism through which L. reuteri modulates brain function and behavior. More importantly, they highlight that a given bacterial species can modulate different phenotypes (e.g., wound healing versus social behavior) through separate mechanisms.
Collapse
Affiliation(s)
- Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|