1
|
Sun J, Geng W, Wang Y, Li H, Tan R, Tu Y. An innovative electrochemiluminescent immunosensor using dual amplified signals from AuNPs@CoSn(OH) 6 for the detection of the AD biomarker: amyloid beta 1-40. Analyst 2025. [PMID: 40326625 DOI: 10.1039/d5an00048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is a degenerative condition of the nervous system that causes severe damage to patients' daily activities and quality of life. Amyloid beta 1-40 protein (Aβ40), which is involved in the formation of cerebral plaques, is one of the crucial biomarkers related to AD. Herein, a novel and highly sensitive immunosensor for the detection of Aβ40 is developed. Using a reinforced indium tin oxide-coated glass with a nanocomposite of gold nanoparticle-enhanced CoSn(OH)6 (AuNPs@CoSn(OH)6) to trigger the electrochemiluminescence (ECL) of luminol as the sensing signal, the immunosensor is fabricated by immobilizing the Aβ40 antibody onto it. By integrating the high immune specificity, excellent conductivity and catalytic activity of the nanocomposite, the resultant immunosensor can be successfully employed to detect the target in real samples. The formation of the immune complex leads to increased steric hindrance and electron transfer resistance, which in turn causes a declined ECL output when the target Aβ40 binds to the antibody on the sensor surface. Under optimized conditions, the developed ECL immunosensor exhibits a linear response for Aβ40 ranging from 1 to 800 pg mL-1 and a low detection limit of 0.47 pg mL-1. Experimentally, it is demonstrated to be highly sensitive, specific, reproducible and stable. This work extends the application of the perovskite CoSn(OH)6 and AuNPs in the field of ECL immunosensing and provides a novel strategy for clinical research on Alzheimer's disease.
Collapse
Affiliation(s)
- Jiaojing Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Wenqing Geng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Yueju Wang
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Nursing School, Suzhou Medical College of Soochow University, Suzhou, 215006, P. R. China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
- School of Material Engineering, Changshu Institute of Technology, Suzhou, 215500, P. R. China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
2
|
Son HJ, Kim S, Kim SY, Jung JH, Lee SH, Kim SJ, Kim C, Hahn A. Three-Dimensional β-Amyloid Burden Correlation Between the Eye and Brain in Alzheimer's Disease Mice Using Light-Sheet Fluorescence Microscopy. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 40100204 PMCID: PMC11932423 DOI: 10.1167/iovs.66.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Recent studies have highlighted the significance of peripheral β-amyloid (Aβ) deposition, identifying the eye as a potential early detection site for Alzheimer's disease (AD). However, previous two-dimensional AD ocular studies have been unable to establish a clear correlation between the three-dimensional Aβ accumulation in the entire eyeball and brain while preserving structural integrity. This study employed a combined brain amyloid positron emission tomography/magnetic resonance (PET/MR) and light-sheet fluorescence microscopy (LSFM) platform to assess whether the three-dimensionally measured Aβ burden in the eyeball correlates with that in the brain. Methods Thirteen eyeballs (6 AD, 7 control) and 17 brains (10 AD, 7 control) were collected from ten 44-week-old 5xFAD and seven control mice. The samples underwent tissue clearing and staining with thioflavin S (Aβ), anti-CD11b (microglia), and anti-ACSA-2 (astrocytes) for LSFM imaging and quantified via 3D surface volume. Standardized uptake value ratios from [18F]Flutemetamol PET/MR were also calculated. Results AD eyeballs presented significantly greater plaque-like surface volumes (median, 51,091,002 µm³ [interquartile range, 38,488,272-64,869,828]) than controls (229,293 µm³ [115,863-311,5320]; P = 0.001). AD brains exhibited higher [18F]Flutemetamol uptake and greater plaque-like surface volumes (898,634,368 µm³ [556,263,488-1,105,326,720]) than controls (33,320,178 µm³ [26,842,538-62,716,956]; P < 0.001). A strong positive correlation was observed between the plaque-like surface volumes in the brain and that in the eyeball (r = 0.810, P = 0.001). No significant correlations were found in other morphologic parameters. Conclusions Our observation of a strong correlation between the three-dimensional Aβ burden in the whole eyeball and brain advances our understanding of the systemic nature of Aβ pathology and suggests ocular Aβ as a potential independent predictor of brain Aβ burden.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hwa Jung
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jong Kim
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Saint Louis, Missouri, United States
| | - Chanwoo Kim
- Department of Nuclear Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Republic of Korea
| | - Alice Hahn
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Cao Q, Yang S, Wang X, Sun H, Chen W, Wang Y, Gao J, Wu Y, Yang Q, Chen X, Yuan S, Xiao M, Nedergaard M, Huo Y, Liu Q. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease. J Exp Med 2024; 221:e20240386. [PMID: 39316084 PMCID: PMC11448872 DOI: 10.1084/jem.20240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The eye is closely connected to the brain, providing a unique window to detect pathological changes in the brain. In this study, we discovered β-amyloid (Aβ) deposits along the ocular glymphatic system in patients with Alzheimer's disease (AD) and 5×FAD transgenic mouse model. Interestingly, Aβ from the brain can flow into the eyes along the optic nerve through cerebrospinal fluid (CSF), causing retinal degeneration. Aβ is mainly observed in the optic nerve sheath, the neural axon, and the perivascular space, which might represent the critical steps of the Aβ transportation from the brain to the eyes. Aquaporin-4 facilitates the influx of Aβ in brain-eye transport and out-excretion of the retina, and its absence or loss of polarity exacerbates brain-derived Aβ induced damage and visual impairment. These results revealed brain-to-eye Aβ transport as a major contributor to AD retinopathy, highlighting a new therapeutic avenue in ocular and neurodegenerative disease.
Collapse
Affiliation(s)
- Qiuchen Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shige Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Faculty of Medical and Health Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Huaiqing Sun
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yanchi Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuhua Yang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Brain Institute, Nanjing Medical University , Nanjing, China
| | - Maiken Nedergaard
- Faculty of Medical and Health Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuqing Huo
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
5
|
De Guia IL, Eslick S, Naismith SL, Kanduri S, Shah TM, Martins RN. The Crosstalk Between Amyloid-β, Retina, and Sleep for the Early Diagnosis of Alzheimer's Disease: A Narrative Review. J Alzheimers Dis Rep 2024; 8:1009-1021. [PMID: 39114553 PMCID: PMC11305848 DOI: 10.3233/adr-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which is characterised by progressive memory loss and accumulation of hallmark markers amyloid-β (Aβ) and neurofibrillary tangles in the diseased brain. The current gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview of human retina studies concerning the deposition of Aβ, the role of the retina in sleep-wake cycle, the disruption of sleep in AD, and to gather evidence for the associations between Aβ, the retina, and sleep. Understanding the mechanisms behind the associations between Aβ, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
Collapse
Affiliation(s)
| | - Shaun Eslick
- Macquarie University, North Ryde, NSW, Australia
| | - Sharon L. Naismith
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Ralph N. Martins
- Macquarie University, North Ryde, NSW, Australia
- Edith Cowen University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
6
|
Donato L, Mordà D, Scimone C, Alibrandi S, D’Angelo R, Sidoti A. Bridging Retinal and Cerebral Neurodegeneration: A Focus on Crosslinks between Alzheimer-Perusini's Disease and Retinal Dystrophies. Biomedicines 2023; 11:3258. [PMID: 38137479 PMCID: PMC10741418 DOI: 10.3390/biomedicines11123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the early stages of Alzheimer-Perusini's disease (AD), individuals often experience vision-related issues such as color vision impairment, reduced contrast sensitivity, and visual acuity problems. As the disease progresses, there is a connection with glaucoma and age-related macular degeneration (AMD) leading to retinal cell death. The retina's involvement suggests a link with the hippocampus, where most AD forms start. A thinning of the retinal nerve fiber layer (RNFL) due to the loss of retinal ganglion cells (RGCs) is seen as a potential AD diagnostic marker using electroretinography (ERG) and optical coherence tomography (OCT). Amyloid beta fragments (Aβ), found in the eye's vitreous and aqueous humor, are also present in the cerebrospinal fluid (CSF) and accumulate in the retina. Aβ is known to cause tau hyperphosphorylation, leading to its buildup in various retinal layers. However, diseases like AD are now seen as mixed proteinopathies, with deposits of the prion protein (PrP) and α-synuclein found in affected brains and retinas. Glial cells, especially microglial cells, play a crucial role in these diseases, maintaining immunoproteostasis. Studies have shown similarities between retinal and brain microglia in terms of transcription factor expression and morphotypes. All these findings constitute a good start to achieving better comprehension of neurodegeneration in both the eye and the brain. New insights will be able to bring the scientific community closer to specific disease-modifying therapies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
- Department of Veterinary Sciences, University of Messina, 98122 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| |
Collapse
|
7
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
8
|
Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W. The electrophysiological and neuropathological profiles of cerebellum in APP swe /PS1 ΔE9 mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023; 19:2365-2375. [PMID: 36469008 DOI: 10.1002/alz.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022]
Abstract
We propose the hypothesis that the cerebellar electrophysiology and sleep-wake cycles may be altered at the early stage of Alzheimer's disease (AD), proceeding the amyloid-β neuropathological hallmarks. The electrophysiologic characteristics of cerebellum thereby might be served as a biomarker in the prepathological detection of AD. Sleep disturbances are common in preclinical AD patients, and the cerebellum has been implicated in sleep-wake regulation by several pioneer studies. Additionally, recent studies suggest that the structure and function of the cerebellum may be altered at the early stages of AD, indicating that the cerebellum may be involved in the disease's progression. We used APPswe /PS1ΔE9 mice as a model of AD, monitored and analyzed electroencephalogram data, and assessed neuropathological profiles in the cerebellum of AD mice. Our hypothesis may establish a linkage between the cerebellum and AD, thereby potentially providing new perspectives on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Manli Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rong Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
Cai Y, Schrack JA, Gross AL, Armstrong NM, Swenor BK, Deal JA, Lin FR, Wang H, Tian Q, An Y, Simonsick EM, Ferrucci L, Resnick SM, Agrawal Y. Sensory impairment and algorithmic classification of early cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12400. [PMID: 37063388 PMCID: PMC10103182 DOI: 10.1002/dad2.12400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION Sensory impairment (SI) is linked to cognitive decline, but its association with early cognitive impairment (ECI) is unclear. METHODS Sensory functions (vision, hearing, vestibular function, proprioception, and olfaction) were measured between 2012 and 2018 in 414 Baltimore Longitudinal Study of Aging (BLSA) participants (age 74 ± 9 years; 55% women). ECI was defined as 1 standard deviation below age-, sex-, race-, and education-specific mean performance in Card Rotations or California Verbal Learning Test immediate recall. Log binomial models (cross-sectional analysis) and Cox regression models (time-to-event analysis) were used to examine the association between SI and ECI. RESULTS Cross-sectionally, participants with ≥3 SI had twice the prevalence of ECI (prevalence ratio = 2.10, p = 0.02). Longitudinally, there was no significant association between SI and incident ECI over up to 6 years of follow-up. DISCUSSION SI is associated with higher prevalence, but not incident ECI. Future studies with large sample sizes need to further elucidate the relationship between SI and ECI. Highlights Sensory impairment is associated with high prevalence of early cognitive impairmentMultisensory impairment may pose a strong risk of early changes in cognitive functionIdentifying multisensory impairment may help early detection of dementia.
Collapse
Affiliation(s)
- Yurun Cai
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of Health and Community SystemsUniversity of Pittsburgh School of NursingPittsburghPennsylvaniaUSA
| | - Jennifer A. Schrack
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Nicole M. Armstrong
- Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Bonnielin K. Swenor
- Wilmer Eye InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
- The Johns Hopkins Disability Health Research CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jennifer A. Deal
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- The Johns Hopkins Disability Health Research CenterJohns Hopkins UniversityBaltimoreMarylandUSA
- Cochlear Center for Hearing and Public HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Frank R. Lin
- Cochlear Center for Hearing and Public HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of Otolaryngology ‐ Head and Neck SurgeryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Hang Wang
- Center on Aging and HealthJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Qu Tian
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Yang An
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | | | - Luigi Ferrucci
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Susan M. Resnick
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Yuri Agrawal
- Department of Otolaryngology ‐ Head and Neck SurgeryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Latina V, De Introna M, Caligiuri C, Loviglio A, Florio R, La Regina F, Pignataro A, Ammassari-Teule M, Calissano P, Amadoro G. Immunotherapy with Cleavage-Specific 12A12mAb Reduces the Tau Cleavage in Visual Cortex and Improves Visuo-Spatial Recognition Memory in Tg2576 AD Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020509. [PMID: 36839831 PMCID: PMC9965010 DOI: 10.3390/pharmaceutics15020509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aβ pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aβ in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Margherita De Introna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Chiara Caligiuri
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Alessia Loviglio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Ercole Ramarini 32, 00015 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-49255252
| |
Collapse
|
11
|
Kumar VB, Sher I, Rencus-Lazar S, Rotenstreich Y, Gazit E. Functional Carbon Quantum Dots for Ocular Imaging and Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205754. [PMID: 36461689 DOI: 10.1002/smll.202205754] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Carbon quantum dots (CDs) are a class of emerging carbonaceous nanomaterials that have received considerable attention due to their excellent fluorescent properties, extremely small size, ability to penetrate cells and tissues, ease of synthesis, surface modification, low cytotoxicity, and superior water dispersion. In light of these properties, CDs are extensively investigated as candidates for bioimaging probes, efficient drug carriers, and disease diagnostics. Functionalized CDs represent a promising therapeutic candidate for ocular diseases. Here, this work reviews the potential use of functionalized CDs in the diagnosis and treatment of eye-related diseases, including the treatment of macular and anterior segment diseases, as well as targeting Aβ amyloids in the retina.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Nehemia Rubin Excellence in Biomedical Research, TELEM Program, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
12
|
Bai J, Wan Z, Wang M, Wu X, Wang T, Zhang Y, Xue Y, Xu H, Peng Q. Association of cognitive function with Neurofilament light chain in the aqueous humor of human eye. Front Aging Neurosci 2022; 14:1027705. [PMID: 36408096 PMCID: PMC9671656 DOI: 10.3389/fnagi.2022.1027705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2024] Open
Abstract
Objectives To evaluate the predictive clinical role of neurofilament light chain (NfL), amyloid-β (Aβ), glial fibrillary acidic protein (GFAP), and phosphorylated tau at threonine 181 (p-tau181) proteins in human aqueous humor (AH) and quantify the retinal macular microvascular parameters by optical coherence tomography angiography (OCTA) as early diagnostic markers of Alzheimer's disease (AD). Methods This prospective, single-site, cross-sectional, cohort study enrolled 55 participants, including 38 patients with neovascular age-related macular degeneration (nAMD) and 17 individuals with senile cataracts. The single-molecule array platform was used to quantitatively measure the levels of AH NfL, Aβ40, Aβ42, GFAP, and p-tau181 proteins in AH. The mini-mental state examination (MMSE) score was used to assess the global cognitive function. OCTA scan with 6 × 6 mm macular area was used to quantify the retinal thickness and microvascular densities of superficial retinal capillary plexuses and deep retinal capillary plexuses. Results NfL, Aβ40, Aβ42, GFAP, and p-tau181 were detected in all AH samples by Simoa platform. Individuals with cataract had higher concentrations of NfL and p-tau181 but lower Aβ40 and Aβ42 and similar GFAP compared to those with nAMD. Lower MMSE scores showed a negative correlation with NfL concentration of AH not only in the nAMD group (p = 0.043), but also in the cataract group (p = 0.032). However, the MMSE scores were not associated with the levels of Aβ40, Aβ42, GFAP, or p-Tau181. Further analysis found that the Aβ40 and Aβ42 concentrations showed a strong positive correlation (p < 0.0001). In addition, the NfL concentration showed a mild positive correlation with that of GFAP in the cataract group (p = 0.021). Although it has not reached statistical significance, there was a correlation between the levels of NfL and Aβ42 in the nAMD group (p = 0.051). Moreover, the macular superficial vessel density values had a negative correlation with the concentration of NfL (p = 0.004) but a positive correlation with MMSE scores (p = 0.045). The macular deep vessel density values were negatively correlated with the concentration of p-tau181 (p = 0.031) and positively correlated with MMSE scores (p = 0.020). Conclusion The examination of AD-related biomarkers in human AH and OCTA may improve the ocular-based AD detection methods and contribute to forestalling the progression of preclinical AD.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xue Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Corbin D, Lesage F. Assessment of the predictive potential of cognitive scores from retinal images and retinal fundus metadata via deep learning using the CLSA database. Sci Rep 2022; 12:5767. [PMID: 35388080 PMCID: PMC8986784 DOI: 10.1038/s41598-022-09719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/25/2022] [Indexed: 01/19/2023] Open
Abstract
Accumulation of beta-amyloid in the brain and cognitive decline are considered hallmarks of Alzheimer’s disease. Knowing from previous studies that these two factors can manifest in the retina, the aim was to investigate whether a deep learning method was able to predict the cognition of an individual from a RGB image of his retina and metadata. A deep learning model, EfficientNet, was used to predict cognitive scores from the Canadian Longitudinal Study on Aging (CLSA) database. The proposed model explained 22.4% of the variance in cognitive scores on the test dataset using fundus images and metadata. Metadata alone proved to be more effective in explaining the variance in the sample (20.4%) versus fundus images (9.3%) alone. Attention maps highlighted the optic nerve head as the most influential feature in predicting cognitive scores. The results demonstrate that RGB fundus images are limited in predicting cognition.
Collapse
Affiliation(s)
- Denis Corbin
- Laboratoire d'Imagerie optique et Moléculaire, Polytechnique Montréal, 2500 Chemin de Polytechnique Montréal, Montreal, QC, H3T 1J4, Canada.
| | - Frédéric Lesage
- Laboratoire d'Imagerie optique et Moléculaire, Polytechnique Montréal, 2500 Chemin de Polytechnique Montréal, Montreal, QC, H3T 1J4, Canada.,Institut de Cardiologie de Montréal, 5000 Rue Bélanger, Montreal, QC, H1T 1C8, Canada
| |
Collapse
|
14
|
Khan ZA, Park S. AuNPs- Aβ-Ni-HRP sandwich assay: A new sensitive colorimetric method for the detection of Aβ 1-40. Talanta 2022; 237:122946. [PMID: 34736673 DOI: 10.1016/j.talanta.2021.122946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Amyloid β-peptide (Aβ) is a key predictor for preclinical diagnosis of Alzheimer's disease (AD) and vascular diseases. In this work, we propose a gold nanoparticle (AuNPs)-Aβ-nickel (Ni)-horseradish peroxidase (HRP) based colorimetric assay for the detection of Aβ1-40. The consecutive binding of Aβ1-40 to AuNPs and metal ions is designed and examined for Aβ-specific aggregation of AuNPs and the generation of quantitative colorimetric signals. The affinity of Aβ1-40 towards various metal ions was studied first, and two metal ions, Cu and Ni, were specifically tested with Metal Ion-Binding Site Prediction (MIB) and High-resolution Electrospray Ionization Mass Spectrometry (HR-ESI-MS). Subsequently, the binding of Aβ1-40 and AuNPs was examined, and the binding between Aβ-AuNPs and Ni-HRP was finally analyzed by UV-Vis and nano-zetasizer. Based on the characterized dual binding of Aβ1-40, a colorimetric sandwich assay was developed and the analytical performance of the developed assay has been evaluated with standard solutions and human serum samples. Good linearity within a range from 0 nM to 10 nM was found. The detection limits of 0.22 nM in the standard sample and 0.23 nM in the human serum sample have been demonstrated. The newly developed colorimetric sandwich assay is a short, simple, antibody-free assay and achieves high sensitivity with only 100 μL Aβ1-40 samples. The assay has immense potential for the detection of Aβ1-40 in biological or biomedical diagnosis.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
15
|
Liu J, Baum L, Yu S, Lin Y, Xiong G, Chang RCC, So KF, Chiu K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer's Disease Model Mouse Retina by Lycium Barbarum Extracts. Front Aging Neurosci 2022; 13:788798. [PMID: 35095474 PMCID: PMC8792986 DOI: 10.3389/fnagi.2021.788798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid β deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Larry Baum
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shasha Yu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Eye Hospital, Nankai University Eye Hospital, Tianjin Eye Institute, Tianjin Medical University, Tianjin, China
| | - Youhong Lin
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Guoying Xiong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Fai So
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Kwok Fai So
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Kin Chiu
| |
Collapse
|
16
|
Chaudhary S, Ashok A, Wise AS, Rana NA, Kritikos AE, Lindner E, Singh N. β-Cleavage of the prion protein in the human eye: Implications for the spread of infectious prions and human ocular disorders. Exp Eye Res 2021; 212:108787. [PMID: 34624335 DOI: 10.1016/j.exer.2021.108787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Recently, we reported β-cleavage of the prion protein (PrPC) in human ocular tissues. Here, we explored whether this is unique to the human eye, and its functional implications. A comparison of the cleavage pattern of PrPC in human ocular tissues with common nocturnal and diurnal animals revealed mainly β-cleavage in humans, and mostly full-length PrPC in animal retinas. Soluble FL PrPC and N-terminal fragment (N2) released from β-cleavage was observed in the aqueous and vitreous humor (AH & VH). Expression of human PrPC in ARPE-19 cells, a human retinal pigmented epithelial cell line, also showed β-cleaved PrPC. Surprisingly, β-cleavage was not altered by a variety of insults, including oxidative stress, suggesting a unique role of this cleavage in the human eye. It is likely that β-cleaved C- or N-terminal fragments of PrPC protect from various insults unique to the human eye. On the contrary, β-cleaved C-terminus of PrPC is susceptible to conversion to the pathological PrP-scrapie form, and includes the binding sites for β1-integrin and amyloid-β, molecules implicated in several ocular disorders. Considering the species and tissue-specific cleavage of PrPC, our data suggest re-evaluation of prion infectivity and other ocular disorders of the human eye conducted in mouse models.
Collapse
Affiliation(s)
- Suman Chaudhary
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Aaron S Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neil A Rana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander E Kritikos
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Hwang PH, Longstreth W, Thielke SM, Francis CE, Carone M, Kuller LH, Fitzpatrick AL. Ophthalmic conditions associated with dementia risk: The Cardiovascular Health Study. Alzheimers Dement 2021; 17:1442-1451. [PMID: 33788406 PMCID: PMC8527838 DOI: 10.1002/alz.12313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Ophthalmic conditions and dementia appear to overlap and may share common pathways, but research has not differentiated dementia subtypes. METHODS Diagnoses of cataracts, age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma were based on medical histories and International Classification of Diseases, Ninth Revision (ICD-9) codes for 3375 participants from the Cardiovascular Health Study. Dementia, including Alzheimer's disease (AD) and vascular dementia (VaD), was classified using standardized research criteria. RESULTS Cataracts were associated with AD (hazard ratio [HR] = 1.34; 95% confidence interval [CI] = 1.01-1.80) and VaD/mixed dementia (HR = 1.41; 95% CI = 1.02-1.95). AMD was associated with AD only (HR = 1.87; 95% CI = 1.13-3.09), whereas DR was associated with VaD/mixed dementia only (HR = 2.63; 95% CI = 1.10-6.27). DISCUSSION Differential associations between specific ophthalmic conditions and dementia subtypes may elucidate pathophysiologic pathways. Lack of association between glaucoma and dementia was most surprising from these analyses.
Collapse
Affiliation(s)
- Phillip H. Hwang
- Department of Epidemiology, University of Washington, Seattle, WA, USA;,Corresponding author contact information: University of Washington, Department of Epidemiology, 3980 15 Avenue Northeast, Box 351619, Seattle, WA 98195, , Phone: (206) 331-8633
| | - W.T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA;,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Stephen M. Thielke
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA;,Geriatric Research, Education, and Clinical Center, Puget Sound VA Medical Center, Seattle, WA, USA
| | | | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lewis H. Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette L. Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA;,Department of Global Health, University of Washington, Seattle, WA, USA;,Department of Family Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Goldstein MR, Cheslock M. On the prevention and treatment of Alzheimer's disease: Control the promoters and look beyond the brain. Med Hypotheses 2021; 154:110645. [PMID: 34315048 DOI: 10.1016/j.mehy.2021.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a progressive incurable neurodegenerative disease of the brain afflicting a third of the population aged 85 and older. Pathologic hallmarks include extracellular plaques of amyloid-beta (Aß), intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein, synaptic destruction, neuronal death, and brain atrophy. Neuroinflammation, mediated by microglia, is a central component of the disease, and is intricately connected with peripheral inflammation. The clinical manifestations include progressive memory loss and eventual death. The present treatment of AD is largely ineffective. Nearly all AD is late-onset and presents age 65 or older, and the most common genetic risk factor is carriage of an apolipoprotein (APO) E4 allele, seen in about 25% of the general population. Individuals carrying an APOE4 allele produce more Aß and clear it less efficiently from the brain throughout life. There has been accumulating pathologic and clinical evidence that microbes, particularly the herpes simplex virus (HSV), is a causative factor for AD, most notable in carriers of the APOE4 allele. Eighty percent of the adult population harbors HSV and it resides in the trigeminal ganglion in latent state throughout life, but periodically reactivates, traveling antegrade resulting in herpes labialis and traveling retrograde into the brain leading to neuroinflammation. Functioning as an antimicrobial peptide, Aß inactivates HSV and the recurring process culminates in a buildup of Aß plaque and other hallmarks of AD over time. Periodontal disease exists in 20-50% of the adult population and is also a causative factor for AD. Accordingly, bacteria causing periodontal disease and their byproducts can enter the brain directly via the trigeminal nerve or indirectly through the bloodstream, resulting in AD pathology over time. There are many other promoters of AD, particularly inflammatory conditions outside of the brain, that can be mitigated. Small trials are finally in progress testing antimicrobial drugs for the prevention and treatment of AD. In the meantime, a more proactive approach to the prevention and treatment of AD is posited, with an emphasis on prevention, since the pathologic underpinnings of the disease start decades before the clinical manifestations. Individuals can be stratified in risk categories using family history, periodontal disease presence, APOE4 carriage, and HSV IgG positivity. Moderate- and high-risk individuals can be treated safely with various preventive measures and appropriate antimicrobial agents as discussed. Importantly, the proposed treatments are concordant with the accepted practice of medicine, and if utilized, could significantly decrease AD prevalence.
Collapse
Affiliation(s)
| | - Megan Cheslock
- Harvard Medical School Multi-Campus Geriatric Fellowship, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Ng WY, Cheung CY, Milea D, Ting DSW. Artificial intelligence and machine learning for Alzheimer's disease: let's not forget about the retina. Br J Ophthalmol 2021; 105:593-594. [PMID: 33495160 DOI: 10.1136/bjophthalmol-2020-318407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Yan Ng
- Cataract and Comprehensive, Singapore National Eye Centre, Singapore
| | - Carol Y Cheung
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Dan Milea
- Neuro-ophthalmology Department, Singapore National Eye Centre, Singapore
| | | |
Collapse
|
21
|
Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, DeBuc DC, Campbell MC, Carrillo MC, Chew EY, Cordeiro MF, Dueñas MR, Fernández BM, Koronyo-Hamaoui M, La Morgia C, Carare RO, Sadda SR, van Wijngaarden P, Snyder HM. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement 2021; 17:103-111. [PMID: 33090722 PMCID: PMC8062064 DOI: 10.1002/alz.12179] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.
Collapse
Affiliation(s)
- Peter J. Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Clemens Alt
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania
| | - Brett E. Bouma
- Harvard Medical School, Massachusetts General Hospital and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Massachusetts
| | - Femke H. Bouwman
- Neurologist, Alzheimer Center Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Melanie C.W. Campbell
- Physics and Astronomy, Optometry and Vision Science and Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maria C. Carrillo
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - M. Francesca Cordeiro
- Imperial College London, UCL Institute of Ophthalmology, ICORG Western Eye Hospital, London, UK
| | - Michael R. Dueñas
- Chief Public Health Officer (Ret.), American Optometric Association, Washington, D.C
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute and Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy
| | | | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, UCLA, Los Angeles, California
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Heather M. Snyder
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| |
Collapse
|
22
|
Lemmens S, Van Craenendonck T, Van Eijgen J, De Groef L, Bruffaerts R, de Jesus DA, Charle W, Jayapala M, Sunaric-Mégevand G, Standaert A, Theunis J, Van Keer K, Vandenbulcke M, Moons L, Vandenberghe R, De Boever P, Stalmans I. Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients. Alzheimers Res Ther 2020; 12:144. [PMID: 33172499 PMCID: PMC7654576 DOI: 10.1186/s13195-020-00715-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
Collapse
Affiliation(s)
- Sophie Lemmens
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Toon Van Craenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Van Eijgen
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Danilo Andrade de Jesus
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | | | | | - Gordana Sunaric-Mégevand
- Clinical Research Center, Mémorial A. de Rothschild, 22 Chemin Beau Soleil, 1208 Geneva, Switzerland
| | - Arnout Standaert
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Theunis
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Karel Van Keer
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- Division of Psychiatry, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Center KU Leuven, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
- Hasselt University, Center of Environmental Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D, DeBuc DC, Cordeiro F, Provetti-Cunha L, den Haan J, Van Stavern GP, Salloway SP, Sinoff S, Snyder PJ. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement 2020; 16:229-243. [PMID: 31914225 DOI: 10.1002/alz.12006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Derrick Cheng
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Francesca Cordeiro
- Imperial College London, London, UK.,University College London, London, UK.,Western Eye Hospital, London, UK
| | - Leonardo Provetti-Cunha
- Federal University of Juiz de Fora Medical School, Juiz de Fora, Minas Gerais, Brazil.,Juiz de Fora Eye Hospital, Juiz de Fora, Minas Gerais, Brazil.,University of São Paulo Medical School, São Paulo, Brazil
| | - Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA.,Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Neurology and Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
24
|
Retinal Degeneration and Alzheimer's Disease: An Evolving Link. Int J Mol Sci 2020; 21:ijms21197290. [PMID: 33023198 PMCID: PMC7582766 DOI: 10.3390/ijms21197290] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer’s disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid β (Aβ) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aβ and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aβ and iron in drusen, the hallmark of AMD, and Aβ and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aβ, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aβ-mediated toxicity and, paradoxically, in neuroprotection.
Collapse
|
25
|
Fueyo-González F, González-Vera JA, Alkorta I, Infantes L, Jimeno ML, Aranda P, Acuña-Castroviejo D, Ruiz-Arias A, Orte A, Herranz R. Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sens 2020; 5:2792-2799. [PMID: 32551591 DOI: 10.1021/acssensors.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates. Among the different probes prepared, the 9-azetidinyl-quinolimide derivative showed striking performance in the following β-amyloid peptide (Aβ) aggregation in solution in real time and identifying the formation of different types of early oligomers of Aβ, the most important species linked to cytotoxicity, using novel, multidimensional fluorescence microscopy, with one- or two-photon excitation. Interestingly, the new dye allowed the visualization of proteinaceous inclusion bodies in a zebrafish model with neuronal damage induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Our results support the potential of the novel fluorophores as powerful tools to follow amyloid aggregation using fluorescence microscopy in vivo, revealing heterogeneous populations of different types of aggregates and, more broadly, to study protein interactions.
Collapse
Affiliation(s)
| | - Juan A. González-Vera
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
| | - Maria Luisa Jimeno
- Centro de Química Orgánica Lora Tamayo (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Aranda
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Dario Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Alvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Rosario Herranz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
26
|
Madden PW, Klyubin I, Ahearne MJ. Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 2020; 5:e000510. [PMID: 33024827 PMCID: PMC7513638 DOI: 10.1136/bmjophth-2020-000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.
Collapse
Affiliation(s)
- Peter W Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology Therapeutics, School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Mark J Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Chibhabha F, Yaqi Y, Li F. Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2019-0119/revneuro-2019-0119.xml. [PMID: 32804680 DOI: 10.1515/revneuro-2019-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- Department of Anatomy, Faculty of Medicine, Midlands State University, P. Bag 9055, Senga, Gweru, Zimbabwe
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Yang Yaqi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
28
|
Shin MK, Ji YW, Moon CE, Lee H, Kang B, Jinn WS, Ki J, Mun B, Kim MH, Lee HK, Haam S. Matrix metalloproteinase 9-activatable peptide-conjugated hydrogel-based fluorogenic intraocular-lens sensor. Biosens Bioelectron 2020; 162:112254. [DOI: 10.1016/j.bios.2020.112254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
|
29
|
Lee S, Jiang K, McIlmoyle B, To E, Xu QA, Hirsch-Reinshagen V, Mackenzie IR, Hsiung GYR, Eadie BD, Sarunic MV, Beg MF, Cui JZ, Matsubara JA. Amyloid Beta Immunoreactivity in the Retinal Ganglion Cell Layer of the Alzheimer's Eye. Front Neurosci 2020; 14:758. [PMID: 32848548 PMCID: PMC7412634 DOI: 10.3389/fnins.2020.00758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, accounting for 60–70% of all dementias. AD is often under-diagnosed and recognized only at a later, more advanced stage, and this delay in diagnosis has been suggested as a contributing factor in the numerous unsuccessful AD treatment trials. Although there is no known cure for AD, early diagnosis is important for disease management and care. A hallmark of AD is the deposition of amyloid-β (Aβ)-containing senile neuritic plaques and neurofibrillary tangles composed of hyperphosporylated tau in the brain. However, current in vivo methods to quantify Aβ in the brain are invasive, requiring radioactive tracers and positron emission tomography. Toward development of alternative methods to assess AD progression, we focus on the retinal manifestation of AD pathology. The retina is an extension of the central nervous system uniquely accessible to light-based, non-invasive ophthalmic imaging. However, earlier studies in human retina indicate that the literature is divided on the presence of Aβ in the AD retina. To help resolve this disparity, this study assessed retinal tissues from neuropathologically confirmed AD cases to determine the regional distribution of Aβ in retinal wholemounts and to inform on future retinal image studies targeting Aβ. Concurrent post-mortem brain tissues were also collected. Neuropathological cortical assessments including neuritic plaque (NP) scores and cerebral amyloid angiopathy (CAA) were correlated with retinal Aβ using immunohistochemistry, confocal microscopy, and quantitative image analysis. Aβ load was compared between AD and control (non-AD) eyes. Our results indicate that levels of intracellular and extracellular Aβ retinal deposits were significantly higher in AD than controls. Mid-peripheral Aβ levels were greater than central retina in both AD and control eyes. In AD retina, higher intracellular Aβ was associated with lower NP score, while higher extracellular Aβ was associated with higher CAA score. Our data support the feasibility of using the retinal tissue to assess ocular Aβ as a surrogate measure of Aβ in the brain of individuals with AD. Specifically, mid-peripheral retina possesses more Aβ deposition than central retina, and thus may be the optimal location for future in vivo ocular imaging.
Collapse
Affiliation(s)
- Sieun Lee
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Kailun Jiang
- Department of Surgery, Division of Ophthalmology, University of Calgary, Calgary, AB, Canada
| | - Brandon McIlmoyle
- Department of Family Medicine, Queen's University, Kingston, ON, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Qinyuan Alis Xu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Veronica Hirsch-Reinshagen
- Department of Pathology, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Ian R Mackenzie
- Department of Pathology, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, Department of Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Brennan D Eadie
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer's Disease. J Pers Med 2020; 10:jpm10030063. [PMID: 32708853 PMCID: PMC7563364 DOI: 10.3390/jpm10030063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a commonly occurring neurodegenerative disease in the advanced-age population, with a doubling of prevalence for each 5 years of age above 60 years. In the past two decades, there has been a sustained effort to find suitable biomarkers that may not only aide with the diagnosis of AD early in the disease process but also predict the onset of the disease in asymptomatic individuals. Current diagnostic evidence is supportive of some biomarker candidates isolated from cerebrospinal fluid (CSF), including amyloid beta peptide (Aβ), total tau (t-tau), and phosphorylated tau (p-tau) as being involved in the pathophysiology of AD. However, there are a few biomarkers that have been shown to be helpful, such as proteomic, inflammatory, oral, ocular and olfactory in the early detection of AD, especially in the individuals with mild cognitive impairment (MCI). To date, biomarkers are collected through invasive techniques, especially CSF from lumbar puncture; however, non-invasive (radio imaging) methods are used in practice to diagnose AD. In order to reduce invasive testing on the patients, present literature has highlighted the potential importance of biomarkers in blood to assist with diagnosing AD.
Collapse
|
31
|
Sidiqi A, Wahl D, Lee S, Ma D, To E, Cui J, To E, Beg MF, Sarunic M, Matsubara JA. In vivo Retinal Fluorescence Imaging With Curcumin in an Alzheimer Mouse Model. Front Neurosci 2020; 14:713. [PMID: 32719582 PMCID: PMC7350785 DOI: 10.3389/fnins.2020.00713] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/12/2020] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid beta (Aβ) plaques in the brain detectable by highly invasive in vivo brain imaging or in post-mortem tissues. A non-invasive and inexpensive screening method is needed for early diagnosis of asymptomatic AD patients. The shared developmental origin and similarities with the brain make the retina a suitable surrogate tissue to assess Aβ load in AD. Using curcumin, a FluoroProbe that binds to Aβ, we labeled and measured the retinal fluorescence in vivo and compared with the immunohistochemical measurements of the brain and retinal Aβ load in the APP/PS1 mouse model. In vivo retinal images were acquired every 2 months using custom fluorescence scanning laser ophthalmoscopy (fSLO) after tail vein injections of curcumin in individual mice followed longitudinally from ages 5 to 19 months. At the same time points, 1–2 mice from the same cohort were sacrificed and immunohistochemistry was performed on their brain and retinal tissues. Results demonstrated cortical and retinal Aβ immunoreactivity were significantly greater in Tg than WT groups. Age-related increase in retinal Aβ immunoreactivity was greater in Tg than WT groups. Retinal Aβ immunoreactivity was present in the inner retinal layers and consisted of small speck-like extracellular deposits and intracellular labeling in the cytoplasm of a subset of retinal ganglion cells. In vivo retinal fluorescence with curcumin injection was significantly greater in older mice (11–19 months) than younger mice (5–9 months) in both Tg and WT groups. In vivo retinal fluorescence with curcumin injection was significantly greater in Tg than WT in older mice (ages 11–19 months). Finally, and most importantly, the correlation between in vivo retinal fluorescence with curcumin injection and Aβ immunoreactivity in the cortex was stronger in Tg compared to WT groups. Our data reveal that retina and brain of APP/PS1 Tg mice increasingly express Aβ with age. In vivo retinal fluorescence with curcumin correlated strongly with cortical Aβ immunohistochemistry in Tg mice. These findings suggest that using in vivo fSLO imaging of AD-susceptible retina may be a useful, non-invasive method of detecting Aβ in the retina as a surrogate indicator of Aβ load in the brain.
Collapse
Affiliation(s)
- Ahmad Sidiqi
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Sieun Lee
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Da Ma
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Elliott To
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Cui
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Marinko Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Affiliation(s)
- Satya Karna
- Department of Ophthalmology, Jaypee Hospital, Noida, Uttar Pradesh, India
| |
Collapse
|
33
|
Dhiman K, Gupta VB, Villemagne VL, Eratne D, Graham PL, Fowler C, Bourgeat P, Li Q, Collins S, Bush AI, Rowe CC, Masters CL, Ames D, Hone E, Blennow K, Zetterberg H, Martins RN. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12005. [PMID: 32211500 PMCID: PMC7085283 DOI: 10.1002/dad2.12005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) in Alzheimer's disease (AD) diagnosis, its association with amyloid and tau pathology, as well as its potential to predict brain atrophy, cognition, and amyloid accumulation. METHODS CSF NfL concentration was measured in 221 participants from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL). RESULTS CSF NfL levels as well as NfL/amyloid β (Aβ42) were significantly elevated in AD compared to healthy controls (HC; P < .001), and in mild cognitive impairment (MCI) compared to HC (P = .008 NfL; P < .001 NfL/Aβ42). CSF NfL and NfL/Aβ42 differentiated AD from HC with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 and 0.90, respectively. CSF NfL and NfL/Aβ42 predicted cortical amyloid load, brain atrophy, and cognition. DISCUSSION CSF NfL is a biomarker of neurodegeneration, correlating with cognitive impairment and brain neuropathology.
Collapse
Affiliation(s)
- Kunal Dhiman
- Centre of Excellence in Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
| | - Veer Bala Gupta
- Centre of Excellence in Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
- School of MedicineDeakin UniversityVictoriaAustralia
| | - Victor L. Villemagne
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Molecular Imaging & Therapy and Centre for PET, Austin HealthHeidelbergVictoriaAustralia
- Department of MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Dhamidhu Eratne
- Melbourne Neuropsychiatry CentreUniversity of Melbourne and NorthWestern Mental HealthParkvilleVictoriaAustralia
| | - Petra L. Graham
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT)Macquarie UniversitySydneyNSWAustralia
| | - Christopher Fowler
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | | | - Qiao‐Xin Li
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Steven Collins
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Co‐operative Research Centre for Mental HealthCarltonVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & Therapy and Centre for PET, Austin HealthHeidelbergVictoriaAustralia
- Department of MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - David Ames
- National Ageing Research InstituteParkvilleVictoriaAustralia
- Academic Unit for Psychiatry of Old ageSt. George's HospitalThe University of MelbourneAustralia
| | - Eugene Hone
- Centre of Excellence in Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Ralph N. Martins
- Centre of Excellence in Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
- Co‐operative Research Centre for Mental HealthCarltonVictoriaAustralia
- Australian Alzheimer's Research FoundationRalph and Patricia Sarich Neuroscience Research InstituteNedlandsWAAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNSWAustralia
- School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaPerthWAAustralia
- KaRa Institute of Neurological DiseasesSydneyNSWAustralia
| |
Collapse
|
34
|
Hong SB, Ahn J, Yoo D, Shin JY, Jeon B, Lee JY. Contrast sensitivity impairment in drug-naïve Parkinson's disease patients associates with early cognitive decline. Neurol Sci 2020; 41:1837-1842. [PMID: 32062736 DOI: 10.1007/s10072-020-04289-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To investigate the contrast sensitivity function in drug-naïve Parkinson's disease (PD) patients and its predictive value with longitudinal follow-up data. METHODS We included newly diagnosed non-demented PD patients who performed contrast sensitivity test between 2013 and 2014. Contrast sensitivity function at drug-naïve state in PD patients was compared with age-matched normal control data of our center. Correlation between contrast sensitivity function and parkinsonian motor and non-motor features including the Mini-Mental State Exam (MMSE) score at the time of diagnosis were analyzed by linear regression. With longitudinal follow-up data after initiating anti-parkinsonian therapy, the risk conferred on subsequent visual hallucinations and cognitive impairment requiring anti-dementia drugs was analyzed by dichotomizing PD group based on the initial contrast sensitivity function. RESULTS Forty-eight patients were finally included, and mean follow-up periods were 43 months. Contrast sensitivity function in drug-naïve PD patients was significantly worse than controls. Contrast sensitivity function correlated with sleep disturbance (p = 0.001) and global cognitive status reflected by the MMSE score (p = 0.020). It also associated with further decline in the MMSE during the follow-ups (p = 0.029). Patients with below average contrast sensitivity function at the time of diagnosis showed higher risk of cognitive decline requiring anti-dementia drugs (adjusted odds ratio = 4.68, p = 0.04) and of visual hallucinations (adjusted odds ratio = 12.54, p = 0.04) than those above average function during the follow-up. CONCLUSION Contrast sensitivity impairment in drug-naïve PD patients associates with clinical demand for therapeutic intervention of cognitive decline as well as development of visual hallucinations in the early course of the disease.
Collapse
Affiliation(s)
- Sang Bin Hong
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Shindaebang-dong, Seoul, 07061, South Korea.,Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Shindaebang-dong, Seoul, 07061, South Korea
| | - Dalla Yoo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Shindaebang-dong, Seoul, 07061, South Korea.,Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Joo Young Shin
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Shindaebang-dong, Seoul, 07061, South Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Shindaebang-dong, Seoul, 07061, South Korea.
| |
Collapse
|
35
|
Harper DJ, Augustin M, Lichtenegger A, Gesperger J, Himmel T, Muck M, Merkle CW, Eugui P, Kummer S, Woehrer A, Glösmann M, Baumann B. Retinal analysis of a mouse model of Alzheimer's disease with multicontrast optical coherence tomography. NEUROPHOTONICS 2020; 7:015006. [PMID: 32042855 PMCID: PMC6999077 DOI: 10.1117/1.nph.7.1.015006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2020] [Indexed: 05/18/2023]
Abstract
Significance. Recent Alzheimer's disease (AD) patient studies have focused on retinal analysis, as the retina is the only part of the central nervous system that can be imaged noninvasively by optical methods. However, as this is a relatively new approach, the occurrence and role of retinal pathological features are still debated. Aim. The retina of an APP/PS1 mouse model was investigated using multicontrast optical coherence tomography (OCT) in order to provide a documentation of what was observed in both transgenic and wild-type mice. Approach. Both eyes of 24 APP/PS1 transgenic mice (age: 45 to 104 weeks) and 15 age-matched wild-type littermates were imaged by the custom-built OCT system. At the end of the experiment, retinas and brains were harvested from a subset of the mice (14 transgenic, 7 age-matched control) in order to compare the in vivo results to histological analysis and to quantify the cortical amyloid beta plaque load. Results. The system provided a combination of standard reflectivity data, polarization-sensitive data, and OCT angiograms. Qualitative and quantitative information from the resultant OCT images was extracted on retinal layer thickness and structure, presence of hyper-reflective foci, phase retardation abnormalities, and retinal vasculature. Conclusions. Although multicontrast OCT revealed abnormal structural properties and phase retardation signals in the retina of this APP/PS1 mouse model, the observations were very similar in transgenic and control mice.
Collapse
Affiliation(s)
- Danielle J. Harper
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Danielle J. Harper, E-mail:
| | - Marco Augustin
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Tanja Himmel
- University of Veterinary Medicine, Institute of Pathology, Vienna, Austria
| | - Martina Muck
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Conrad W. Merkle
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Pablo Eugui
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Stefan Kummer
- University of Veterinary Medicine, Core Facility for Research and Technology, Vienna, Austria
| | - Adelheid Woehrer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Martin Glösmann
- University of Veterinary Medicine, Core Facility for Research and Technology, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|
36
|
Sharafi SM, Sylvestre JP, Chevrefils C, Soucy JP, Beaulieu S, Pascoal TA, Arbour JD, Rhéaume MA, Robillard A, Chayer C, Rosa-Neto P, Mathotaarachchi SS, Nasreddine ZS, Gauthier S, Lesage F. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:610-617. [PMID: 31650017 PMCID: PMC6804547 DOI: 10.1016/j.trci.2019.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction This study investigates the relationship between retinal image features and β-amyloid (Aβ) burden in the brain with the aim of developing a noninvasive method to predict the deposition of Aβ in the brain of patients with Alzheimer's disease. Methods Retinal images from 20 cognitively impaired and 26 cognitively unimpaired cases were acquired (3 images per subject) using a hyperspectral retinal camera. The cerebral amyloid status was determined from binary reads by a panel of 3 expert raters on 18F-florbetaben positron-emission tomography (PET) studies. Image features from the hyperspectral retinal images were calculated, including vessels tortuosity and diameter and spatial-spectral texture measures in different retinal anatomical regions. Results Retinal venules of amyloid-positive subjects (Aβ+) showed a higher mean tortuosity compared with the amyloid-negative (Aβ−) subjects. Arteriolar diameter of Aβ+ subjects was found to be higher than the Aβ− subjects in a zone adjacent to the optical nerve head. Furthermore, a significant difference between texture measures built over retinal arterioles and their adjacent regions were observed in Aβ+ subjects when compared with the Aβ−. A classifier was trained to automatically discriminate subjects combining the extracted features. The classifier could discern Aβ+ subjects from Aβ− subjects with an accuracy of 85%. Discussion Significant differences in texture measures were observed in the spectral range 450 to 550 nm which is known as the spectral region known to be affected by scattering from amyloid aggregates in the retina. This study suggests that the inclusion of metrics related to the retinal vasculature and tissue-related textures extracted from vessels and surrounding regions could improve the discrimination performance of the cerebral amyloid status.
Collapse
Affiliation(s)
| | | | | | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Beaulieu
- Département de médecine nucléaire, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | | | - Alain Robillard
- Département de psychiatrie, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Céline Chayer
- Département de psychiatrie, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sulantha S Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | - Serge Gauthier
- Alzheimer's Disease Research Unit, The McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Frédéric Lesage
- Genie Electrique, Polytechnique Montreal, Montreal, Quebec, Canada.,Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51:1-10. [PMID: 31073121 PMCID: PMC6509326 DOI: 10.1038/s12276-019-0250-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
Current technological advancements in clinical and research settings have permitted a more intensive and comprehensive understanding of Alzheimer’s disease (AD). This development in knowledge regarding AD pathogenesis has been implemented to produce disease-modifying drugs. The potential for accessible and effective therapeutic methods has generated a need for detecting this neurodegenerative disorder during early stages of progression because such remedial effects are more profound when implemented during the initial, prolonged prodromal stages of pathogenesis. The aggregation of amyloid-β (Aβ) and tau isoforms are characteristic of AD; thus, they are considered core candidate biomarkers. However, research attempting to establish the reliability of Aβ and tau as biomarkers has culminated in an amalgamation of contradictory results and theories regarding the biomarker concentrations necessary for an accurate diagnosis. In this review, we consider the capabilities and limitations of fluid biomarkers collected from cerebrospinal fluid, blood, and oral, ocular, and olfactory secretions as diagnostic tools for AD, along with the impact of the integration of these biomarkers in clinical settings. Furthermore, the evolution of diagnostic criteria and novel research findings are discussed. This review is a summary and reflection of the ongoing concerted efforts to establish fluid biomarkers as a diagnostic tool and implement them in diagnostic procedures. Markers from body fluids could help clinicians diagnose Alzheimer’s disease before cognitive decline appears. After numerous setbacks in treating advanced Alzheimer’s, researchers are eager to identify biological indicators that facilitate earlier disease detection and interception. A review by YoungSoo Kim and colleagues at Yonsei University in South Korea, explores the promise of ‘fluid biomarkers,’ which enables diagnosis using cerebrospinal fluid (CSF), blood, oral, ocular, and olfactory fluid samples. Shifts in CSF levels of amyloid beta and tau, two proteins central to Alzheimer’s pathology, can reliably monitor at-risk individuals. Although CSF collection is unpleasant for patients, it remains more promising than blood, where current data for candidate fluid biomarkers are relatively inconclusive. In this review, investigations to discover safer, cheaper, and more reliable diagnostic tools to shift treatment from alleviation to prevention are introduced.
Collapse
|
38
|
Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019; 137:379-395. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.
Collapse
|
39
|
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 2018:2941783. [PMID: 30405709 PMCID: PMC6204169 DOI: 10.1155/2018/2941783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. It compromises patients' daily activities owing to progressive cognitive deterioration, which has elevated direct and indirect costs. Although AD has several risk factors, aging is considered the most important. Unfortunately, clinical diagnosis is usually performed at an advanced disease stage when dementia is established, making implementation of successful therapeutic interventions difficult. Current biomarkers tend to be expensive, insufficient, or invasive, raising the need for novel, improved tools aimed at early disease detection. AD is characterized by brain atrophy due to neuronal and synaptic loss, extracellular amyloid plaques composed of amyloid-beta peptide (Aβ), and neurofibrillary tangles of hyperphosphorylated tau protein. The visual system and central nervous system share many functional components. Thus, it is plausible that damage induced by Aβ, tau, and neuroinflammation may be observed in visual components such as the retina, even at an early disease stage. This underscores the importance of implementing ophthalmological examinations, less invasive and expensive than other biomarkers, as useful measures to assess disease progression and severity in individuals with or at risk of AD. Here, we review functional and morphological changes of the retina and visual pathway in AD from pathophysiological and clinical perspectives.
Collapse
Affiliation(s)
| | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Tellez-Conti
- Escuela Superior de Oftalmología-Instituto Barraquer de América, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
40
|
Mohlin C, Delbro D, Kvanta A, Johansson K. Evaluation of Congo Red Staining in Degenerating Porcine Photoreceptors In Vitro: Protective Effects by Structural and Trophic Support. J Histochem Cytochem 2018; 66:631-641. [PMID: 29624116 PMCID: PMC6116089 DOI: 10.1369/0022155418768222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/07/2018] [Indexed: 11/22/2022] Open
Abstract
Congo red (CR) is a histological stain used for the detection of extracellular amyloids mediating various neurodegenerative diseases. Given that damaged photoreceptors appear to degenerate similarly to other nerve cells, CR staining was evaluated in experimentally injured porcine retina. CR staining appeared mostly as discrete cytosolic deposits with no obvious plaque formation during the investigated time period. Increases of CR labeling coincided temporally with the known accumulation of mislocalized opsins and increases of cell death. Coculture, either with human retinal pigment epithelium (ARPE) or human neural progenitor (ReN) cells, was accompanied by a significant reduction of CR labeling. Of particular interest was the reduction of CR labeling in cone photoreceptors, which are important for the perception of color and fine details and afflicted in age-related macular degeneration (AMD). Electron microscopy revealed inclusions in the inner segment, cell body, and occasionally synaptic terminals of photoreceptor cells in cultured specimens. Closer examinations indicated the presence of different types of inclusions resembling protein aggregates as well as inclusion bodies. The current results indicate that injury-related response resulted in accumulation of CR deposits in photoreceptor cells, and that trophic and/or structural support attenuated this response.
Collapse
Affiliation(s)
- Camilla Mohlin
- Department of Chemistry and Biomedicine,
Linnaeus University, Kalmar, Sweden
| | - Dick Delbro
- School of Medical Sciences, Örebro University,
Örebro, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Section for
Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet,
Stockholm, Sweden
| | - Kjell Johansson
- Department of Science, Kristianstad University,
Kristianstad, Sweden
| |
Collapse
|
41
|
Tes D, Kratkiewicz K, Aber A, Horton L, Zafar M, Arafat N, Fatima A, Avanaki MR. Development and Optimization of a Fluorescent Imaging System to Detect Amyloid-β Proteins: Phantom Study. Biomed Eng Comput Biol 2018; 9:1179597218781081. [PMID: 29977121 PMCID: PMC6024282 DOI: 10.1177/1179597218781081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/04/2018] [Indexed: 01/05/2023] Open
Abstract
Alzheimer disease is the most common form of dementia, affecting more than 5 million people in the United States. During the progression of Alzheimer disease, a particular protein begins to accumulate in the brain and also in extensions of the brain, ie, the retina. This protein, amyloid-β (Aβ), exhibits fluorescent properties. The purpose of this research article is to explore the implications of designing a fluorescent imaging system able to detect Aβ proteins in the retina. We designed and implemented a fluorescent imaging system with a range of applications that can be reconfigured on a fluorophore to fluorophore basis and tested its feasibility and capabilities using Cy5 and CRANAD-2 imaging probes. The results indicate a promising potential for the imaging system to be used to study the Aβ biomarker. A performance evaluation involving ex vivo and in vivo experiments is planned for future study.
Collapse
Affiliation(s)
- David Tes
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Ahmed Aber
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Luke Horton
- Department of Dermatology, Wayne State University, Detroit, MI, USA
| | - Mohsin Zafar
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Nour Arafat
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Afreen Fatima
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Mohammad Rn Avanaki
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI, USA.,Department of Dermatology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
42
|
Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, Singh N. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res 2018; 175:1-13. [PMID: 29859760 PMCID: PMC6167182 DOI: 10.1016/j.exer.2018.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Iron is an essential biometal in the aqueous humor, the principal source of nutrients for the avascular cornea and the lens. Here, we explored whether the ciliary body (CB), the source of aqueous humor, transports iron, and if the prion protein (PrPC) facilitates this process as in the outer retina. Using a combination of human, bovine, and mouse eyes as models, we report the expression of iron export proteins ferroportin and ceruloplasmin, and major iron uptake and storage proteins transferrin, transferrin receptor, and ferritin in the ciliary epithelium, indicating active exchange of iron at this site. Ferroportin and transferrin receptor are also expressed in the corneal endothelium. However, the relative expression of iron export and uptake proteins suggests export from the ciliary epithelium and import by corneal endothelium. In addition, abundant expression of PrPC, a ferrireductase that facilitates iron transport, is noted in pigmented and non-pigmented epithelium of the CB, posterior pigmented epithelium of the iris, corneal endothelium and epithelium, and lens epithelium. Notably, majority of PrPC in the ciliary epithelium is cleaved at the β-site as in retinal pigment epithelial cells, suggesting a role in iron transport. Most of the PrPC in the cornea, however, is full-length, and susceptible to aggregation by intracerebrally inoculated PrP-scrapie, an infectious conformation of PrPC responsible for human and animal prion disorders. Soluble PrPC is present in the aqueous and vitreous humor, a provocative observation with significant implications. Together, these observations suggest independent cycling of iron in the anterior segment, and a prominent role of PrPC in this process. Aggregation of PrPC in the cornea of PrP-scrapie-infected animals raises the alarming possibility of transmission of animal prions through corneal abrasions.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajeev Chandel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ranjana Ravikumar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stuti Dalal
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
43
|
Chaperone AMPylation modulates aggregation and toxicity of neurodegenerative disease-associated polypeptides. Proc Natl Acad Sci U S A 2018; 115:E5008-E5017. [PMID: 29760078 PMCID: PMC5984528 DOI: 10.1073/pnas.1801989115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein AMPylation in eukaryotes is a comparatively understudied posttranslational modification. With the exception of yeast, all eukaryotes have the enzymatic machinery required to execute this modification. Members of the heat shock protein family in different cellular compartments appear to be preferred targets for AMPylation, but it has proven challenging to adduce its biological function. We show that genetic modifications that affect AMPylation status, through generation of null alleles and a constitutively active version of the AMPylase FIC-1, can have a major impact on the susceptibility of Caenorhabditis elegans to neurodegenerative conditions linked to protein aggregation. Proteostasis is critical to maintain organismal viability, a process counteracted by aging-dependent protein aggregation. Chaperones of the heat shock protein (HSP) family help control proteostasis by reducing the burden of unfolded proteins. They also oversee the formation of protein aggregates. Here, we explore how AMPylation, a posttranslational protein modification that has emerged as a powerful modulator of HSP70 activity, influences the dynamics of protein aggregation. We find that adjustments of cellular AMPylation levels in Caenorhabditis elegans directly affect aggregation properties and associated toxicity of amyloid-β (Aβ), of a polyglutamine (polyQ)-extended polypeptide, and of α-synuclein (α-syn). Expression of a constitutively active C. elegans AMPylase FIC-1(E274G) under its own promoter expedites aggregation of Aβ and α-syn, and drastically reduces their toxicity. A deficiency in AMPylation decreases the cellular tolerance for aggregation-prone polyQ proteins and alters their aggregation behavior. Overexpression of FIC-1(E274G) interferes with cell survival and larval development, underscoring the need for tight control of AMPylase activity in vivo. We thus define a link between HSP70 AMPylation and the dynamics of protein aggregation in neurodegenerative disease models. Our results are consistent with a cytoprotective, rather than a cytotoxic, role for such protein aggregates.
Collapse
|
44
|
Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis 2018; 62:965-992. [PMID: 29562546 PMCID: PMC5870031 DOI: 10.3233/jad-171145] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide there are over 46 million people living with dementia, and this number is expected to double every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by several research groups in Australia, including work by our original research group in Western Australia which was involved in the discovery and sequencing of the amyloid-β peptide (also known as Aβ or A4 peptide) extracted from cerebral amyloid plaques. This review discusses the journey from the discovery of the Aβ peptide in Alzheimer's disease (AD) brain to the establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed 1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk factor apolipoprotein E ɛ4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and sleep to cognitive decline and the accumulation of cerebral Aβ.
Collapse
Affiliation(s)
- Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Victor Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Tejal M. Shah
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, WA, Australia
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Veer B. Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Steve Pedrini
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Wei Ling Lim
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ian Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Shaun Frost
- CSIRO Australian e-Health Research Centre/Health and Biosecurity, Perth, WA, Australia
| | - Sunil Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Sid O’Bryant
- University of North Texas Health Science Centre, Fort Worth, TX, USA
| | - Alan Rembach
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George’s Hospital, Kew, VIC, Australia
| | - Kathryn Ellis
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie J. Fuller
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Belinda Brown
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha Burnham
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- eHealth, CSIRO Health and Biosecurity, Parkville, VIC, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna M. Barron
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Anglicare, Sydney, NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Eka J. Wahjoepramono
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prita R. Asih
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Samuel E. Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin L. Masters
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| |
Collapse
|
45
|
McDermott B, Porter E, Hughes D, McGinley B, Lang M, O’Halloran M, Jones M. Gamma Band Neural Stimulation in Humans and the Promise of a New Modality to Prevent and Treat Alzheimer's Disease. J Alzheimers Dis 2018; 65:363-392. [PMID: 30040729 PMCID: PMC6130417 DOI: 10.3233/jad-180391] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Existing treatments for Alzheimer's disease (AD) have questionable efficacy with a need for research into new and more effective therapies to both treat and possibly prevent the condition. This review examines a novel therapeutic modality that shows promise for treating AD based on modulating neuronal activity in the gamma frequency band through external brain stimulation. The gamma frequency band is roughly defined as being between 30 Hz-100 Hz, with the 40 Hz point being of particular significance. The epidemiology, diagnostics, existing pathological models, and related current treatment targets are initially briefly reviewed. Next, the concept of external simulation triggering brain activity in the gamma band with potential demonstration of benefit in AD is introduced with reference to a recent important study using a mouse model of the disease. The review then presents a selection of relevant studies that describe the neurophysiology involved in brain stimulation by external sources, followed by studies involving application of the modality to clinical scenarios. A table summarizing the results of clinical studies applied to AD patients is also reported and may aid future development of the modality. The use of a therapy based on modulation of gamma neuronal activity represents a novel non-invasive, non-pharmacological approach to AD. Although use in clinical scenarios is still a relatively recent area of research, the technique shows good signs of efficacy and may represent an important option for treating AD in the future.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Emily Porter
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Diarmaid Hughes
- College of Medicine, Nursing and Health Science, National University of Ireland Galway, Galway, Ireland
| | - Brian McGinley
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
- Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Mark Lang
- Centre for Astronomy, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Marggie Jones
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
46
|
Qiu C, Ding J, Sigurdsson S, Fisher DE, Zhang Q, Eiriksdottir G, Klein R, van Buchem MA, Gudnason V, Cotch MF, Launer LJ. Differential associations between retinal signs and CMBs by location: The AGES-Reykjavik Study. Neurology 2017; 90:e142-e148. [PMID: 29237799 PMCID: PMC5772152 DOI: 10.1212/wnl.0000000000004792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To test the hypothesis that age-related macular degeneration (AMD) and retinal microvascular signs are differentially associated with lobar and deep cerebral microbleeds (CMBs). METHODS CMBs in lobar regions indicate cerebral amyloid angiopathy (CAA). β-Amyloid deposits are implicated in both CAA and AMD. Deep CMBs are associated with hypertension, a major risk factor for retinal microvascular damage. This population-based cohort study included 2,502 participants in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who undertook binocular digital retinal photographs at baseline (2002-2006) to assess retinal microvascular signs and AMD and brain MRI scan at both baseline and follow-up (2007-2011) to assess CMBs. We assessed retinal microvascular lesion burden by counting the 3 retinal microvascular signs (focal arteriolar narrowing, arteriovenous nicking, and retinopathy) concurrently present in the participant. We used multiple logistic models to examine the association of baseline retinal pathology to incident CMBs detected at follow-up. RESULTS During an average 5.2 years of follow-up, 461 people (18.3%) developed new CMBs, including 293 in exclusively lobar regions and 168 in deep regions. Pure geographic atrophy was significantly associated with strictly lobar CMBs (multivariable-adjusted odds ratio 2.59, 95% confidence interval [CI] 1.01-6.65) but not with deep CMBs. Concurrently having ≥2 retinal microvascular signs was associated with a 3-fold (95% CI 1.73-5.20) increased likelihood for deep CMBs but not exclusively lobar CMBs. CONCLUSIONS Retinal microvascular signs and pure geographic atrophy may be associated with deep and exclusively lobar CMBs, respectively, in older people. These results have implications for further research to define the role of small vessel disease in cognitive impairment.
Collapse
Affiliation(s)
- Chengxuan Qiu
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik.
| | - Jie Ding
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Sigurdur Sigurdsson
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Diana E Fisher
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Qian Zhang
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Gudny Eiriksdottir
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Ronald Klein
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Mark A van Buchem
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Vilmundur Gudnason
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Mary Frances Cotch
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Lenore J Launer
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik.
| |
Collapse
|
47
|
Dumitrascu OM, Okazaki EM, Cobb SH, Zarka MA, De Souza SA, Kumar G, O'Carroll CB. Amyloid-Beta-Related Angiitis with Distinctive Neuro-Ophthalmologic Features. Neuroophthalmology 2017; 42:237-241. [PMID: 30042795 DOI: 10.1080/01658107.2017.1374982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Amyloid beta-related angiitis (ABRA) is a subtype of cerebral amyloid angiopathy-related inflammation, with distinctive pathology and prognosis compared with cerebral amyloid angiopathy (CAA). On a spectrum of increasing severity, ABRA is considered to be in-between the less aggressive inflammatory-CAA and the more severe primary central nervous system (CNS) angiitis. Whereas retinal pathological changes were described in subjects with primary or secondary CNS angiitis, and non-inflammatory CAA, bilateral posterior pole superficial and peripapillary retinal hemorrhages have not been reported as initial signs in patients with pathology-confirmed ABRA, accompanying neurological spells and characteristic neuroimaging findings.
Collapse
Affiliation(s)
| | - Erin M Okazaki
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven H Cobb
- Department of Ophthalmology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Stephen A De Souza
- Department of Ophthalmology, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | | | | |
Collapse
|
48
|
La Morgia C, Ross-Cisneros FN, Sadun AA, Carelli V. Retinal Ganglion Cells and Circadian Rhythms in Alzheimer's Disease, Parkinson's Disease, and Beyond. Front Neurol 2017; 8:162. [PMID: 28522986 PMCID: PMC5415575 DOI: 10.3389/fneur.2017.00162] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
There is increasing awareness on the role played by circadian rhythm abnormalities in neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The characterization of the circadian dysfunction parallels the mounting evidence that the hallmarks of neurodegeneration also affect the retina and frequently lead to loss of retinal ganglion cells (RGCs) and to different degrees of optic neuropathy. In the RGC population, there is the subgroup of cells intrinsically photosensitive and expressing the photopigment melanopsin [melanopsin-containing retinal ganglion cells (mRGCs)], which are now well known to drive the entrainment of circadian rhythms to the light–dark cycles. Thus, the correlation between the pathological changes affecting the retina and mRGCs with the circadian imbalance in these neurodegenerative diseases is now clearly emerging, pointing to the possibility that these patients might be amenable to and benefit from light therapy. Currently, this connection is better established for AD and PD, but the same scenario may apply to other neurodegenerative disorders, such as Huntington’s disease. This review highlights similarities and differences in the retinal/circadian rhythm axis in these neurodegenerative diseases posing a working frame for future studies.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|