1
|
Liu H, Xie Y, Ji Y, Zhou Y, Xu J, Tang J, Liu N, Ding H, Qin W, Liu F, Yu C. Identification of genetic architecture shared between schizophrenia and Alzheimer's disease. Transl Psychiatry 2025; 15:150. [PMID: 40240757 PMCID: PMC12003746 DOI: 10.1038/s41398-025-03348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Both schizophrenia (SCZ) and Alzheimer's disease (AD) are highly heritable brain disorders. Despite of the observed comorbidity and shared psychosis and cognitive decline between the two disorders, the genetic risk architecture shared by SCZ and AD remains largely unknown. Based on summary statistics of the currently available largest genome-wide association studies for SCZ (n = 130,644) and AD (n = 455,258) in individuals of European ancestry, we conducted conditional/conjunctional false discovery rate (FDR) analysis to enhance the statistical power for discovering more genetic associations with SCZ or AD and to detect the common genetic variants shared by both disorders. We found shared genetic architecture in SCZ conditioned on AD and vice versa across different levels of significance, indicating polygenic overlap. We found 268 (78 novel) SCZ-only and 125 (55 novel) AD-only SNPs at conditional FDR < 0.01, and 16 lead SNPs shared by SCZ and AD at conjunctional FDR < 0.05. Only half of the shared SNPs showed concordant effect direction, which was consistent with the modest genetic correlation (r = 0.097; P = 0.026) between the two disorders. This study provides evidence for polygenic overlap between SCZ and AD, suggesting the existence of the shared molecular genetic mechanisms, which may inform therapeutic targets that are applicable for both disorders.
Collapse
Affiliation(s)
- Huaigui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Ji
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujing Zhou
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiayuan Xu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nana Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Ding
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
- State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
2
|
Vera-Montecinos A, Ramos B. Transcriptional Regulators in the Cerebellum in Chronic Schizophrenia: Novel Possible Targets for Pharmacological Interventions. Int J Mol Sci 2025; 26:3653. [PMID: 40332239 PMCID: PMC12026920 DOI: 10.3390/ijms26083653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Despite the emerging evidence of the role of transcriptional regulators in schizophrenia as key molecular effectors responsible for the dysregulation of multiple biological processes, limited information is available for brain areas that control higher cognitive functions, such as the cerebellum. To identify transcription factors that could control a wide panel of altered proteins in the cerebellar cortex in schizophrenia, we analyzed a dataset obtained using one-shot liquid chromatography-tandem mass spectrometry on the postmortem human cerebellar cortex in chronic schizophrenia (PXD024937 identifier in the ProteomeXchange repository). Our analysis revealed a panel of 11 enriched transcription factors (SP1, KLF7, SP4, EGR1, HNF4A, CTCF, GABPA, NRF1, NFYA, YY1, and MEF2A) that could be controlling 250 altered proteins. The top three significantly enriched transcription factors were SP1, YY1, and EGR1, and the transcription factors with the largest number of targets were SP1, KLF7, and SP4 which belong to the Krüppel superfamily. An enrichment in vesicle-mediated transport was found for SP1, KLF7, EGR1, HNF4A, CTCF, and MEF2A targets, while pathways related to signaling, inflammation/immune responses, apoptosis, and energy were found for SP1 and KLF7 targets. EGR1 targets were enriched in RNA processing, and GABPA and YY1 targets were mainly involved in organelle organization and assembly. This study provides a reduced panel of transcriptional regulators that could impact multiple pathways through the control of a number of targets in the cerebellum in chronic schizophrenia. These findings suggest that this panel of transcription factors could represent key targets for pharmacological interventions in schizophrenia.
Collapse
Affiliation(s)
- América Vera-Montecinos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas 42, 08830 Sant Boi de Llobregat, Spain;
- Departamento de Ciencias Biológicas y Químicas, Facultad De Ciencias, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile
| | - Belén Ramos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas 42, 08830 Sant Boi de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Ministry of Economy, Industry and Competitiveness Institute of Health Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| |
Collapse
|
3
|
Brown AR, Fox GA, Kaplow IM, Lawler AJ, Phan BN, Gadey L, Wirthlin ME, Ramamurthy E, May GE, Chen Z, Su Q, McManus CJ, van de Weerd R, Pfenning AR. An in vivo systemic massively parallel platform for deciphering animal tissue-specific regulatory function. Front Genet 2025; 16:1533900. [PMID: 40270544 PMCID: PMC12016043 DOI: 10.3389/fgene.2025.1533900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction: Transcriptional regulation is an important process wherein non-protein coding enhancer sequences play a key role in determining cell type identity and phenotypic diversity. In neural tissue, these gene regulatory processes are crucial for coordinating a plethora of interconnected and regionally specialized cell types, ensuring their synchronized activity in generating behavior. Recognizing the intricate interplay of gene regulatory processes in the brain is imperative, as mounting evidence links neurodevelopment and neurological disorders to non-coding genome regions. While genome-wide association studies are swiftly identifying non-coding human disease-associated loci, decoding regulatory mechanisms is challenging due to causal variant ambiguity and their specific tissue impacts. Methods: Massively parallel reporter assays (MPRAs) are widely used in cell culture to study the non-coding enhancer regions, linking genome sequence differences to tissue-specific regulatory function. However, widespread use in animals encounters significant challenges, including insufficient viral library delivery and library quantification, irregular viral transduction rates, and injection site inflammation disrupting gene expression. Here, we introduce a systemic MPRA (sysMPRA) to address these challenges through systemic intravenous AAV viral delivery. Results: We demonstrate successful transduction of the MPRA library into diverse mouse tissues, efficiently identifying tissue specificity in candidate enhancers and aligning well with predictions from machine learning models. We highlight that sysMPRA effectively uncovers regulatory effects stemming from the disruption of MEF2C transcription factor binding sites, single-nucleotide polymorphisms, and the consequences of genetic variations associated with late-onset Alzheimer's disease. Conclusion: SysMPRA is an effective library delivering method that simultaneously determines the transcriptional functions of hundreds of enhancers in vivo across multiple tissues.
Collapse
Affiliation(s)
- Ashley R. Brown
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Grant A. Fox
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Irene M. Kaplow
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - BaDoi N. Phan
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lahari Gadey
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Morgan E. Wirthlin
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Easwaran Ramamurthy
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gemma E. May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Qiao Su
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Robert van de Weerd
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Andreas R. Pfenning
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Pizzini L, Valle F, Osella M, Caselle M. Topic modeling analysis of the Allen Human Brain Atlas. Sci Rep 2025; 15:6928. [PMID: 40011617 PMCID: PMC11865453 DOI: 10.1038/s41598-025-91079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The human brain is a complex interconnected structure controlling all elementary and high-level cognitive tasks. It is composed of many regions that exhibit specific distributions of cell types and distinct patterns of functional connections. This complexity is rooted in differential transcription. The constituent cell types of different brain regions express distinctive combinations of genes as they develop and mature, ultimately shaping their functional state in adulthood. How precisely the genetic information of anatomical structures is connected to their underlying biological functions remains an open question in modern neuroscience. A major challenge is the identification of "universal patterns", which do not depend on the particular individual, but are instead basic structural properties shared by all brains. Despite the vast amount of gene expression data available at both the bulk and single-cell levels, this task remains challenging, mainly due to the lack of suitable data mining tools. In this paper, we propose an approach to address this issue based on a hierarchical version of Stochastic Block Modeling. Thanks to its specific choice of priors, the method is particularly effective in identifying these universal features. We use as a laboratory to test our algorithm a dataset obtained from six independent human brains from the Allen Human Brain Atlas. We show that the proposed method is indeed able to identify universal patterns much better than more traditional algorithms such as Latent Dirichlet Allocation or Weighted Correlation Network Analysis. The probabilistic association between genes and samples that we find well represents the known anatomical and functional brain organization. Moreover, leveraging the peculiar "fuzzy" structure of the gene sets obtained with our method, we identify examples of transcriptional and post-transcriptional pathways associated with specific brain regions, highlighting the potential of our approach.
Collapse
Affiliation(s)
- Letizia Pizzini
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy.
| | - Filippo Valle
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| |
Collapse
|
5
|
Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim MG, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 2025; 20:16. [PMID: 39920775 PMCID: PMC11806887 DOI: 10.1186/s13024-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. METHODS Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. RESULTS Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. CONCLUSIONS Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suhyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyeon Chu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Phuong Thi Thanh Nguyen
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Uiyeol Park
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Gyeong Kim
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Grewo Lim
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
6
|
Serafini RA, Farzinpour Z, Patel V, Kelley AM, Estill M, Pryce KD, Sakloth F, Teague CD, Torres-Berrio A, Nestler EJ, Shen L, Akbarian S, Karkhanis AN, Blitzer RD, Zachariou V. Nucleus accumbens myocyte enhancer factor 2C mediates the maintenance of peripheral nerve injury-induced physiological and behavioral maladaptations. Pain 2024; 165:2733-2748. [PMID: 38985454 DOI: 10.1097/j.pain.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
ABSTRACT Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Zahra Farzinpour
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Vishwendra Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abigail M Kelley
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kerri D Pryce
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farhana Sakloth
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| |
Collapse
|
7
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental Disruption of Mef2c in Medial Ganglionic Eminence-Derived Cortical Inhibitory Interneurons Impairs Cellular and Circuit Function. Biol Psychiatry 2024; 96:804-814. [PMID: 38848814 PMCID: PMC11486581 DOI: 10.1016/j.biopsych.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND MEF2C is strongly linked to various neurodevelopmental disorders including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity disorder. Mice that constitutively lack 1 copy of Mef2c or selectively lack both copies of Mef2c in cortical excitatory neurons display a variety of behavioral phenotypes associated with neurodevelopmental disorders. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but its function in those cell types remains largely unknown. METHODS Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in parvalbumin-expressing interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at 2 developmental time points. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic INs impacts their survival and maturation and alters brain function and behavior. RESULTS Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic INs led to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. CONCLUSIONS MEF2C expression is critical for the development of cortical GABAergic INs, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic INs, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Biological Sciences, Fordham University, Bronx, New York
| | - Duy Tran
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Ehsan Sabri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Arenski Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
8
|
Putman JN, Watson SD, Zhang Z, Khandelwal N, Kulkarni A, Gibson JR, Huber KM. Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules. J Neurosci 2024; 44:e0098242024. [PMID: 39317473 PMCID: PMC11551898 DOI: 10.1523/jneurosci.0098-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of Mef2c weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex. Similarly, homozygous or heterozygous deletion of Mef2c in presynaptic L4 neurons weakens L4 to L2/3 excitatory synaptic inputs by decreasing presynaptic release probability. Postsynaptic MEF2C is specifically required during an early postnatal, experience-dependent, period for L4 to L2/3 synapse function, and expression of transcriptionally active MEF2C (MEF2C-VP16) rescues weak L4 to L2/3 synaptic strength in sensory-deprived mice. Together, these results suggest that experience- and/or activity-dependent transcriptional activation of MEF2C promotes development of L4 to L2/3 synapses. Additionally, MEF2C regulates the expression of many pre- and postsynaptic genes in postnatal cortical neurons. Interestingly, MEF2C was necessary for activity-dependent expression of many presynaptic genes, including those that function in transsynaptic adhesion and neurotransmitter release. This work provides mechanistic insight into the experience-dependent development of specific cortical circuits.
Collapse
Affiliation(s)
- Jennifer N Putman
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Sean D Watson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Nitin Khandelwal
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
9
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Ali D, Laighneach A, Corley E, Patlola SR, Mahoney R, Holleran L, McKernan DP, Kelly JP, Corvin AP, Hallahan B, McDonald C, Donohoe G, Morris DW. Direct targets of MEF2C are enriched for genes associated with schizophrenia and cognitive function and are involved in neuron development and mitochondrial function. PLoS Genet 2024; 20:e1011093. [PMID: 39259737 PMCID: PMC11419381 DOI: 10.1371/journal.pgen.1011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Myocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene that influences cognition and risk for neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic induced neurons (iNs), which represented early and late neurodevelopmental stages. For these cellular models, MEF2C function had previously been disrupted, either by direct or indirect mutation, and gene expression assayed using RNA-seq. We integrated these RNA-seq data with MEF2C ChIP-seq data to identify dysregulated direct target genes of MEF2C in the NSCs and iNs models. Several MEF2C direct target gene-sets were enriched for SNP-based heritability for intelligence, educational attainment and SCZ, as well as being enriched for genes containing rare de novo mutations reported in ASD and/or developmental disorders. These gene-sets are enriched in both excitatory and inhibitory neurons in the prenatal and adult brain and are involved in a wide range of biological processes including neuron generation, differentiation and development, as well as mitochondrial function and energy production. We observed a trans expression quantitative trait locus (eQTL) effect of a single SNP at MEF2C (rs6893807, which is associated with IQ) on the expression of a target gene, BNIP3L. BNIP3L is a prioritized risk gene from the largest genome-wide association study of SCZ and has a function in mitophagy in mitochondria. Overall, our analysis reveals that either direct or indirect disruption of MEF2C dysregulates sets of genes that contain multiple alleles associated with SCZ risk and cognitive function and implicates neuron development and mitochondrial function in the etiology of these phenotypes.
Collapse
Affiliation(s)
- Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Emma Corley
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Rebecca Mahoney
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Declan P. McKernan
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
11
|
Chaney S, Marks S, Wynter R. 'Almost nothing is firmly established': A History of Heredity and Genetics in Mental Health Science. Wellcome Open Res 2024; 9:208. [PMID: 39221444 PMCID: PMC11362721 DOI: 10.12688/wellcomeopenres.20628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background For more than a century, scientists have tried to find the key to causation of mental ill health in heredity and genetics. The difficulty of finding clear and actionable answers in our genes has not stopped them looking. This history offers important context to understanding mental health science today. Methods This article explores the main themes in research on genetics and inheritance in psychiatry from the second half of the nineteenth century to the present day, to address the question: what is the history of genetics as a causative explanation in mental health science? We take a critical historical approach to the literature, interrogating primary and secondary material for the light it brings to the research question, while considering the social and historical context. Results We begin with the statistics gathered in asylums and used to 'prove' the importance of heredity in mental ill health. We then move through early twentieth century Mendelian models of mental inheritance, the eugenics movement, the influence of social psychiatry, new classifications and techniques of the postwar era, the Human Genome Project and Genome Wide Association Studies (GWAS) and epigenetics. Setting these themes in historical context shows that this research was often popular because of wider social, political and cultural issues, which impacted the views of scientists just as they did those of policymakers, journalists and the general public. Conclusions We argue that attempting to unpick this complex history is essential to the modern ethics of mental health and genetics, as well as helping to focus our efforts to better understand causation in mental ill-health.For a succinct timeline of the history of psychiatric genetics, alongside the history of other proposed causes for mental ill-health, visit: https://historyofcauses.co.uk/.
Collapse
Affiliation(s)
- Sarah Chaney
- Centre for the History of the Emotions, Queen Mary University of London, London, England, UK
| | - Sarah Marks
- School of Historical Studies, Birkbeck University of London, London, England, UK
| | - Rebecca Wynter
- School of Historical Studies, Universiteit van Amsterdam, Amsterdam, North Holland, The Netherlands
| |
Collapse
|
12
|
Yousefian-Jazi A, Kim S, Choi SH, Chu J, Nguyen PTT, Park U, Lim K, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603186. [PMID: 39071309 PMCID: PMC11275751 DOI: 10.1101/2024.07.15.603186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic changes and epigenetic modifications are associated with neuronal dysfunction in the pathogenesis of neurodegenerative disorders. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Here, we identified an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element, using convolutional neural network. The enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
|
13
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental disruption of Mef2c in Medial Ganglionic Eminence-derived cortical inhibitory interneurons impairs cellular and circuit function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592084. [PMID: 38746148 PMCID: PMC11092645 DOI: 10.1101/2024.05.01.592084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c , or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. We found that loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. Our findings indicate that MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
|
14
|
Cho JY, Rumschlag JA, Tsvetkov E, Proper DS, Lang H, Berto S, Assali A, Cowan CW. MEF2C Hypofunction in GABAergic Cells Alters Sociability and Prefrontal Cortex Inhibitory Synaptic Transmission in a Sex-Dependent Manner. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100289. [PMID: 38390348 PMCID: PMC10881314 DOI: 10.1016/j.bpsgos.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
Background Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Divya S. Proper
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic Editing. Methods Mol Biol 2024; 2842:129-152. [PMID: 39012593 PMCID: PMC11520296 DOI: 10.1007/978-1-0716-4051-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic regulation is intrinsic to basic neurobiological function as well as neurological disease. Regulation of chromatin-modifying enzymes in the brain is critical during both development and adulthood and in response to external stimuli. Biochemical studies are complemented by numerous next-generation sequencing (NGS) studies that quantify global changes in gene expression, chromatin accessibility, histone and DNA modifications in neurons and glial cells. Neuroepigenetic editing tools are essential to distinguish between the mere presence and functional relevance of histone and DNA modifications to gene transcription in the brain and animal behavior. This review discusses current advances in neuroepigenetic editing, highlighting methodological considerations pertinent to neuroscience, such as delivery methods and the spatiotemporal specificity of editing and it demonstrates the enormous potential of epigenetic editing for basic neurobiological research and therapeutic application.
Collapse
Affiliation(s)
- Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Nestler
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Zhou LT, Liu D, Kang HC, Lu L, Huang HZ, Ai WQ, Zhou Y, Deng MF, Li H, Liu ZQ, Zhang WF, Hu YZ, Han ZT, Zhang HH, Jia JJ, Sarkar AK, Sharaydeh S, Wang J, Man HY, Schilling M, Bertram L, Lu Y, Guo Z, Zhu LQ. Tau pathology epigenetically remodels the neuron-glial cross-talk in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabq7105. [PMID: 37083538 PMCID: PMC10121173 DOI: 10.1126/sciadv.abq7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The neuron-glia cross-talk is critical to brain homeostasis and is particularly affected by neurodegenerative diseases. How neurons manipulate the neuron-astrocyte interaction under pathological conditions, such as hyperphosphorylated tau, a pathological hallmark in Alzheimer's disease (AD), remains elusive. In this study, we identified excessively elevated neuronal expression of adenosine receptor 1 (Adora1 or A1R) in 3×Tg mice, MAPT P301L (rTg4510) mice, patients with AD, and patient-derived neurons. The up-regulation of A1R was found to be tau pathology dependent and posttranscriptionally regulated by Mef2c via miR-133a-3p. Rebuilding the miR-133a-3p/A1R signal effectively rescued synaptic and memory impairments in AD mice. Furthermore, neuronal A1R promoted the release of lipocalin 2 (Lcn2) and resulted in astrocyte activation. Last, silencing neuronal Lcn2 in AD mice ameliorated astrocyte activation and restored synaptic plasticity and learning/memory. Our findings reveal that the tau pathology remodels neuron-glial cross-talk and promotes neurodegenerative progression. Approaches targeting A1R and modulating this signaling pathway might be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Lan-Ting Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Qing Ai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man-Fei Deng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-Feng Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya-Zhuo Hu
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Zhi-Tao Han
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Hong-Hong Zhang
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Jian-Jun Jia
- Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Institute of Geriatrics, Chinese PLA General Hospital and Chinese PLA Medical Academy, Beijing, China
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Saldin Sharaydeh
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck 23562, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck 23562, Germany
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
17
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
18
|
Casella AM, Colantuoni C, Ament SA. Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies. PLoS Comput Biol 2022; 18:e1010430. [PMID: 36070311 PMCID: PMC9484640 DOI: 10.1371/journal.pcbi.1010430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
Collapse
Affiliation(s)
- Alex M. Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Medical Scientist Training Program, UMSOM, Baltimore, Maryland, United States of America
| | - Carlo Colantuoni
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Bergmann T, Liu Y, Skov J, Mogus L, Lee J, Pfisterer U, Handfield LF, Asenjo-Martinez A, Lisa-Vargas I, Seemann SE, Lee JTH, Patikas N, Kornum BR, Denham M, Hyttel P, Witter MP, Gorodkin J, Pers TH, Hemberg M, Khodosevich K, Hall VJ. Production of human entorhinal stellate cell-like cells by forward programming shows an important role of Foxp1 in reprogramming. Front Cell Dev Biol 2022; 10:976549. [PMID: 36046338 PMCID: PMC9420913 DOI: 10.3389/fcell.2022.976549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.
Collapse
Affiliation(s)
- Tobias Bergmann
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yong Liu
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jonathan Skov
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leo Mogus
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Julie Lee
- Novo Nordisk Foundation Center for Stem Cell Research, DanStem University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Lisa-Vargas
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nikolaos Patikas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Hyttel
- Disease, Stem Cells and Embryology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tune H. Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa Jane Hall
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
21
|
Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl Psychiatry 2022; 12:320. [PMID: 35941129 PMCID: PMC9360026 DOI: 10.1038/s41398-022-02069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.
Collapse
|
22
|
Funahashi Y, Yoshino Y, Iga JI, Ueno SI. Impact of clozapine on the expression of miR-675-3p in plasma exosomes derived from patients with schizophrenia. World J Biol Psychiatry 2022; 24:303-313. [PMID: 35904423 DOI: 10.1080/15622975.2022.2104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Recently, the expression changes of microRNAs (miRNAs) in the serum exosomes (EXO) of schizophrenia (SCZ) have been reported. The aim of this study was to investigate the global expression changes of miRNA derived from the plasma EXO of patients with treatment-resistant schizophrenia (TRS) and the effects of clozapine on miRNA expression. METHODS Global miRNA expression changes in plasma EXO between TRS and controls were studied using microarray analysis. Then, miRNA expressions among TRS, non-TRS, and controls were confirmed with quantitative qPCR experiments. We also studied changes in EXO miRNA expression with in-vitro SH-SY5Y cells. RESULTS A microarray for miRNA expression analysis (nine controls vs. nine patients with TRS) revealed 13 up- and 18 downregulated miRNAs that were relevant to neuronal and brain development based on gene ontology analysis. Of those, upregulated miR-675-3p expression was successfully validated in the same cohort by qPCR experiments. Conversely, miR-675-3p expression levels were significantly decreased in the non-TRS cohort (50 controls vs. 50 patients without TRS without clozapine treatment). CONCLUSIONS We identified global miRNA changes in plasma EXO derived from patients with SCZ that were relevant to neuronal functions, among which, hsa-miR-675-3p expression was upregulated by clozapine treatment.
Collapse
Affiliation(s)
- Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| |
Collapse
|
23
|
Lopez MS, Morris-Blanco KC, Ly N, Maves C, Dempsey RJ, Vemuganti R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl Stroke Res 2022; 13:483-493. [PMID: 34796453 PMCID: PMC11846127 DOI: 10.1007/s12975-021-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
- Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA
| | | | - Nancy Ly
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Carly Maves
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.
- Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
24
|
Lawler AJ, Ramamurthy E, Brown AR, Shin N, Kim Y, Toong N, Kaplow IM, Wirthlin M, Zhang X, Phan BN, Fox GA, Wade K, He J, Ozturk BE, Byrne LC, Stauffer WR, Fish KN, Pfenning AR. Machine learning sequence prioritization for cell type-specific enhancer design. eLife 2022; 11:e69571. [PMID: 35576146 PMCID: PMC9110026 DOI: 10.7554/elife.69571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Biological Sciences Department, Mellon College of Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Ashley R Brown
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Naomi Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Yeonju Kim
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Noelle Toong
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Irene M Kaplow
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Morgan Wirthlin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Xiaoyu Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
- Medical Scientist Training Program, University of PittsburghPittsburghUnited States
| | - Grant A Fox
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Kirsten Wade
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Jing He
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of CognitionPittsburghUnited States
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
| | - Leah C Byrne
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - William R Stauffer
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Kenneth N Fish
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Andreas R Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
25
|
Fu X, Yao T, Chen X, Li H, Wu J. MEF2C gene variations are associated with ADHD in the Chinese Han population: a case-control study. J Neural Transm (Vienna) 2022; 129:431-439. [PMID: 35357565 DOI: 10.1007/s00702-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Myocyte enhancer factor 2C (MEF2C) is associated with hyperactivity and might be a novel risk gene for susceptibility to attention deficit hyperactivity disorder (ADHD). Therefore, this study aimed to explore the association between MEF2C genetic variants and ADHD in the Chinese Han population. A total of 215 patients with ADHD and 233 controls were recruited for this study. The Swanson, Nolan, and Pelham version IV questionnaire was used to evaluate the clinical features of ADHD. In silico analysis was used to annotate the biological functions of the promising single nucleotide polymorphisms. Our findings indicated that MEF2C rs587490 was significantly associated with ADHD in the multiplicative model (OR = 0.640, p = 0.002). Participants with the rs587490 TT allele exhibited less hyperactivity/impulsivity than those with the rs587490 CC allele. Furthermore, the expression quantitative trait loci analysis suggested that rs587490 could regulate the gene expression of MEF2C in the hippocampus, putamen, thalamus, and frontal white matter. Our study concluded that the MEF2C rs587490 T allele is significantly associated with a reduced risk of ADHD in the Chinese Han population, which provides new insight into the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
26
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
27
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
28
|
Zhang Z, Zhao Y. Progress on the roles of MEF2C in neuropsychiatric diseases. Mol Brain 2022; 15:8. [PMID: 34991657 PMCID: PMC8740500 DOI: 10.1186/s13041-021-00892-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Myocyte Enhancer Factor 2 C (MEF2C), one of the transcription factors of the MADS-BOX family, is involved in embryonic brain development, neuronal formation and differentiation, as well as in the growth and pruning of axons and dendrites. MEF2C is also involved in the development of various neuropsychiatric disorders, such as autism spectrum disorders (ASD), epilepsy, schizophrenia and Alzheimer’s disease (AD). Here, we review the relationship between MEF2C and neuropsychiatric disorders, and provide further insights into the mechanism of these diseases.
Collapse
Affiliation(s)
- Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Mental Health, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
29
|
Lin E, Panfil AR, Sandel G, Jain P. Novel perspectives on antisense transcription in HIV-1, HTLV-1, and HTLV-2. Front Microbiol 2022; 13:1042761. [PMID: 36620051 PMCID: PMC9822710 DOI: 10.3389/fmicb.2022.1042761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 12/25/2022] Open
Abstract
The genome of retroviruses contains two promoter elements (called long terminal repeat or LTR) at the 5' and 3' end of their genome. Although the expression of retroviral genes generally depends on the promoter located in the 5' LTR, the 3' LTR also has promoter activity responsible for producing antisense transcripts. These natural antisense transcripts (NATs) are a class of RNA molecules transcribed from the opposite strand of a protein-coding gene. NATs have been identified in many prokaryotic and eukaryotic systems, as well as in human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and HTLV-1/2 (human T-cell leukemia virus type 1/2). The antisense transcripts of HIV-1, HTLV-1, and HTLV-2 have been briefly characterized over the past several years. However, a complete appreciation of the role these transcripts play in the virus lifecycle and the cellular factors which regulate their transcription is still lacking. This review provides an overview of antisense transcription in human retroviruses with a specific focus on the MEF-2 family of transcription factors, the function(s) of the antisense protein products, and the application of antisense transcription models in therapeutics against HIV-1 and HTLV-1 in the context of co-infection.
Collapse
Affiliation(s)
- Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Pooja Jain,
| |
Collapse
|
30
|
Barker SJ, Raju RM, Milman NEP, Wang J, Davila-Velderrain J, Gunter-Rahman F, Parro CC, Bozzelli PL, Abdurrob F, Abdelaal K, Bennett DA, Kellis M, Tsai LH. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci Transl Med 2021; 13:eabd7695. [PMID: 34731014 PMCID: PMC9258338 DOI: 10.1126/scitranslmed.abd7695] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Scarlett J Barker
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ravikiran M Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noah E P Milman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatima Gunter-Rahman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cameron C Parro
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P Lorenzo Bozzelli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurrob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karim Abdelaal
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
Zhang Z, Gibson JR, Huber KM. Experience-dependent weakening of callosal synaptic connections in the absence of postsynaptic FMRP. eLife 2021; 10:71555. [PMID: 34617509 PMCID: PMC8526058 DOI: 10.7554/elife.71555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Reduced structural and functional interhemispheric connectivity correlates with the severity of Autism Spectrum Disorder (ASD) behaviors in humans. Little is known of how ASD-risk genes regulate callosal connectivity. Here, we show that Fmr1, whose loss-of-function leads to Fragile X Syndrome (FXS), cell autonomously promotes maturation of callosal excitatory synapses between somatosensory barrel cortices in mice. Postnatal, cell-autonomous deletion of Fmr1 in postsynaptic Layer (L) 2/3 or L5 neurons results in a selective weakening of AMPA receptor- (R), but not NMDA receptor-, mediated callosal synaptic function, indicative of immature synapses. Sensory deprivation by contralateral whisker trimming normalizes callosal input strength, suggesting that experience-driven activity of postsynaptic Fmr1 KO L2/3 neurons weakens callosal synapses. In contrast to callosal inputs, synapses originating from local L4 and L2/3 circuits are normal, revealing an input-specific role for postsynaptic Fmr1 in regulation of synaptic connectivity within local and callosal neocortical circuits. These results suggest direct cell autonomous and postnatal roles for FMRP in development of specific cortical circuits and suggest a synaptic basis for long-range functional underconnectivity observed in FXS patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
32
|
Behrends M, Engmann O. Loop Interrupted: Dysfunctional Chromatin Relations in Neurological Diseases. Front Genet 2021; 12:732033. [PMID: 34422024 PMCID: PMC8376151 DOI: 10.3389/fgene.2021.732033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
The majority of genetic variants for psychiatric disorders have been found within non-coding genomic regions. Physical interactions of gene promoters with distant regulatory elements carrying risk alleles may explain how the latter affect gene expression. Recently, whole genome maps of long-range chromosomal contacts from human postmortem brains have been integrated with gene sequence and chromatin accessibility data to decipher disease-specific alterations in chromatin architecture. Cell culture and rodent models provide a causal link between chromatin conformation, long-range chromosomal contacts, gene expression, and disease phenotype. Here, we give an overview of the techniques used to study chromatin contacts and their limitations in brain research. We present evidence for three-dimensional genome changes in physiological brain function and assess how its disturbance contributes to psychiatric disorders. Lastly, we discuss remaining questions and future research directions with a focus on clinical applications.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen, Germany
| | - Olivia Engmann
- Jena University Hospital, Institute for Human Genetics, Thüringen, Germany
| |
Collapse
|
33
|
Chawla A, Nagy C, Turecki G. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Int J Mol Sci 2021; 22:7612. [PMID: 34299232 PMCID: PMC8305586 DOI: 10.3390/ijms22147612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.
Collapse
Affiliation(s)
- Anjali Chawla
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
| | - Corina Nagy
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
34
|
Zhang F, Rao S, Cao H, Zhang X, Wang Q, Xu Y, Sun J, Wang C, Chen J, Xu X, Zhang N, Tian L, Yuan J, Wang G, Cai L, Xu M, Baranova A. Genetic evidence suggests posttraumatic stress disorder as a subtype of major depressive disorder. J Clin Invest 2021; 132:145942. [PMID: 33905376 PMCID: PMC8803333 DOI: 10.1172/jci145942] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are highly comorbid and exhibit strong correlations with one another. We aimed to investigate mechanisms of underlying relationships between PTSD and three kinds of depressive phenotypes, namely, MDD, depressed affect (DAF), and depression (DEP, including both MDD and the broad definition of depression). METHODS Genetic correlations between PTSD and the depressive phenotypes were tested using linkage disequilibrium score regression. Polygenic overlap analysis was used to estimate shared and trait-specific causal variants across a pair of traits. Causal relationships between PTSD and the depressive phenotypes were investigated using Mendelian randomization. Shared genomic loci between PTSD and MDD were identified using cross-trait meta-analysis. RESULTS Genetic correlations of PTSD with the depressive phenotypes were in the range of 0.71~0.80. The estimated numbers of causal variants were 14,565, 12,965, 10,565, and 4,986 for MDD, DEP, DAF, and PTSD, respectively. In each case, causal variants contributing to PTSD were completely or largely covered by causal variants defining each of the depressive phenotypes. Mendelian randomization analysis indicates that the genetically determined depressive phenotypes confer a causal effect on PTSD (b = 0.21~0.31). Notably, genetically determined PTSD confers a causal effect on DEP (b = 0.14) and DAF (b = 0.15), but not MDD. Cross-trait meta-analysis of MDD and PTSD identifies 47 genomic loci, including 29 loci shared between PTSD and MDD. CONCLUSION Evidence from shared genetics suggests that PTSD is a subtype of MDD. This study provides support to the efforts in reducing diagnostic heterogeneity in psychiatric nosology. FUNDING The National Key Research and Development Program of China (2018YFC1314300) and the National Natural Science Foundation of China (81471364 and 81971255).
Collapse
Affiliation(s)
- Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, United States of America
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianmin Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guoqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei Cai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqing Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, United States of America
| |
Collapse
|
35
|
Koç B, Fucile G, Schmucki R, Giroud N, Bergauer T, Hall BJ. Identification of Natural Antisense Transcripts in Mouse Brain and Their Association With Autism Spectrum Disorder Risk Genes. Front Mol Neurosci 2021; 14:624881. [PMID: 33716665 PMCID: PMC7947803 DOI: 10.3389/fnmol.2021.624881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide sequencing technologies have greatly contributed to our understanding of the genetic basis of neurodevelopmental disorders such as autism spectrum disorder (ASD). Interestingly, a number of ASD-related genes express natural antisense transcripts (NATs). In some cases, these NATs have been shown to play a regulatory role in sense strand gene expression and thus contribute to brain function. However, a detailed study examining the transcriptional relationship between ASD-related genes and their NAT partners is lacking. We performed strand-specific, deep RNA sequencing to profile expression of sense and antisense reads with a focus on 100 ASD-related genes in medial prefrontal cortex (mPFC) and striatum across mouse post-natal development (P7, P14, and P56). Using de novo transcriptome assembly, we generated a comprehensive long non-coding RNA (lncRNA) transcriptome. We conducted BLAST analyses to compare the resultant transcripts with the human genome and identified transcripts with high sequence similarity and coverage. We assembled 32861 de novo antisense transcripts mapped to 12182 genes, of which 1018 are annotated by Ensembl as lncRNA. We validated the expression of a subset of selected ASD-related transcripts by PCR, including Syngap1 and Cntnap2. Our analyses revealed that more than 70% (72/100) of the examined ASD-related genes have one or more expressed antisense transcripts, suggesting more ASD-related genes than previously thought could be subject to NAT-mediated regulation in mice. We found that expression levels of antisense contigs were mostly positively correlated with their cognate coding sense strand RNA transcripts across developmental age. A small fraction of the examined transcripts showed brain region specific enrichment, indicating possible circuit-specific roles. Our BLAST analyses identified 110 of 271 ASD-related de novo transcripts with >90% identity to the human genome at >90% coverage. These findings, which include an assembled de novo antisense transcriptome, contribute to the understanding of NAT regulation of ASD-related genes in mice and can guide NAT-mediated gene regulation strategies in preclinical investigations toward the ultimate goal of developing novel therapeutic targets for ASD.
Collapse
Affiliation(s)
- Baran Koç
- Faculty of Science, University of Basel, Basel, Switzerland.,Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE Computing Center, University of Basel, Basel, Switzerland
| | - Roland Schmucki
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Giroud
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Bergauer
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Benjamin J Hall
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
36
|
A gene expression atlas for different kinds of stress in the mouse brain. Sci Data 2020; 7:437. [PMID: 33328476 PMCID: PMC7744580 DOI: 10.1038/s41597-020-00772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.
Collapse
|
37
|
Bai M, Ye D, Guo X, Xi J, Liu N, Wu Y, Jia W, Wang G, Chen W, Li G, Jiapaer Z, Kang J. Critical regulation of a NDIME/MEF2C axis in embryonic stem cell neural differentiation and autism. EMBO Rep 2020; 21:e50283. [PMID: 33016573 PMCID: PMC7645248 DOI: 10.15252/embr.202050283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
A microdeletion within human chromosome 5q14.3 has been associated with the occurrence of neurodevelopmental disorders, such as autism and intellectual disability, and MEF2C haploinsufficiency was identified as main cause. Here, we report that a brain-enriched long non-coding RNA, NDIME, is located near the MEF2C locus and is required for normal neural differentiation of mouse embryonic stem cells (mESCs). NDIME interacts with EZH2, the major component of polycomb repressive complex 2 (PRC2), and blocks EZH2-mediated trimethylation of histone H3 lysine 27 (H3K27me3) at the Mef2c promoter, promoting MEF2C transcription. Moreover, the expression levels of both NDIME and MEF2C were strongly downregulated in the hippocampus of a mouse model of autism, and the adeno-associated virus (AAV)-mediated expression of NDIME in the hippocampus of these mice significantly increased MEF2C expression and ameliorated autism-like behaviors. The results of this study reveal an epigenetic mechanism by which NDIME regulates MEF2C transcription and neural differentiation and suggest potential effects and therapeutic approaches of the NDIME/MEF2C axis in autism.
Collapse
Affiliation(s)
- Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Institute for Advanced StudyTongji UniversityShanghaiChina
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Institute of Regenerative MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Xinjiang Key Laboratory of Biology Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Tsingtao Advanced Research InstituteTongji UniversityQingdaoChina
| |
Collapse
|
38
|
Cosgrove D, Whitton L, Fahey L, Ó Broin P, Donohoe G, Morris DW. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Hum Mol Genet 2020; 30:961-970. [PMID: 32975584 DOI: 10.1093/hmg/ddaa213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Myocyte enhancer factor 2 C (MEF2C) is an important transcription factor during neurodevelopment. Mutation or deletion of MEF2C causes intellectual disability (ID), and common variants within MEF2C are associated with cognitive function and schizophrenia risk. We investigated if genes influenced by MEF2C during neurodevelopment are enriched for genes associated with neurodevelopmental phenotypes and if this can be leveraged to identify biological mechanisms and individual brain cell types affected. We used a set of 1055 genes that were differentially expressed in the adult mouse brain following early embryonic deletion of Mef2c in excitatory cortical neurons. Using genome-wide association studies data, we found these differentially expressed genes (DEGs) to be enriched for genes associated with schizophrenia, intelligence and educational attainment but not autism spectrum disorder (ASD). For this gene set, genes that overlap with target genes of the Fragile X mental retardation protein (FMRP) are a major driver of these enrichments. Using trios data, we found these DEGs to be enriched for genes containing de novo mutations reported in ASD and ID, but not schizophrenia. Using single-cell RNA sequencing data, we identified that a number of different excitatory glutamatergic neurons in the cortex were enriched for these DEGs including deep layer pyramidal cells and cells in the retrosplenial cortex, entorhinal cortex and subiculum, and these cell types are also enriched for FMRP target genes. The involvement of MEF2C and FMRP in synapse elimination suggests that disruption of this process in these cell types during neurodevelopment contributes to cognitive function and risk of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Donna Cosgrove
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Laura Fahey
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| |
Collapse
|
39
|
Inglis GAS, Zhou Y, Patterson DG, Scharer CD, Han Y, Boss JM, Wen Z, Escayg A. Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Hum Mol Genet 2020; 29:2579-2595. [PMID: 32794569 PMCID: PMC7471504 DOI: 10.1093/hmg/ddaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.
Collapse
Affiliation(s)
- George Andrew S Inglis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
MEF2C and HDAC5 regulate Egr1 and Arc genes to increase dendritic spine density and complexity in early enriched environment. Neuronal Signal 2020; 4:NS20190147. [PMID: 32714604 PMCID: PMC7378308 DOI: 10.1042/ns20190147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
We investigated the effects of environmental enrichment during critical period of early postnatal life and how it interplays with the epigenome to affect experience-dependent visual cortical plasticity. Mice raised in an EE from birth to during CP have increased spine density and dendritic complexity in the visual cortex. EE upregulates synaptic plasticity genes, Arc and Egr1, and a transcription factor MEF2C. We also observed an increase in MEF2C binding to the promoters of Arc and Egr1. In addition, pups raised in EE show a reduction in HDAC5 and its binding to promoters of Mef2c, Arc and Egr1 genes. With an overexpression of Mef2c, neurite outgrowth increased in complexity. Our results suggest a possible underlying molecular mechanism of EE, acting through MEF2C and HDAC5, which drive Arc and Egr1. This could lead to the observed increased dendritic spine density and complexity induced by early EE.
Collapse
|
41
|
Rajarajan P, Akbarian S. Use of the epigenetic toolbox
to contextualize common variants associated with schizophrenia risk
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:407-416. [PMID: 31949408 PMCID: PMC6952750 DOI: 10.31887/dcns.2019.21.4/sakbarian] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a complex genetic architecture and limited understanding of its neuropathology, reflected by the lack of diagnostic measures and effective pharmacological treatments. Geneticists have recently identified more than 145 risk loci comprising hundreds of common variants of small effect sizes, most of which lie in noncoding genomic regions. This review will discuss how the epigenetic toolbox can be applied to contextualize genetic findings in schizophrenia. Progress in next-generation sequencing, along with increasing methodological complexity, has led to the compilation of genome-wide maps of DNA methylation, histone modifications, RNA expression, and more. Integration of chromatin conformation datasets is one of the latest efforts in deciphering schizophrenia risk, allowing the identification of genes in contact with regulatory variants across 100s of kilobases. Large-scale multiomics studies will facilitate the prioritization of putative causal risk variants and gene networks that contribute to schizophrenia etiology, informing clinical diagnostics and treatment downstream.
.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Graduate School of Biomedical Sciences; Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Schahram Akbarian
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai, New York, NY, US
| |
Collapse
|
42
|
Sun X, Wang T, Wang Y, Ai K, Pan G, Li Y, Zhou C, He S, Cong H. Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. gondii Infection Mice. Front Mol Neurosci 2020; 13:77. [PMID: 32499679 PMCID: PMC7243434 DOI: 10.3389/fnmol.2020.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Though it is well known that chronic infections of Toxoplasma gondii (T. gondii) can induce mental and behavioral disorders in the host, little is known about the role of long non-coding RNAs (lncRNAs) in this pathological process. In this study, we employed an advanced lncRNAs and mRNAs integration chip (Affymetrix HTA 2.0) to detect the expression of both lncRNAs and mRNAs in T. gondii Chinese 1 strain infected mouse brain. As a result, for the first time, the downregulation of lncRNA-11496 (NONMMUGO11496) was identified as the responsible factor for this pathological process. We showed that dysregulation of lncRNA-11496 affected proliferation, differentiation and apoptosis of mouse microglia. Furthermore, we proved that Mef2c (Myocyte-specific enhancer factor 2C), a member of the MEF2 subfamily, is the target gene of lncRNA-11496. In a more detailed study, we confirmed that lncRNA-11496 positively regulated the expression of Mef2c by binding to histone deacetylase 2 (HDAC2). Importantly, Mef2c itself could coordinate neuronal differentiation, survival, as well as synapse formation. Thus, our current study provides the first evidence in terms of the modulatory action of lncRNAs in chronic toxoplasmosis in T. gondii infected mouse brain, providing a solid scientific basis for using lncRNA-11496 as a therapeutic target to treat T. gondii induced neurological disorder.
Collapse
Affiliation(s)
- Xiahui Sun
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kang Ai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ge Pan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shenyi He
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
43
|
Hou B, Ji L, Chen Z, An L, Zhang N, Ren D, Yuan F, Liu L, Bi Y, Guo Z, Ma G, Xu F, Yang F, Yu S, Yi Z, Xu Y, He L, Liu C, Bai B, Wu S, Zhao L, Cai C, Yu T, He G, Shi Y, Li X. Role of rs454214 in Personality mediated Depression and Subjective Well-being. Sci Rep 2020; 10:5702. [PMID: 32231262 PMCID: PMC7105480 DOI: 10.1038/s41598-020-62486-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/13/2020] [Indexed: 11/11/2022] Open
Abstract
Happiness and depression are interlinked and both heritable, while personality, as an important predictor of them, shares the genetic basis with them. We conjecture that genetic factors of depression can affect both depressive symptoms (DS) and subjective well-being (SWB), while personality traits play important roles in mediating this process. In this study, 878 Han Chinese college freshmen and 384 Han Chinese patients with the major depressive disorder (MDD) were included. SNPs were genotyped using AGENA MassARRAY iPLEX technology and we investigated an important MDD variant rs454214. Correlation, association and mediation analysis were employed, aiming to decipher the complex relationship between SWB, DS, personality traits and the genetic variant. Association study indicated that rs454214 was not only associated with both SWB and DS (P < 0.05), but also possibly linked to MDD. Mediational analysis showed that rs454214 had no direct effect on SWB and DS, but had a significant indirect effect through personality traits, i.e., Extraversion, Neuroticism, Agreeableness and Openness to Experience or SWB, Extraversion, Neuroticism and Agreeableness for DS. This study found a shared genetic basis for happiness and depression; the causal process could be better explained if personality traits are taken as mediating factors.
Collapse
Affiliation(s)
- Binyin Hou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhixuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lin An
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Naixin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong, 272067, China
| | - Bo Bai
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong, 272067, China
| | - Shaochang Wu
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang, 323000, China
| | - Longyou Zhao
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang, 323000, China
| | - Changqun Cai
- Wuhu No.4 People's Hospital, 1 Xuxiashan Rd, Wuhu, Anhui, 241002, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
44
|
D'haene E, Bar-Yaacov R, Bariah I, Vantomme L, Van Loo S, Cobos FA, Verboom K, Eshel R, Alatawna R, Menten B, Birnbaum RY, Vergult S. A neuronal enhancer network upstream of MEF2C is compromised in patients with Rett-like characteristics. Hum Mol Genet 2020; 28:818-827. [PMID: 30445463 PMCID: PMC6381311 DOI: 10.1093/hmg/ddy393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing
(4C-seq) and the assay for transposase-accessible chromatin using sequencing
(ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.
Collapse
Affiliation(s)
- Eva D'haene
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Reut Bar-Yaacov
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Inbar Bariah
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lies Vantomme
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Sien Van Loo
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Francisco Avila Cobos
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.,Bioinformatics Institute Ghent from Nucleotides to Networks (BIG N2N), Ghent, Belgium
| | - Karen Verboom
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Reut Eshel
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rawan Alatawna
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Björn Menten
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
46
|
Liu S, Rao S, Xu Y, Li J, Huang H, Zhang X, Fu H, Wang Q, Cao H, Baranova A, Jin C, Zhang F. Identifying common genome-wide risk genes for major psychiatric traits. Hum Genet 2019; 139:185-198. [DOI: 10.1007/s00439-019-02096-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
|
47
|
Gusev FE, Reshetov DA, Mitchell AC, Andreeva TV, Dincer A, Grigorenko AP, Fedonin G, Halene T, Aliseychik M, Filippova E, Weng Z, Akbarian S, Rogaev EI. Chromatin profiling of cortical neurons identifies individual epigenetic signatures in schizophrenia. Transl Psychiatry 2019; 9:256. [PMID: 31624234 PMCID: PMC6797775 DOI: 10.1038/s41398-019-0596-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Both heritability and environment contribute to risk for schizophrenia. However, the molecular mechanisms of interactions between genetic and non-genetic factors remain unclear. Epigenetic regulation of neuronal genome may be a presumable mechanism in pathogenesis of schizophrenia. Here, we performed analysis of open chromatin landscape of gene promoters in prefrontal cortical (PFC) neurons from schizophrenic patients. We cataloged cell-type-based epigenetic signals of transcriptional start sites (TSS) marked by histone H3-K4 trimethylation (H3K4me3) across the genome in PFC from multiple schizophrenia subjects and age-matched control individuals. One of the top-ranked chromatin alterations was found in the major histocompatibility (MHC) locus on chromosome 6 highlighting the overlap between genetic and epigenetic risk factors in schizophrenia. The chromosome conformation capture (3C) analysis in human brain cells revealed the architecture of multipoint chromatin interactions between the schizophrenia-associated genetic and epigenetic polymorphic sites and distantly located HLA-DRB5 and BTNL2 genes. In addition, schizophrenia-specific chromatin modifications in neurons were particularly prominent for non-coding RNA genes, including an uncharacterized LINC01115 gene and recently identified BNRNA_052780. Notably, protein-coding genes with altered epigenetic state in schizophrenia are enriched for oxidative stress and cell motility pathways. Our results imply the rare individual epigenetic alterations in brain neurons are involved in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Fedor E Gusev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
| | - Denis A Reshetov
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
| | - Amanda C Mitchell
- Department of Psychiatry and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana V Andreeva
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
- Faculty of Biology, Center for Genetics and Genetic Technologies, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Aslihan Dincer
- Department of Psychiatry and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia P Grigorenko
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
| | - Gennady Fedonin
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
| | - Tobias Halene
- Department of Psychiatry and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Aliseychik
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia
- Faculty of Biology, Center for Genetics and Genetic Technologies, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Filippova
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Schahram Akbarian
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Psychiatry and Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evgeny I Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Human Genetics and Genomics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia.
- Faculty of Biology, Center for Genetics and Genetic Technologies, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| |
Collapse
|
48
|
Mukai J, Cannavò E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, Chang CY, Cai Y, Lomvardas S, Takata A, Xu B, Gogos JA. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice. Neuron 2019; 104:471-487.e12. [PMID: 31606247 DOI: 10.1016/j.neuron.2019.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
SETD1A, a lysine-methyltransferase, is a key schizophrenia susceptibility gene. Mice carrying a heterozygous loss-of-function mutation of the orthologous gene exhibit alterations in axonal branching and cortical synaptic dynamics accompanied by working memory deficits. We show that Setd1a binds both promoters and enhancers with a striking overlap between Setd1a and Mef2 on enhancers. Setd1a targets are highly expressed in pyramidal neurons and display a complex pattern of transcriptional up- and downregulations shaped by presumed opposing functions of Setd1a on promoters and Mef2-bound enhancers. Notably, evolutionarily conserved Setd1a targets are associated with neuropsychiatric genetic risk burden. Reinstating Setd1a expression in adulthood rescues cognitive deficits. Finally, we identify LSD1 as a major counteracting demethylase for Setd1a and show that its pharmacological antagonism results in a full rescue of the behavioral and morphological deficits in Setd1a-deficient mice. Our findings advance understanding of how SETD1A mutations predispose to schizophrenia (SCZ) and point to novel therapeutic interventions.
Collapse
Affiliation(s)
- Jun Mukai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Enrico Cannavò
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Ziyi Sun
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pratibha Thakur
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Chia-Yuan Chang
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yifei Cai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
49
|
Friedenson B. A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. BIOMEDICAL INFORMATICS INSIGHTS 2019; 11:1178222619863369. [PMID: 31391780 PMCID: PMC6669855 DOI: 10.1177/1178222619863369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to test the hypothesis that infections are linked to chromosomal anomalies that cause neurodevelopmental disorders. In children with disorders in the development of their nervous systems, chromosome anomalies known to cause these disorders were compared with foreign DNAs, including known teratogens. Genes essential for neurons, lymphatic drainage, immunity, circulation, angiogenesis, cell barriers, structure, epigenetic and chromatin modifications were all found close together in polyfunctional clusters that were deleted or rearranged in neurodevelopmental disorders. In some patients, epigenetic driver mutations also changed access to large chromosome segments. These changes account for immune, circulatory, and structural deficits that accompany neurologic deficits. Specific and repetitive human DNA encompassing large deletions matched infections and passed rigorous artifact tests. Deletions of up to millions of bases accompanied infection-matching sequences and caused massive changes in human homologies to foreign DNAs. In data from 3 independent studies of private, familial, and recurrent chromosomal rearrangements, massive changes in homologous microbiomes were found and may drive rearrangements and encourage pathogens. At least 1 chromosomal anomaly was found to consist of human DNA fragments with a gap that corresponded to a piece of integrated foreign DNA. Microbial DNAs that match repetitive or specific human DNA segments are thus proposed to interfere with the epigenome and highly active recombination during meiosis, driven by massive changes in human DNA-foreign DNA homologies. Abnormal recombination in gametes produces zygotes containing rare chromosome anomalies that cause neurologic disorders and nonneurologic signs. Neurodevelopmental disorders may be examples of assault on the human genome by foreign DNAs at a critical stage. Some infections may be more likely tolerated because they resemble human DNA segments. Even rare developmental disorders can be screened for homology to infections within altered epigenomes and chromatin structures. Considering effects of foreign DNAs can assist prenatal and genetic counseling, diagnosis, prevention, and early intervention.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Chitaman JM, Fraser P, Feng J. Three-dimensional chromosome architecture and drug addiction. Curr Opin Neurobiol 2019; 59:137-145. [PMID: 31276935 DOI: 10.1016/j.conb.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/04/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Aberrant gene expression underlies drug addiction. Therefore, studying the regulation of gene expression in drug addiction may provide mechanistic insights into this disease, for which there are still only limited treatments. Recently, the three-dimensional (3D) organization of linear DNA in the nucleus has been recognized as having a major influence on gene transcription. Here, we review its roles in both basic brain function and neuropsychiatric disorders, while also highlighting its emerging implications in drug addiction. Unraveling the 3D architecture of chromosomes in drug addiction is adding to our understanding of this disease and has the potential to trigger novel approaches for better diagnosis and therapy.
Collapse
Affiliation(s)
- Javed M Chitaman
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Jian Feng
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|