1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Gogola A, Lopresti BJ, Minhas DS, Lopez O, Cohen A, Villemagne VL. Tau Imaging: Use and Implementation in New Diagnostic and Therapeutic Paradigms for Alzheimer's Disease. Geriatrics (Basel) 2025; 10:27. [PMID: 39997526 PMCID: PMC11855481 DOI: 10.3390/geriatrics10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) affects an estimated 6.9 million older adults in the United States and is projected to impact as many as 13.8 million people by 2060. As studies continue to search for ways to combat the development and progression of AD, it is imperative to ensure that confident diagnoses can be made before the onset of severe clinical symptoms and new therapies can be evaluated effectively. Tau positron emission tomography (PET) has emerged as one method that may be capable of both, given its ability to recognize the presence of tau, a primary pathologic hallmark of AD; its usefulness in determining the spatial distribution of tau, which is necessary for differentiating AD from other tauopathies; and its association with measures of cognition. This review aims to evaluate the scope of tau PET's utility in clinical trials and practice. Firstly, the potential of using tau PET for differential diagnoses, distinguishing AD from other dementias, is considered. Next, the value of tau PET as a tool for staging disease progression is investigated. Finally, tau PET as a prognostic method for identifying the individuals most at risk of cognitive decline and, therefore, most in need of, and likely to benefit from, intervention, is discussed.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Brian J. Lopresti
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Davneet S. Minhas
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| |
Collapse
|
3
|
Mojarad-Jabali S, Roh KH. Peptide-based inhibitors and nanoparticles: Emerging therapeutics for Alzheimer's disease. Int J Pharm 2025; 669:125055. [PMID: 39653296 DOI: 10.1016/j.ijpharm.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder characterized by memory loss, cognitive decline, and behavioral changes, impacting millions of individuals worldwide. Despite significant research into its cellular and molecular mechanisms, no cure has been found to treat AD to date. For over two decades, research aimed at treating AD has focused on targeting amyloid-β (Aβ); however, these strategies have not demonstrated substantial effectiveness. Consequently, research is now expanding towards targeting other hallmarks of the disease, such as tau protein and brain metal ions. Among potential therapeutics against these pathophysiological targets, peptide-based inhibitors are notable for their high selectivity and low toxicity. Despite these advantages, they face obstacles such as a short half-life in vivo and low efficiencies in crossing the blood-brain barrier (BBB). The use of nanoparticles (NPs) to deliver peptide-based inhibitors to the brain offers unique advantages, such as enhanced stability against degradation, improvement in targeted delivery, and reduced potential for immunogenic responses. This review aims to provide a comprehensive overview of emerging peptides tested as treatments for AD against Aβ, tau protein, and brain metal ions and to evaluate NPs as a means to overcome the limitations. These peptide-based inhibitors are promising, as they not only alleviate symptoms but also aim to prevent progressive neuronal loss, and NPs can be highly effective in delivering these inhibitors.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, United States; Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, United States.
| |
Collapse
|
4
|
de Bruin H, Groot C, Kamps S, Vijverberg EGB, Steward A, Dehsarvi A, Pijnenburg YAL, Ossenkoppele R, Franzmeier N. Amyloid-β and tau deposition in traumatic brain injury: a study of Vietnam War veterans. Brain Commun 2025; 7:fcaf009. [PMID: 39845735 PMCID: PMC11752645 DOI: 10.1093/braincomms/fcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e. amyloid-β plaques and neurofibrillary tangles comprised of hyperphosphorylated tau. Depending on the type and location of trauma, traumatic brain injury can induce spatially heterogeneous brain lesions that may pre-dispose for the development of Alzheimer's disease pathology in aging. Therefore, we hypothesized that a history of traumatic brain injury may be related to spatially heterogeneous amyloid-β and tau pathology patterns that deviate from the stereotypical temporo-parietal patterns in Alzheimer's disease. To test this, we included 103 Vietnam War veterans of whom 65 had experienced traumatic brain injury (n = 40, 38.8% mild; n = 25, 24.3% moderate/severe). Most individuals had a history of 1 (n = 35, 53.8%) or 2 (n = 15, 23.1%) traumatic brain injury events. We included the group without a history of traumatic brain injury (n = 38, 36.9%) as controls. The majority was cognitively normal (n = 80, 77.7%), while a subset had mild cognitive impairment (n = 23, 22.3%). All participants underwent [18F]florbetapir/Amyvid amyloid-β PET and [18F]flortaucipir/Tauvid tau-PET 39.63 ± 18.39 years after their last traumatic brain injury event. We found no differences in global amyloid-β and tau-PET levels between groups, suggesting that a history of traumatic brain injury does not pre-dispose to accumulate amyloid-β or tau pathology in general. However, we found that traumatic brain injury was associated with altered spatial patterns of amyloid-β and tau, with relatively greater deposition in fronto-parietal brain regions. These regions are prone to damage in traumatic brain injury, while they are typically only affected in later stages of Alzheimer's disease. Moreover, in our traumatic brain injury groups, the association between amyloid-β and tau was reduced in Alzheimer-typical temporal regions but increased in frontal regions that are commonly associated with traumatic brain injury. Altogether, while acknowledging the relatively small sample size and generally low levels of Alzheimer's disease pathology in this sample, our findings suggest that traumatic brain injury induces spatial patterns of amyloid-β and tau that differ from patterns observed in typical Alzheimer's disease. Furthermore, traumatic brain injury may be associated with a de-coupling of amyloid-β and tau in regions vulnerable in Alzheimer's disease. These findings indicate that focal brain damage in early/mid-life may change neurodegenerative trajectories in late-life.
Collapse
Affiliation(s)
- Hannah de Bruin
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Colin Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Suzie Kamps
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund 221 00, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 413 45, Sweden
- Munich Cluster for Systems Neurology (SyNergy), University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| |
Collapse
|
5
|
Schaap T, Thropp P, Tosun D. Timing of Alzheimer's disease biomarker progressions: A two-decade observational study from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2024; 20:9060-9067. [PMID: 39428963 PMCID: PMC11667498 DOI: 10.1002/alz.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Alzheimer's Disease Neuroimaging Initiative (ADNI) has been pivotal in identifying and refining Alzheimer's disease (AD) biomarkers for clinical trials. This study leverages longitudinal data from participants who have progressed to amyloid-positivity during their study participation to track evolution of biomarkers and cognitive function. METHODS We modeled AD biomarker (positron emission tomography [PET], structural, cerebrospinal fluid [CSF], cognition) trajectories before and after observed amyloid-positivity onset time to detect time at which each biomarker had detectable trajectory changes. RESULTS Analysis of a sub-cohort of the 20-year ADNI study (N = 90) recapitulated Alzheimer's progression beginning with amyloid alterations -4.8 to -5.3 years relative to amyloid-positivity, succeeded by neurodegeneration (t = -4.0 to -4.1 years), and CSF tau (t = -0.4 to -0.5 years). Cognitive decline was observed to significantly correspond with emergence of amyloid-positivity (t = 0.2 to 2.4 years). DISCUSSION Our results corroborate temporal progression curves of AD biomarkers, providing insights on earliest detectable changes in objective and subjective cognitive function assessments.
Collapse
Affiliation(s)
- Tamar Schaap
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Pamela Thropp
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
6
|
Hojjati SH, Butler TA, Luchsinger JA, Benitez R, de Leon M, Nayak S, Razlighi QR, Chiang GC. Increased between-network connectivity: A risk factor for tau elevation and disease progression. Neurosci Lett 2024; 840:137943. [PMID: 39153526 PMCID: PMC11459384 DOI: 10.1016/j.neulet.2024.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
One of the pathologic hallmarks of Alzheimer's disease (AD) is neurofibrillary tau tangles. Despite our knowledge that tau typically initiates in the medial temporal lobe (MTL), the mechanisms driving tau to spread beyond MTL remain unclear. Emerging evidence reveals distinct patterns of functional connectivity change during aging and preclinical AD: while connectivity within-network decreases, connectivity between-network increases. Building upon increased between-network connectivity, our study hypothesizes that this increase may play a critical role in facilitating tau spread in early stages. We conducted a longitudinal study over two to three years intervals on a cohort of 46 healthy elderly participants (mean age 64.23 ± 3.15 years, 26 females). Subjects were examined clinically and utilizing advanced imaging techniques that included resting-state functional MRI (rs-fMRI), structural magnetic resonance imaging (MRI), and a second-generation positron emission tomography (PET) tau tracer, 18F-MK6240. Through unsupervised agglomerative clustering and increase in between-network connectivity, we successfully identified individuals at increased risk of future tau elevation and AD progression. Our analysis revealed that individuals with increased between-network connectivity are more likely to experience more future tau deposition, entorhinal cortex thinning, and lower selective reminding test (SRT) delayed scores. Additionally, in the limbic network, we found a strong association between tau progression and increased between-network connectivity, which was mainly driven by beta-amyloid (Aβ) positive participants. These findings provide evidence for the hypothesis that an increase in between-network connectivity predicts future tau deposition and AD progression, also enhancing our understanding of AD pathogenesis in the preclinical stages.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Richard Benitez
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
8
|
Chen X, Toueg TN, Harrison TM, Baker SL, Jagust WJ. Regional Tau Deposition Reflects Different Pathways of Subsequent Neurodegeneration and Memory Decline in Cognitively Normal Older Adults. Ann Neurol 2024; 95:249-259. [PMID: 37789559 PMCID: PMC10843500 DOI: 10.1002/ana.26813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without β-amyloid (Aβ). METHODS A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aβ positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS We found Aβ-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aβ-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aβ- individuals and by mean cortical thinning in Aβ+ individuals. INTERPRETATION Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aβ predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.
Collapse
Affiliation(s)
- Xi Chen
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tyler N Toueg
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|
10
|
Wang S, Fang X, Wen X, Yang C, Yang Y, Zhang T. Prioritization of risk genes for Alzheimer's disease: an analysis framework using spatial and temporal gene expression data in the human brain based on support vector machine. Front Genet 2023; 14:1190863. [PMID: 37867597 PMCID: PMC10587557 DOI: 10.3389/fgene.2023.1190863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a complex disorder, and its risk is influenced by multiple genetic and environmental factors. In this study, an AD risk gene prediction framework based on spatial and temporal features of gene expression data (STGE) was proposed. Methods: We proposed an AD risk gene prediction framework based on spatial and temporal features of gene expression data. The gene expression data of providers of different tissues and ages were used as model features. Human genes were classified as AD risk or non-risk sets based on information extracted from relevant databases. Support vector machine (SVM) models were constructed to capture the expression patterns of genes believed to contribute to the risk of AD. Results: The recursive feature elimination (RFE) method was utilized for feature selection. Data for 64 tissue-age features were obtained before feature selection, and this number was reduced to 19 after RFE was performed. The SVM models were built and evaluated using 19 selected and full features. The area under curve (AUC) values for the SVM model based on 19 selected features (0.740 [0.690-0.790]) and full feature sets (0.730 [0.678-0.769]) were very similar. Fifteen genes predicted to be risk genes for AD with a probability greater than 90% were obtained. Conclusion: The newly proposed framework performed comparably to previous prediction methods based on protein-protein interaction (PPI) network properties. A list of 15 candidate genes for AD risk was also generated to provide data support for further studies on the genetic etiology of AD.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xixian Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiang Wen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing, China
| | - Congying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Anti-Drug Laboratory Shaanxi Regional Center, Xi’an, China
| |
Collapse
|
11
|
Leuzy A, Binette AP, Vogel JW, Klein G, Borroni E, Tonietto M, Strandberg O, Mattsson-Carlgren N, Palmqvist S, Pontecorvo MJ, Iaccarino L, Stomrud E, Ossenkoppele R, Smith R, Hansson O. Comparison of Group-Level and Individualized Brain Regions for Measuring Change in Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurol 2023; 80:614-623. [PMID: 37155176 PMCID: PMC10167602 DOI: 10.1001/jamaneurol.2023.1067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/15/2023] [Indexed: 05/10/2023]
Abstract
Importance Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant. Objective To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements. Design, Setting, and Participants This was a longitudinal cohort study with consecutive participant enrollment between September 18, 2017, and November 15, 2021. Included in the analysis were participants with mild cognitive impairment and AD dementia from the prospective and longitudinal Swedish Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 2 (BioFINDER-2) study; in addition, a validation sample (the AVID 05e, Expedition-3, Alzheimer's Disease Neuroimaging Initiative [ADNI], and BioFINDER-1 study cohorts) was also included. Exposures Tau PET (BioFINDER-2, [18F]RO948; validation sample, [18F]flortaucipir), 7 group-level (5 data-driven stages, meta-temporal, whole brain), and 5 individualized ROIs. Main Outcomes and Measures Annual percentage change in tau-PET SUVR across ROIs. Sample size requirements in simulated clinical trials using tau PET as an outcome were also calculated. Results A total of 215 participants (mean [SD] age, 71.4 (7.5) years; 111 male [51.6%]) from the BioFINDER-2 study were included in this analysis: 97 amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals, 77 with Aβ-positive mild cognitive impairment (MCI), and 41 with AD dementia. In the validation sample were 137 Aβ-positive CU participants, 144 with Aβ-positive MCI, and 125 with AD dementia. Mean (SD) follow-up time was 1.8 (0.3) years. Using group-level ROIs, the largest annual percentage increase in tau-PET SUVR in Aβ-positive CU individuals was seen in a composite ROI combining the entorhinal cortex, hippocampus, and amygdala (4.29%; 95% CI, 3.42%-5.16%). In individuals with Aβ-positive MCI, the greatest change was seen in the temporal cortical regions (5.82%; 95% CI, 4.67%-6.97%), whereas in those with AD dementia, the greatest change was seen in the parietal regions (5.22%; 95% CI, 3.95%-6.49%). Significantly higher estimates of annual percentage change were found using several of the participant-specific ROIs. Importantly, the simplest participant-specific approach, where change in tau PET was calculated in an ROI that best matched the participant's data-driven disease stage, performed best in all 3 subgroups. For the power analysis, sample size reductions for the participant-specific ROIs ranged from 15.94% (95% CI, 8.14%-23.74%) to 72.10% (95% CI, 67.10%-77.20%) compared with the best-performing group-level ROIs. Findings were replicated using [18F]flortaucipir. Conclusions and Relevance Finding suggest that certain individualized ROIs carry an advantage over group-level ROIs for assessing longitudinal tau changes and increase the power to detect treatment effects in AD clinical trials using longitudinal tau PET as an outcome.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jacob W. Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | | | | | | | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Leonardo Iaccarino
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Lagarde J, Olivieri P, Tonietto M, Rodrigo S, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Could tau-PET imaging contribute to a better understanding of the different patterns of clinical progression in Alzheimer's disease? A 2-year longitudinal study. Alzheimers Res Ther 2023; 15:91. [PMID: 37138309 PMCID: PMC10155356 DOI: 10.1186/s13195-023-01237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Monitoring the progression of Tau pathology makes it possible to study the clinical diversity of Alzheimer's disease. In this 2-year longitudinal PET study, we aimed to determine the progression of [18F]-flortaucipir binding and of cortical atrophy, and their relationships with cognitive decline. METHODS Twenty-seven AD patients at the mild cognitive impairment/mild dementia stages and twelve amyloid-negative controls underwent a neuropsychological assessment, 3 T brain MRI, and [18F]-flortaucipir PET imaging (Tau1) and were monitored annually over 2 years with a second brain MRI and tau-PET imaging after 2 years (Tau2). We analyzed the progression of tau standardized uptake value ratio (SUVr) and grey matter atrophy both at the regional and voxelwise levels. We used mixed effects models to explore the relations between the progression of SUVr values, cortical atrophy, and cognitive decline. RESULTS We found an average longitudinal increase in tau SUVr values, except for the lateral temporoparietal cortex where the average SUVr values decreased. Individual analyses revealed distinct profiles of SUVr progression according to temporoparietal Tau1 uptake: high-Tau1 patients demonstrated an increase in SUVr values over time in the frontal lobe, but a decrease in the temporoparietal cortex and a rapid clinical decline, while low-Tau1 patients displayed an increase in SUVr values in all cortical regions and a slower clinical decline. Cognitive decline was strongly associated with the progression of regional cortical atrophy, but only weakly associated with SUVr progression. CONCLUSIONS Despite a relatively small sample size, our results suggest that tau-PET imaging could identify patients with a potentially "more aggressive" clinical course characterized by high temporoparietal Tau1 SUVr values and a rapid clinical progression. In these patients, the paradoxical decrease in temporoparietal SUVr values over time could be due to the rapid transition to ghost tangles, for which the affinity of the radiotracer is lower. They could particularly benefit from future therapeutic trials, the neuroimaging outcome measures of which deserve to be discussed.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
- Université Paris-Cité, 75006, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Sébastian Rodrigo
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Centre d'Evaluation Troubles Psychiques Et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Bâtiment Magnan, , 1 Rue Cabanis, 75014, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, 91140, Gif Sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| |
Collapse
|
13
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
14
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
15
|
Exploring the brain metabolic correlates of process-specific CSF biomarkers in patients with MCI due to Alzheimer's disease: preliminary data. Neurobiol Aging 2022; 117:212-221. [DOI: 10.1016/j.neurobiolaging.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
|
16
|
|
17
|
Staging of Alzheimer's disease: past, present, and future perspectives. Trends Mol Med 2022; 28:726-741. [PMID: 35717526 DOI: 10.1016/j.molmed.2022.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
For many years Alzheimer's disease (AD) was associated with the dementia stage of the disease, the tail end of a pathophysiological process that lasts approximately two decades. Whereas early disease staging assessments focused on progressive deterioration of clinical functioning, brain imaging with positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker studies highlighted the long preclinical phase of AD in which a cascade of detectable biological abnormalities precede cognitive decline. The recent proliferation of imaging and fluid biomarkers of AD pathophysiology provide an opportunity for the identification of several biological stages in the preclinical phase of AD. We discuss the use of clinical and biomarker information in past, present, and future staging of AD. We highlight potential applications of PET, CSF, and plasma biomarkers for staging AD severity in vivo.
Collapse
|
18
|
Chen Q, Przybelski SA, Senjem ML, Schwarz CG, Lesnick TG, Botha H, Knopman DS, Graff‐Radford J, Savica R, Jones DT, Fields JA, Jain MK, Graff‐Radford NR, Ferman TJ, Kremers WK, Jack CR, Petersen RC, Boeve BF, Lowe VJ, Kantarci K. Longitudinal Tau Positron Emission Tomography in Dementia with Lewy Bodies. Mov Disord 2022; 37:1256-1264. [PMID: 35261094 PMCID: PMC9232920 DOI: 10.1002/mds.28973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Patients with dementia with Lewy bodies (DLB) may have overlapping Alzheimer's disease pathology. We investigated the longitudinal rate of tau accumulation and its association with neurodegeneration and clinical disease progression in DLB. METHODS Consecutive patients with probable DLB (n = 22) from the Mayo Clinic Alzheimer's Disease Research Center and age-matched and sex-matched cognitively unimpaired controls (CU; n = 22) with serial magnetic resonance imaging and flortaucipir positron emission tomography scans within an average of 1.6 years were included. Regional annualized rates of flortaucipir uptake standardized uptake value ratios (SUVr) were calculated. Regional annualized rates of cortical volume change were measured with the Tensor Based Morphometry-Syn algorithm. RESULTS The annual increase of flortaucipir SUVr was greater in the middle and superior occipital, fusiform, and inferior parietal cortices in DLB (mean: 0.017, 0.019, 0.019, and 0.015, respectively) compared with the CU (mean: -0.006, -0.009, -0.003, and - 0.005, respectively; P < 0.05). In patients with DLB (but not the CU), a longitudinal increase in flortaucipir SUVr was associated with longitudinal cortical atrophy rates in the lateral occipital and inferior temporoparietal cortices, hippocampus, and the temporal pole as well as a concurrent decline on Mini-Mental State Examination and Clinical Dementia Rating-Sum of Boxes in the lateral occipital and the fusiform cortices. CONCLUSIONS Tau accumulation was faster in DLB compared with the CU, with increased accumulation rates in the lateral occipital and temporoparietal cortices. These increased rates of tau accumulation were associated with neurodegeneration and faster disease progression in DLB. Tau may be a potential treatment target in a subset of patients with DLB. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Qin Chen
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Timothy G. Lesnick
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Hugo Botha
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | - Julie A. Fields
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Manoj K. Jain
- Department of RadiologyMayo ClinicJacksonvilleFloridaUSA
| | | | - Tanis J. Ferman
- Department of Psychology and PsychiatryMayo ClinicJacksonvilleFloridaUSA
| | - Walter K. Kremers
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
19
|
Mena AM, Strafella AP. Imaging pathological tau in atypical parkinsonisms: A review. Clin Park Relat Disord 2022; 7:100155. [PMID: 35880206 PMCID: PMC9307942 DOI: 10.1016/j.prdoa.2022.100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
[18F]AV-1451 displays mixed results for specificity to 4R CBD- and PSP-tau. [18F]PI-2620 and [18F]PM-PBB3 are the most promising second-generation tau PET tracers. Research using second-generation tau PET tracers in CBD and PSP is still limited. Finding an imaging diagnostic biomarker requires further work with larger samples.
Atypical parkinsonisms (APs) are a group of diseases linked to tau pathology. These include progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). In the initial stages, these APs may have similar clinical manifestations to Parkinson’s disease (PD) and other parkinsonisms: bradykinesia, postural instability, tremor, and cognitive decline. Because of this, one major hurdle is the accurate early diagnosis of APs. Recent advances in positron emission tomography (PET) radiotracer development have allowed for targeting pathological tau in Alzheimer’s disease (AD). Currently, work is still in progress for identifying a first-in-class radiotracer for imaging tau in APs. In this review, we evaluate the literature on in vitro and in vivo testing of current tau PET radiotracers in APs. The tau PET tracers assessed include both first-generation tracers ([18F]AV-1451, [18F]FDDNP, [18F]THK derivatives, and [11C]PBB3) and second-generation tracers ([18F]PM-PBB3, [18F]PI-2620, [18F]RO-948, [18F]JNJ-067, [18F]MK-6240, and [18F]CBD-2115). Concerns regarding off-target binding to cerebral white matter and the basal ganglia are still prominent with first-generation tracers, but this seems to have been mediated in a handful of second-generation tracers, including [18F]PI-2620 and [18F]PM-PBB3. Additionally, these two tracers and [18F]MK-6240 show promising results for imaging PSP- and CBD-tau. Overall, [18F]AV-1451 is the most widely studied tracer but the mixed results regarding its efficacy for use in imaging AP-tau is a cause for concern moving forward. Instead, future work may benefit from focusing on the second-generation radiotracers which seem to have a higher specificity for AP-tau than those originally developed for imaging AD-tau.
Collapse
|
20
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
21
|
Grimm A. Impairments in Brain Bioenergetics in Aging and Tau Pathology: A Chicken and Egg Situation? Cells 2021; 10:2531. [PMID: 34685510 PMCID: PMC8533761 DOI: 10.3390/cells10102531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is the most energy-consuming organ of the body and impairments in brain energy metabolism will affect neuronal functionality and viability. Brain aging is marked by defects in energetic metabolism. Abnormal tau protein is a hallmark of tauopathies, including Alzheimer's disease (AD). Pathological tau was shown to induce bioenergetic impairments by affecting mitochondrial function. Although it is now clear that mutations in the tau-coding gene lead to tau pathology, the causes of abnormal tau phosphorylation and aggregation in non-familial tauopathies, such as sporadic AD, remain elusive. Strikingly, both tau pathology and brain hypometabolism correlate with cognitive impairments in AD. The aim of this review is to discuss the link between age-related decrease in brain metabolism and tau pathology. In particular, the following points will be discussed: (i) the common bioenergetic features observed during brain aging and tauopathies; (ii) how age-related bioenergetic defects affect tau pathology; (iii) the influence of lifestyle factors known to modulate brain bioenergetics on tau pathology. The findings compiled here suggest that age-related bioenergetic defects may trigger abnormal tau phosphorylation/aggregation and cognitive impairments after passing a pathological threshold. Understanding the effects of aging on brain metabolism may therefore help to identify disease-modifying strategies against tau-induced neurodegeneration.
Collapse
Affiliation(s)
- Amandine Grimm
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland;
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
- Life Sciences Training Facility, University of Basel, 4055 Basel, Switzerland
| |
Collapse
|
22
|
Phillips JS, Nitchie FJ, Da Re F, Olm CA, Cook PA, McMillan CT, Irwin DJ, Gee JC, Dubroff JG, Grossman M, Nasrallah IM. Rates of longitudinal change in 18 F-flortaucipir PET vary by brain region, cognitive impairment, and age in atypical Alzheimer's disease. Alzheimers Dement 2021; 18:1235-1247. [PMID: 34515411 PMCID: PMC9292954 DOI: 10.1002/alz.12456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
Introduction Longitudinal positron emission tomography (PET) studies of tau accumulation in Alzheimer's disease (AD) have noted reduced increases or frank decreases in tau signal. We investigated how such reductions related to analytical confounds and disease progression markers in atypical AD. Methods We assessed regional and interindividual variation in longitudinal change on 18F‐flortaucipir PET imaging in 24 amyloid beta (Aβ)+ patients with atypical, early‐onset amnestic or non‐amnestic AD plus 62 Aβ– and 132 Aβ+ Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. Results In atypical AD, 18F‐flortaucipir uptake slowed or declined over time in areas with high baseline signal and older, more impaired individuals. ADNI participants had reduced longitudinal change in early Braak stage regions relative to late‐stage areas. Discussion Results suggested radioligand uptake plateaus or declines in advanced neurodegeneration. Further research should investigate whether results generalize to other radioligands and whether they relate to changes of the radioligand binding site structure or accessibility.
Collapse
Affiliation(s)
| | | | - Fulvio Da Re
- University of Milan-Bicocca Faculty of Medicine and Surgery, Universita degli Studi di Milano-Bicocca Dipartimento di Medicina e Chirurgia, Milan, Italy
| | | | - Philip A Cook
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - David J Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James C Gee
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
23
|
Young CB, Landau SM, Harrison TM, Poston KL, Mormino EC. Influence of common reference regions on regional tau patterns in cross-sectional and longitudinal [ 18F]-AV-1451 PET data. Neuroimage 2021; 243:118553. [PMID: 34487825 PMCID: PMC8785682 DOI: 10.1016/j.neuroimage.2021.118553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 10/30/2022] Open
Abstract
Tau PET has allowed for critical insights into in vivo patterns of tau accumulation and change in individuals early in the Alzheimer's disease (AD) continuum. A key methodological step in tau PET analyses is the selection of a reference region, but there is not yet consensus on the optimal region especially for longitudinal tau PET analyses. This study examines how reference region selection influences results related to disease stage at baseline and over time. Longitudinal flortaucipir ([18F]-AV1451) PET scans were examined using several common reference regions (e.g., eroded subcortical white matter, inferior cerebellar gray matter) in 62 clinically unimpaired amyloid negative (CU A-) individuals, 73 CU amyloid positive (CU A+) individuals, and 64 amyloid positive individuals with mild cognitive impairment (MCI A+) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cross-sectionally, both reference regions resulted in robust group differences between CU A-, CU A+, and MCI A+ groups, along with significant associations with CSF phosphorylated tau (pTau-181). However, these results were more focally specific and akin to Braak Staging when using eroded white matter, whereas effects with inferior cerebellum were globally distributed across most cortical regions. Longitudinally, utilization of eroded white matter revealed significant accumulation greater than zero across more regions whereas change over time was diminished using inferior cerebellum. Interestingly, the inferior temporal target region seemed most robust to reference region selection with expected cross-sectional and longitudinal signal across both reference regions. With few exceptions, baseline tau did not significantly predict longitudinal change in tau in the same region regardless of reference region. In summary, reference region selection deserves further evaluation as this methodological step may lead to disparate findings. Inferior cerebellar gray matter may be more sensitive to cross-sectional flortaucipir differences, whereas eroded subcortical white matter may be more sensitive for longitudinal analyses examining regional patterns of change.
Collapse
Affiliation(s)
- Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA United States.
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA United States
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA United States
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA United States
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA United States
| | | |
Collapse
|
24
|
Evaluation of Class IIa Histone Deacetylases Expression and In Vivo Epigenetic Imaging in a Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168633. [PMID: 34445342 PMCID: PMC8395513 DOI: 10.3390/ijms22168633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-β (Aβ) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aβs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.
Collapse
|
25
|
Leuzy A, Pascoal TA, Strandberg O, Insel P, Smith R, Mattsson-Carlgren N, Benedet AL, Cho H, Lyoo CH, La Joie R, Rabinovici GD, Ossenkoppele R, Rosa-Neto P, Hansson O. A multicenter comparison of [ 18F]flortaucipir, [ 18F]RO948, and [ 18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis. Eur J Nucl Med Mol Imaging 2021; 48:2295-2305. [PMID: 34041562 PMCID: PMC8175317 DOI: 10.1007/s00259-021-05401-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aims to determine whether comparable target regions of interest (ROIs) and cut-offs can be used across [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau positron emission tomography (PET) tracers for differential diagnosis of Alzheimer's disease (AD) dementia vs either cognitively unimpaired (CU) individuals or non-AD neurodegenerative diseases. METHODS A total of 1755 participants underwent tau PET using either [18F]flortaucipir (n = 975), [18F]RO948 (n = 493), or [18F]MK6240 (n = 287). SUVR values were calculated across four theory-driven ROIs and several tracer-specific data-driven (hierarchical clustering) regions of interest (ROIs). Diagnostic performance and cut-offs for ROIs were determined using receiver operating characteristic analyses and the Youden index, respectively. RESULTS Comparable diagnostic performance (area under the receiver operating characteristic curve [AUC]) was observed between theory- and data-driven ROIs. The theory-defined temporal meta-ROI generally performed very well for all three tracers (AUCs: 0.926-0.996). An SUVR value of approximately 1.35 was a common threshold when using this ROI. CONCLUSION The temporal meta-ROI can be used for differential diagnosis of dementia patients with [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This ROI/SUVR cut-off can also be applied across tracers to define tau positivity.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Philip Insel
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Hannah Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul H Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
26
|
Spatial inhibition of return is impaired in mild cognitive impairment and mild Alzheimer's disease. PLoS One 2021; 16:e0252958. [PMID: 34125847 PMCID: PMC8202934 DOI: 10.1371/journal.pone.0252958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/25/2021] [Indexed: 11/26/2022] Open
Abstract
Spatial inhibition of return (IOR) refers to the phenomenon by which individuals are slower to respond to stimuli appearing at a previously cued location compared to un-cued locations. Here with a group of older adults (n = 56, 58–80 (67.9±5.2) year old, 31 females, 18.7±3.6 years of education), we provide evidence supporting the notion that spatial IOR is mildly impaired in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD), and the impairment is detectable using a double cue paradigm. Furthermore, reduced spatial IOR in high-risk healthy older individuals is associated with reduced memory and other neurocognitive task performance, suggesting that the double cue spatial IOR paradigm may be useful in detecting MCI and early AD.
Collapse
|
27
|
Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer's disease. Sci Rep 2021; 11:10343. [PMID: 33990649 PMCID: PMC8121780 DOI: 10.1038/s41598-021-89797-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Imaging biomarkers support the diagnosis of Alzheimer’s disease (AD). We aimed to determine whether combining automated brain volumetry on MRI and quantitative measurement of tau deposition on [18F] THK-5351 PET can aid discrimination of AD spectrum. From a prospective database in an IRB-approved multicenter study (NCT02656498), 113 subjects (32 healthy control, 55 mild cognitive impairment, and 26 Alzheimer disease) with baseline structural MRI and [18F] THK-5351 PET were included. Cortical volumes were quantified from FDA-approved software for automated volumetric MRI analysis (NeuroQuant). Standardized uptake value ratio (SUVR) was calculated from tau PET images for 6 composite FreeSurfer-derived regions-of-interests approximating in vivo Braak stage (Braak ROIs). On volumetric MRI analysis, stepwise logistic regression analyses identified the cingulate isthmus and inferior parietal lobule as significant regions in discriminating AD from HC and MCI. The combined model incorporating automated volumes of selected brain regions on MRI (cingulate isthmus, inferior parietal lobule, hippocampus) and SUVRs of Braak ROIs on [18F] THK-5351 PET showed higher performance than SUVRs of Braak ROIs on [18F] THK-5351 PET in discriminating AD from HC (0.98 vs 0.88, P = 0.033) but not in discriminating AD from MCI (0.85 vs 0.79, P = 0.178). The combined model showed comparable performance to automated volumes of selected brain regions on MRI in discriminating AD from HC (0.98 vs 0.94, P = 0.094) and MCI (0.85 vs 0.78; P = 0.065).
Collapse
|
28
|
Gonzalez-Escamilla G, Miederer I, Grothe MJ, Schreckenberger M, Muthuraman M, Groppa S. Metabolic and amyloid PET network reorganization in Alzheimer's disease: differential patterns and partial volume effects. Brain Imaging Behav 2021; 15:190-204. [PMID: 32125613 PMCID: PMC7835313 DOI: 10.1007/s11682-019-00247-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, considered a disconnection syndrome with regional molecular pattern abnormalities quantifiable by the aid of PET imaging. Solutions for accurate quantification of network dysfunction are scarce. We evaluate the extent to which PET molecular markers reflect quantifiable network metrics derived through the graph theory framework and how partial volume effects (PVE)-correction (PVEc) affects these PET-derived metrics 75 AD patients and 126 cognitively normal older subjects (CN). Therefore our goal is twofold: 1) to evaluate the differential patterns of [18F]FDG- and [18F]AV45-PET data to depict AD pathology; and ii) to analyse the effects of PVEc on global uptake measures of [18F]FDG- and [18F]AV45-PET data and their derived covariance network reconstructions for differentiating between patients and normal older subjects. Network organization patterns were assessed using graph theory in terms of “degree”, “modularity”, and “efficiency”. PVEc evidenced effects on global uptake measures that are specific to either [18F]FDG- or [18F]AV45-PET, leading to increased statistical differences between the groups. PVEc was further shown to influence the topological characterization of PET-derived covariance brain networks, leading to an optimised characterization of network efficiency and modularisation. Partial-volume effects correction improves the interpretability of PET data in AD and leads to optimised characterization of network properties for organisation or disconnection.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | | |
Collapse
|
29
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
30
|
Altomare D, Caprioglio C, Assal F, Allali G, Mendes A, Ribaldi F, Ceyzeriat K, Martins M, Tomczyk S, Stampacchia S, Dodich A, Boccardi M, Chicherio C, Frisoni GB, Garibotto V. Diagnostic value of amyloid-PET and tau-PET: a head-to-head comparison. Eur J Nucl Med Mol Imaging 2021; 48:2200-2211. [PMID: 33638661 PMCID: PMC8175315 DOI: 10.1007/s00259-021-05246-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Purpose Assess the individual and combined diagnostic value of amyloid-PET and tau-PET in a memory clinic population. Methods Clinical reports of 136 patients were randomly assigned to two diagnostic pathways: AMY-TAU, amyloid-PET is presented before tau-PET; and TAU-AMY, tau-PET is presented before amyloid-PET. Two neurologists independently assessed all reports with a balanced randomized design, and expressed etiological diagnosis and diagnostic confidence (50–100%) three times: (i) at baseline based on the routine diagnostic workup, (ii) after the first exam (amyloid-PET for the AMY-TAU pathway, and tau-PET for the TAU-AMY pathway), and (iii) after the remaining exam. The main outcomes were changes in diagnosis (from AD to non-AD or vice versa) and in diagnostic confidence. Results Amyloid-PET and tau-PET, when presented as the first exam, resulted in a change of etiological diagnosis in 28% (p = 0.006) and 28% (p < 0.001) of cases, and diagnostic confidence increased by 18% (p < 0.001) and 19% (p < 0.001) respectively, with no differences between exams (p > 0.05). We observed a stronger impact of a negative amyloid-PET versus a negative tau-PET (p = 0.014). When added as the second exam, amyloid-PET and tau-PET resulted in a further change in etiological diagnosis in 6% (p = 0.077) and 9% (p = 0.149) of cases, and diagnostic confidence increased by 4% (p < 0.001) and 5% (p < 0.001) respectively, with no differences between exams (p > 0.05). Conclusion Amyloid-PET and tau-PET significantly impacted diagnosis and diagnostic confidence in a similar way, although a negative amyloid-PET has a stronger impact on diagnosis than a negative tau-PET. Adding either of the two as second exam further improved diagnostic confidence. Trial number PB 2016-01346. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05246-x.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland. .,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Aline Mendes
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kelly Ceyzeriat
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Marta Martins
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandra Dodich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Marina Boccardi
- Late Translational Dementia Research Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | | | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
31
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|
32
|
Chiotis K, Savitcheva I, Poulakis K, Saint-Aubert L, Wall A, Antoni G, Nordberg A. [ 18F]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease. Mol Psychiatry 2021; 26:5875-5887. [PMID: 32616831 PMCID: PMC8758479 DOI: 10.1038/s41380-020-0815-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
Abstract
Cross-sectional studies have indicated potential for positron emission tomography (PET) in imaging tau pathology in Alzheimer's disease (AD); however, its prognostic utility remains unproven. In a longitudinal, multi-modal, prognostic study of cognitive decline, 20 patients with a clinical biomarker-based diagnosis in the AD spectrum (mild cognitive impairment or dementia and a positive amyloid-beta PET scan) were recruited from the Cognitive Clinic at Karolinska University Hospital. The participants underwent baseline neuropsychological assessment, PET imaging with [18F]THK5317, [11C]PIB and [18F]FDG, magnetic resonance imaging, and in a subgroup cerebrospinal fluid (CSF) sampling, with clinical follow-up after a median 48 months (interquartile range = 32:56). In total, 11 patients declined cognitively over time, while 9 remained cognitively stable. The accuracy of baseline [18F]THK5317 binding in temporal areas was excellent at predicting future cognitive decline (area under the receiver operating curve 0.84-1.00) and the biomarker levels were strongly associated with the rate of cognitive decline (β estimate -33.67 to -31.02, p < 0.05). The predictive accuracy of the other baseline biomarkers was poor (area under the receiver operating curve 0.58-0.77) and their levels were not associated with the rate of cognitive decline (β estimate -4.64 to 15.78, p > 0.05). Baseline [18F]THK5317 binding and CSF tau levels were more strongly associated with the MMSE score at follow-up than at baseline (p < 0.05). These findings support a temporal dissociation between tau deposition and cognitive impairment, and suggest that [18F]THK5317 predicts future cognitive decline better than other biomarkers. The use of imaging markers for tau pathology could prove useful for clinical prognostic assessment and screening before inclusion in relevant clinical trials.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- grid.4714.60000 0004 1937 0626Nordberg Translational Molecular Imaging Lab, Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Theme Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Irina Savitcheva
- grid.24381.3c0000 0000 9241 5705Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Poulakis
- grid.4714.60000 0004 1937 0626Westman neuroimaging group, Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Laure Saint-Aubert
- grid.4714.60000 0004 1937 0626Nordberg Translational Molecular Imaging Lab, Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.15781.3a0000 0001 0723 035XToulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Anders Wall
- grid.8993.b0000 0004 1936 9457Section for Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- grid.8993.b0000 0004 1936 9457Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- Nordberg Translational Molecular Imaging Lab, Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
33
|
Villemagne VL, Lopresti BJ, Doré V, Tudorascu D, Ikonomovic MD, Burnham S, Minhas D, Pascoal TA, Mason NS, Snitz B, Aizenstein H, Mathis CA, Lopez O, Rowe CC, Klunk WE, Cohen AD. What Is T+? A Gordian Knot of Tracers, Thresholds, and Topographies. J Nucl Med 2020; 62:614-619. [PMID: 33384320 DOI: 10.2967/jnumed.120.245423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we examine, in the context of the amyloid, tau, and neurodegeneration framework, the available evidence and potential alternatives on how to establish tau positivity (T+) for multiple tau-imaging tracers in order to reach a consensus on normal and abnormal tau imaging values that can be universally implemented in clinical research and therapeutic trials.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Washington, Australia
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia.,CSIRO Health and Biosecurity, Melbourne, Victoria, Australia
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Samantha Burnham
- CSIRO Health and Biosecurity, Melbourne, Victoria, Australia.,Center for Alzheimer Research and Treatment, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Beth Snitz
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oscar Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher C Rowe
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Sintini I, Graff-Radford J, Senjem ML, Schwarz CG, Machulda MM, Martin PR, Jones DT, Boeve BF, Knopman DS, Kantarci K, Petersen RC, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes. Brain 2020; 143:2281-2294. [PMID: 32572464 DOI: 10.1093/brain/awaa155] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease can present clinically with either the typical amnestic phenotype or with atypical phenotypes, such as logopenic progressive aphasia and posterior cortical atrophy. We have recently described longitudinal patterns of flortaucipir PET uptake and grey matter atrophy in the atypical phenotypes, demonstrating a longitudinal regional disconnect between flortaucipir accumulation and brain atrophy. However, it is unclear how these longitudinal patterns differ from typical Alzheimer's disease, to what degree flortaucipir and atrophy mirror clinical phenotype in Alzheimer's disease, and whether optimal longitudinal neuroimaging biomarkers would also differ across phenotypes. We aimed to address these unknowns using a cohort of 57 participants diagnosed with Alzheimer's disease (18 with typical amnestic Alzheimer's disease, 17 with posterior cortical atrophy and 22 with logopenic progressive aphasia) that had undergone baseline and 1-year follow-up MRI and flortaucipir PET. Typical Alzheimer's disease participants were selected to be over 65 years old at baseline scan, while no age criterion was used for atypical Alzheimer's disease participants. Region and voxel-level rates of tau accumulation and atrophy were assessed relative to 49 cognitively unimpaired individuals and among phenotypes. Principal component analysis was implemented to describe variability in baseline tau uptake and rates of accumulation and baseline grey matter volumes and rates of atrophy across phenotypes. The capability of the principal components to discriminate between phenotypes was assessed with logistic regression. The topography of longitudinal tau accumulation and atrophy differed across phenotypes, with key regions of tau accumulation in the frontal and temporal lobes for all phenotypes and key regions of atrophy in the occipitotemporal regions for posterior cortical atrophy, left temporal lobe for logopenic progressive aphasia and medial and lateral temporal lobe for typical Alzheimer's disease. Principal component analysis identified patterns of variation in baseline and longitudinal measures of tau uptake and volume that were significantly different across phenotypes. Baseline tau uptake mapped better onto clinical phenotype than longitudinal tau and MRI measures. Our study suggests that optimal longitudinal neuroimaging biomarkers for future clinical treatment trials in Alzheimer's disease are different for MRI and tau-PET and may differ across phenotypes, particularly for MRI. Baseline tau tracer retention showed the highest fidelity to clinical phenotype, supporting the important causal role of tau as a driver of clinical dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester MN, USA
| | - Peter R Martin
- Department of Health Science Research, Mayo Clinic, Rochester MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
35
|
Franzmeier N, Dewenter A, Frontzkowski L, Dichgans M, Rubinski A, Neitzel J, Smith R, Strandberg O, Ossenkoppele R, Buerger K, Duering M, Hansson O, Ewers M. Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabd1327. [PMID: 33246962 PMCID: PMC7695466 DOI: 10.1126/sciadv.abd1327] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 05/25/2023]
Abstract
In Alzheimer's disease (AD), the Braak staging scheme suggests a stereotypical tau spreading pattern that does, however, not capture interindividual variability in tau deposition. This complicates the prediction of tau spreading, which may become critical for defining individualized tau-PET readouts in clinical trials. Since tau is assumed to spread throughout connected regions, we used functional connectivity to improve tau spreading predictions over Braak staging methods. We included two samples with longitudinal tau-PET from controls and AD patients. Cross-sectionally, we found connectivity of tau epicenters (i.e., regions with earliest tau) to predict estimated tau spreading sequences. Longitudinally, we found tau accumulation rates to correlate with connectivity strength to patient-specific tau epicenters. A connectivity-based, patient-centered tau spreading model improved the assessment of tau accumulation rates compared to Braak stage-specific readouts and reduced sample sizes by ~40% in simulated tau-targeting interventions. Thus, connectivity-based tau spreading models may show utility in clinical trials.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ruben Smith
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Katharina Buerger
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
36
|
Geerts H, Spiros A. Simulating the Effects of Common Comedications and Genotypes on Alzheimer's Cognitive Trajectory Using a Quantitative Systems Pharmacology Approach. J Alzheimers Dis 2020; 78:413-424. [PMID: 33016912 DOI: 10.3233/jad-200688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Many Alzheimer's disease patients in clinical practice are on polypharmacy for treatment of comorbidities. OBJECTIVE While pharmacokinetic interactions between drugs have been relatively well established with corresponding treatment guidelines, many medications and common genotype variants also affect central brain circuits involved in cognitive trajectory, leading to complex pharmacodynamic interactions and a large variability in clinical trials. METHODS We applied a mechanism-based and ADAS-Cog calibrated Quantitative Systems Pharmacology biophysical model of neuronal circuits relevant for cognition in Alzheimer's disease, to standard-of-care cholinergic therapy with COMTVal158Met, 5-HTTLPR rs25531, and APOE genotypes and with benzodiazepines, antidepressants, and antipsychotics, all together 9,585 combinations. RESULTS The model predicts a variability of up to 14 points on ADAS-Cog at baseline (COMTVV 5-HTTLPRss APOE 4/4 combination is worst) and a four-fold range for the rate of progression. The progression rate is inversely proportional to baseline ADAS-Cog. Antidepressants, benzodiazepines, first-generation more than second generation, and most antipsychotics with the exception of aripiprazole worsen the outcome when added to standard-of-care in mild cases. Low dose second-generation benzodiazepines revert the negative effects of risperidone and olanzapine, but only in mild stages. Non APOE4 carriers with a COMTMM and 5HTTLPRLL are predicted to have the best cognitive performance at baseline but deteriorate somewhat faster over time. However, this effect is significantly modulated by comedications. CONCLUSION Once these simulations are validated, the platform can in principle provide optimal treatment guidance in clinical practice at an individual patient level, identify negative pharmacodynamic interactions with novel targets and address protocol amendments in clinical trials.
Collapse
|
37
|
Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, Botha H, Graff-Radford J, Jones DT, Ferman TJ, Boeve BF, Kantarci K, Vemuri P, Mielke MM, Whitwell J, Josephs K, Schwarz CG, Senjem ML, Gunter JL, Petersen RC. Predicting future rates of tau accumulation on PET. Brain 2020; 143:3136-3150. [PMID: 33094327 PMCID: PMC7586089 DOI: 10.1093/brain/awaa248] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical trials with anti-tau drugs will need to target individuals at risk of accumulating tau. Our objective was to identify variables available in a research setting that predict future rates of tau PET accumulation separately among individuals who were either cognitively unimpaired or cognitively impaired. All 337 participants had: a baseline study visit with MRI, amyloid PET, and tau PET exams, at least one follow-up tau PET exam; and met clinical criteria for membership in one of two clinical diagnostic groups: cognitively unimpaired (n = 203); or cognitively impaired (n = 134, a combined group of participants with either mild cognitive impairment or dementia with Alzheimer's clinical syndrome). Our primary analyses were in these two clinical groups; however, we also evaluated subgroups dividing the unimpaired group by normal/abnormal amyloid PET and the impaired group by clinical phenotype (mild cognitive impairment, amnestic dementia, and non-amnestic dementia). Linear mixed effects models were used to estimate associations between age, sex, education, APOE genotype, amyloid and tau PET standardized uptake value ratio (SUVR), cognitive performance, cortical thickness, and white matter hyperintensity volume at baseline, and the rate of subsequent tau PET accumulation. Log-transformed tau PET SUVR was used as the response and rates were summarized as annual per cent change. A temporal lobe tau PET meta-region of interest was used. In the cognitively unimpaired group, only higher baseline amyloid PET was a significant independent predictor of higher tau accumulation rates (P < 0.001). Higher rates of tau accumulation were associated with faster rates of cognitive decline in the cognitively unimpaired subgroup with abnormal amyloid PET (P = 0.03), but among the subgroup with normal amyloid PET. In the cognitively impaired group, younger age (P = 0.02), higher baseline amyloid PET (P = 0.05), APOE ε4 (P = 0.05), and better cognitive performance (P = 0.05) were significant independent predictors of higher tau accumulation rates. Among impaired individuals, faster cognitive decline was associated with faster rates of tau accumulation (P = 0.01). While we examined many possible predictor variables, our results indicate that screening of unimpaired individuals for potential inclusion in anti-tau trials may be straightforward because the only independent predictor of high tau rates was amyloidosis. In cognitively impaired individuals, imaging and clinical variables consistent with early onset Alzheimer's disease phenotype were associated with higher rates of tau PET accumulation suggesting this may be a highly advantageous group in which to conduct proof-of-concept clinical trials that target tau-related mechanisms. The nature of the dementia phenotype (amnestic versus non-amnestic) did not affect this conclusion.
Collapse
Affiliation(s)
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Keith Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
38
|
Rowley PA, Samsonov AA, Betthauser TJ, Pirasteh A, Johnson SC, Eisenmenger LB. Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions. Semin Ultrasound CT MR 2020; 41:572-583. [PMID: 33308496 DOI: 10.1053/j.sult.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although diagnosing the syndrome of dementia is largely a clinical endeavor, neuroimaging plays an increasingly important role in accurately determining the underlying etiology, which extends beyond its traditional role in excluding other causes of altered cognition. New neuroimaging methods not only facilitate the diagnosis of the most common neurodegenerative conditions (particularly Alzheimer Disease [AD]) after symptom onset, but also show diagnostic promise even in the very early or presymptomatic phases of disease. Positron emission tomography (PET) is increasingly recognized as a key clinical tool for differentiating normal age-related changes in brain metabolism (using 18F-fluorodeoxyglucose [FDG]) from those seen in the earliest stages of specific forms of dementia. However, FDG PET only demonstrates nonspecific changes in altered parenchymal glucose uptake and not the specific etiologic proteinopathy causing the abnormal glucose uptake. A growing class of radiotracers targeting specific protein aggregates for amyloid-β (Aβ) and tau are changing the way AD is diagnosed, as these radiotracers directly label the underlying disease pathology. As these pathology-specific radiotracers are currently making their way to the clinic, it is important for the clinical neuroradiologist to understand the underlying patterns of Aβ and tau deposition in the context of AD (across its clinical continuum) and in other causes of dementia, as well as understand the implications of current research.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | | - Ali Pirasteh
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | |
Collapse
|
39
|
Pappas C, Klinedinst BS, Le S, Wang Q, Larsen B, McLimans K, Lockhart SN, Allenspach‐Jorn K, Mochel JP, Willette AA. CSF glucose tracks regional tau progression based on Alzheimer's disease risk factors. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12080. [PMID: 32864418 PMCID: PMC7443745 DOI: 10.1002/trc2.12080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Glucose hypometabolism and tau formation are key features of Alzheimer's disease (AD). Less is known about the relationship between fasting glucose and regional tau accumulation. METHODS Cerebrospinal fluid (CSF) glucose was linearly regressed on regional tau (flortaucipir) among 169 Alzheimer's Disease Neuroimaging Initiative (ADNI3) participants. Flortaucipir uptake was examined by Braak stages and regions of interest (ROIs). Interactions were explored between CSF glucose and AD risk factors including regional amyloid beta (Aβ), sex, Apolipoprotein E ε4 (APOEε4) status, AD parental family history (AD FH), and cognitive impairment (CI). RESULTS Interactions found higher CSF glucose tracked less tau in ROIs or Braak stages I/II (women, APOE ε4+, regional Aβ), III/IV (AD FH+, regional Aβ), and V/VI (AD FH+). CI drove Braak III-VI associations. DISCUSSION Among women and APOE ε4 carriers, higher CSF glucose tracked less early-stage tau. Higher CSF glucose may reflect compensation against tau spreading in CI, Aβ+, or AD FH+.
Collapse
Affiliation(s)
- Colleen Pappas
- Department of Food Science and Human NutritionIowa State UniversityAmesIowaUSA
| | | | - Scott Le
- Department of Food Science and Human NutritionIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Qian Wang
- Department of Food Science and Human NutritionIowa State UniversityAmesIowaUSA
| | - Brittany Larsen
- Department of Food Science and Human NutritionIowa State UniversityAmesIowaUSA
| | - Kelsey McLimans
- Department of Nutrition and DieteticsViterbo UniversityLa CrosseWisconsinUSA
| | - Samuel N. Lockhart
- Department of Internal MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | | | - Jonathan P. Mochel
- Department of Veterinary Clinical SciencesIowa State UniversityAmesIowaUSA
| | - Auriel A. Willette
- Department of Food Science and Human NutritionIowa State UniversityAmesIowaUSA
- Neuroscience Graduate ProgramIowa State UniversityAmesIowaUSA
- Department of Biomedical SciencesIowa State UniversityAmesIowaUSA
- Department of PsychologyIowa State UniversityAmesIowaUSA
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | |
Collapse
|
40
|
Bilousova T, Simmons BJ, Knapp RR, Elias CJ, Campagna J, Melnik M, Chandra S, Focht S, Zhu C, Vadivel K, Jagodzinska B, Cohn W, Spilman P, Gylys KH, Garg NK, John V. Dual Neutral Sphingomyelinase-2/Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease. ACS Chem Biol 2020; 15:1671-1684. [PMID: 32352753 PMCID: PMC8297715 DOI: 10.1021/acschembio.0c00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the discovery of a novel class of compounds that function as dual inhibitors of the enzymes neutral sphingomyelinase-2 (nSMase2) and acetylcholinesterase (AChE). Inhibition of these enzymes provides a unique strategy to suppress the propagation of tau pathology in the treatment of Alzheimer's disease (AD). We describe the key SAR elements that affect relative nSMase2 and/or AChE inhibitor effects and potency, in addition to the identification of two analogs that suppress the release of tau-bearing exosomes in vitro and in vivo. Identification of these novel dual nSMase2/AChE inhibitors represents a new therapeutic approach to AD and has the potential to lead to the development of truly disease-modifying therapeutics.
Collapse
Affiliation(s)
- Tina Bilousova
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Bryan J Simmons
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Rachel R Knapp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chris J Elias
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Jesus Campagna
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Sujyoti Chandra
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Samantha Focht
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Chunni Zhu
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Kanagasabai Vadivel
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Barbara Jagodzinska
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Whitaker Cohn
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Patricia Spilman
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Varghese John
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Abstract
LEARNING OBJECTIVES After participating in this activity, learners should be better able to:• Evaluate the double-dissociation approach to research in neuropsychology• Assess research aiming to provide evidence of double dissociation between neurobiological abnormalities and clinical presentations in psychiatry BACKGROUND: Psychiatric neuroscience research has grown exponentially, but it has not generated the desired breakthroughs in diagnosis, treatment development, or treatment selection. In many instances a given neurobiological abnormality is found in multiple clinical syndromes, and conversely, a clinical syndrome is associated with multiple neurobiological abnormalities. To the extent that neurobiology research is conducted to explain psychiatric manifestations, however, it should also provide insight into how certain brain abnormalities lead to one and not another specific clinical presentation-that is, "double-dissociation." We hypothesized that most psychiatric research studies are not designed to identify such double dissociations. METHODS We selected three leading psychiatric journals (American Journal of Psychiatry, JAMA Psychiatry, and Molecular Psychiatry) that are representative of high-quality psychiatry research and that also provided a sample size that was feasible to screen. We screened all original research manuscripts published over the course of one calendar year (2017) to identify those measuring brain function or biological parameters (which, collectively, we term neurobiological measures) in psychiatric disorders. We asked whether such biological research could provide evidence for a double dissociation of any kind. RESULTS We found that only 7 of 403 articles published in three psychiatry journals, constituting approximately 2% of publications, examined the dissociation of neurobiological measures relating to two psychiatric disorders or symptom clusters. Of these 7 studies, 5 used imaging as research tool; 1 used genotype array; and 1 used polymerase chain reaction (PCR). Sample sizes of the 7 studies ranged from 100 to 2876. CONCLUSION We report on a striking paucity of research aiming to provide evidence of double dissociation between neurobiological abnormalities and clinical presentations in psychiatry. We conclude that this paucity represents a missed opportunity for the field. Double-dissociation approaches have been used successfully in many studies in neurology and psychiatry in the past, and more widespread and explicit adoption of this design may improve the mechanistic insights obtained in psychiatry research.
Collapse
Affiliation(s)
- Can Mişel Kilçiksiz
- From Harvard Medical School and Psychotic Disorders Division, McLean Hospital, Belmont, MA
| | | |
Collapse
|
42
|
Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, Mak E, Nicastro N, Bevan-Jones WR, Su L, Hong YT, Fryer TD, Aigbirhio FI, O’Brien JT, Rowe JB. Microglial activation and tau burden predict cognitive decline in Alzheimer's disease. Brain 2020; 143:1588-1602. [PMID: 32380523 PMCID: PMC7241955 DOI: 10.1093/brain/awaa088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 11/12/2022] Open
Abstract
Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milano, Italy
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland
| | | | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| |
Collapse
|
43
|
Vogels T, Leuzy A, Cicognola C, Ashton NJ, Smolek T, Novak M, Blennow K, Zetterberg H, Hromadka T, Zilka N, Schöll M. Propagation of Tau Pathology: Integrating Insights From Postmortem and In Vivo Studies. Biol Psychiatry 2020; 87:808-818. [PMID: 31735253 DOI: 10.1016/j.biopsych.2019.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Cellular accumulation of aggregated forms of the protein tau is a defining feature of so-called tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and chronic traumatic encephalopathy. A growing body of literature suggests that conformational characteristics of tau filaments, along with regional vulnerability to tau pathology, account for the distinct histopathological morphologies, biochemical composition, and affected cell types seen across these disorders. In this review, we describe and discuss recent evidence from human postmortem and clinical biomarker studies addressing the differential vulnerability of brain areas to tau pathology, its cell-to-cell transmission, and characteristics of the different strains that tau aggregates can adopt. Cellular biosensor assays are increasingly used in human tissue to detect the earliest forms of tau pathology, before overt histopathological lesions (i.e., neurofibrillary tangles) are apparent. Animal models with localized tau expression are used to uncover the mechanisms that influence spreading of tau aggregates. Further, studies of human postmortem-derived tau filaments from different tauopathies injected in rodents have led to striking findings that recapitulate neuropathology-based staging of tau. Furthermore, the recent advent of tau positron emission tomography and novel fluid-based biomarkers render it possible to study the temporal progression of tau pathology in vivo. Ultimately, evidence from these approaches must be integrated to better understand the onset and progression of tau pathology across tauopathies. This will lead to improved methods for the detection and monitoring of disease progression and, hopefully, to the development and refinement of tau-based therapeutics.
Collapse
Affiliation(s)
- Thomas Vogels
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Antoine Leuzy
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Claudia Cicognola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom; Biomedical Research Unit for Dementia, NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, University College London, London, United Kingdom
| | - Tomas Smolek
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia; AXON Neuroscience SE, Larnaca, Cyprus
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom
| | - Tomas Hromadka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
44
|
Abstract
To better understand how diet influences brain aging, we focus here on the presymptomatic period during which prevention may be most effective. Large-scale life span neuroimaging datasets show functional communication between brain regions destabilizes with age, typically starting in the late 40s, and that destabilization correlates with poorer cognition and accelerates with insulin resistance. Targeted experiments show that this biomarker for brain aging is reliably modulated with consumption of different fuel sources: Glucose decreases, and ketones increase the stability of brain networks. This effect replicated across both changes to total diet as well as fuel-specific calorie-matched bolus, producing changes in overall brain activity that suggest that network “switching” may reflect the brain’s adaptive response to conserve energy under resource constraint. Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale (n = 292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester (d-β-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain.
Collapse
|
45
|
The Long-Term Effects of Acupuncture on Hippocampal Functional Connectivity in aMCI with Hippocampal Atrophy: A Randomized Longitudinal fMRI Study. Neural Plast 2020. [DOI: 10.1155/2020/6389368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Acupuncture has been used to treat amnestic mild cognitive impairment (aMCI) for many years in China. However, the long-term effects of continuous acupuncture treatment remained unclear. Objective. We aimed to explore the long-term effects of continuous acupuncture treatment on hippocampal functional connectivity (FC) in aMCI. Methods. Fifty healthy control (HC) participants and 28 aMCI patients were recruited for resting-state functional magnetic resonance imaging (fMRI) at baseline. The 28 aMCI patients were then divided into the aMCI acupuncture group, which received acupuncture treatment for 6 months, and the aMCI control group, which received no intervention. All aMCI patients completed the second resting-state fMRI scanning after 6 months of acupuncture treatment. Analysis based on the region of interest and two-way analysis of covariance were both used to explore the long-term effects of acupuncture on cognition change and hippocampal FC in aMCI. Results. Compared to HC, aMCI showed decreased right hippocampal FC with the right inferior/middle temporal gyrus (ITG/MTG), left amygdala, and the right fusiform and increased FC with bilateral caudates at baseline. After acupuncture treatment, the right hippocampal FC with right ITG/MTG enhanced significantly in the aMCI acupuncture group, but continued to decrease in the aMCI control group. Whole brain FC analysis showed enhanced right hippocampal FC with the right ITG and the left MTG in the aMCI acupuncture group relative to the aMCI control group. Furthermore, FC strength of the right hippocampus with right ITG at baseline was negatively correlated with the changes in memory scores of aMCI acupuncture patients. Conclusion. Acupuncture treatment could alleviate the progression of cognitive decline and could enhance hippocampal FC with ITG and MTG in aMCI that may be associated with resilience to resistant against neurodegeneration. The findings provided a better understanding of the long-term effects of acupuncture treatment and confirmed the therapeutic role of acupuncture in aMCI.
Collapse
|
46
|
Jack CR, Wiste HJ, Botha H, Weigand SD, Therneau TM, Knopman DS, Graff-Radford J, Jones DT, Ferman TJ, Boeve BF, Kantarci K, Lowe VJ, Vemuri P, Mielke MM, Fields JA, Machulda MM, Schwarz CG, Senjem ML, Gunter JL, Petersen RC. The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes. Brain 2019; 142:3230-3242. [PMID: 31501889 PMCID: PMC6763736 DOI: 10.1093/brain/awz268] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Large phenotypically diverse research cohorts with both amyloid and tau PET have only recently come into existence. Our objective was to determine relationships between the bivariate distribution of amyloid-β and tau on PET and established clinical syndromes that are relevant to cognitive ageing and dementia. All individuals in this study were enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive ageing, or the Mayo Alzheimer Disease Research Center, a longitudinal study of individuals recruited from clinical practice. We studied 1343 participants who had amyloid PET and tau PET from 2 April 2015 to 3 May 2019, and met criteria for membership in one of five clinical diagnostic groups: cognitively unimpaired, mild cognitive impairment, frontotemporal dementia, probable dementia with Lewy bodies, and Alzheimer clinical syndrome. We examined these clinical groups in relation to the bivariate distribution of amyloid and tau PET values. Individuals were grouped into amyloid (A)/tau (T) quadrants based on previously established abnormality cut points of standardized uptake value ratio 1.48 (A) and 1.33 (T). Individual participants largely fell into one of three amyloid/tau quadrants: low amyloid and low tau (A-T-), high amyloid and low tau (A+T-), or high amyloid and high tau (A+T+). Seventy per cent of cognitively unimpaired and 74% of FTD participants fell into the A-T- quadrant. Participants with mild cognitive impairment spanned the A-T- (42%), A+T- (28%), and A+T+ (27%) quadrants. Probable dementia with Lewy body participants spanned the A-T- (38%) and A+T- (44%) quadrants. Most (89%) participants with Alzheimer clinical syndrome fell into the A+T+ quadrant. These data support several conclusions. First, among 1343 participants, abnormal tau PET rarely occurred in the absence of abnormal amyloid PET, but the reverse was common. Thus, with rare exceptions, amyloidosis appears to be required for high levels of 3R/4R tau deposition. Second, abnormal amyloid PET is compatible with normal cognition but highly abnormal tau PET is not. These two conclusions support a dynamic biomarker model in which Alzheimer's disease is characterized first by the appearance of amyloidosis and later by tauopathy, with tauopathy being the proteinopathy associated with clinical symptoms. Third, bivariate amyloid and tau PET relationships differed across clinical groups and thus have a role for clarifying the aetiologies underlying neurocognitive clinical syndromes.
Collapse
Affiliation(s)
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
47
|
Sun X, Liang S, Fu L, Zhang X, Feng T, Li P, Zhang T, Wang L, Yin X, Zhang W, Hu Y, Liu H, Zhao S, Nie B, Xu B, Shan B. A human brain tau PET template in MNI space for the voxel-wise analysis of Alzheimer's disease. J Neurosci Methods 2019; 328:108438. [PMID: 31542346 DOI: 10.1016/j.jneumeth.2019.108438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging techniques of tau retention in the human brain are important for mechanistic studies of Alzheimer's disease (AD). However, the method for effectively conducting voxel-wise analysis on tau PET images still needs to be improved. In the present study, we introduced a tau PET template for the human brain in Montreal Neurological Institute (MNI) space for the convenient and reliable voxel-wise analysis of tau PET images in AD studies. NEW METHOD Twenty-four AD patients and 22 controls were used to construct the tau PET template, and an additional 22 subjects (11 AD patients and 11 controls) were enrolled to evaluate the performance of the template. Thirty regions (28 cortical and 2 subcortical regions) throughout the brain were used to evaluate the accuracy of the tau PET template. RESULTS A significant relationship (R2 = 0.848, P < 0.001) was found between the standardized uptake value ratios (SUVRs) obtained by the tau PET template and magnetic resonance imaging (MRI)-aided approach, and the paired-sample t-test showed no significant difference (P = 0.62) between the values. These two approaches revealed consistent brain regions with high tau retention. COMPARISON WITH EXISTING METHODS The tau PET template was comparable with the traditional MRI-aided strategy. Furthermore, compared to the MRI-aided approach, the tau PET template was more convenient and easier to use. More importantly, in most clinical settings, AD patients who underwent PET/computed tomography (CT) typically do not have MR images, in which case the traditional MRI-aided approach would not be applicable. Our tau PET template overcame this deficiency and may serve as a useful tool in AD research. CONCLUSIONS This tau PET template performed well and may serve as a useful tool in future AD studies.
Collapse
Affiliation(s)
- Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Liping Fu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Ting Feng
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Panlong Li
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luying Wang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yin
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Hu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Information Engineering, Xiangtan University, Hunan 411105, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Baixuan Xu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China.
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
48
|
Nie B, Wang L, Hu Y, Liang S, Tan Z, Chai P, Tang Y, Shang J, Pan Z, Zhao X, Zhang X, Gong J, Zheng C, Xu H, Wey HY, Liang SH, Shan B. A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model. Neuroimage 2019; 203:116163. [PMID: 31494249 DOI: 10.1016/j.neuroimage.2019.116163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) is a non-invasive imaging tool for the evaluation of brain function and neuronal activity in normal and diseased conditions with high sensitivity. The macaque monkey serves as a valuable model system in the field of translational medicine, for its phylogenetic proximity to man. To translation of non-human primate neuro-PET studies, an effective and objective data analysis platform for neuro-PET studies is needed. MATERIALS AND METHODS A set of stereotaxic templates of macaque brain, namely the Institute of High Energy Physics & Jinan University Macaque Template (HJT), was constructed by iteratively registration and averaging, based on 30 healthy rhesus monkeys. A brain atlas image was created in HJT space by combining sub-anatomical regions and defining new 88 bilateral functional regions, in which a unique integer was assigned for each sub-anatomical region. RESULTS The HJT comprised a structural MRI T1 weighted image (T1WI) template image, a functional FDG-PET template image, intracranial tissue segmentations accompanied with a digital macaque brain atlas image. It is compatible with various commercially available software tools, such as SPM and PMOD. Data analysis was performed on a stroke model compared with a group of healthy controls to demonstrate the usage of HJT. CONCLUSION We have constructed a stereotaxic template set of macaque brain named HJT, which standardizes macaque neuroimaging data analysis, supports novel radiotracer development and facilitates translational neuro-disorders research.
Collapse
Affiliation(s)
- Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yichao Hu
- College of Information Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Shengxiang Liang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pei Chai
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin Tang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhangsheng Pan
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Xudong Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China.
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
49
|
Benvenutto A, Giusiano B, Koric L, Gueriot C, Didic M, Felician O, Guye M, Guedj E, Ceccaldi M. Imaging Biomarkers of Neurodegeneration in Alzheimer's Disease: Distinct Contributions of Cortical MRI Atrophy and FDG-PET Hypometabolism. J Alzheimers Dis 2019; 65:1147-1157. [PMID: 30124446 DOI: 10.3233/jad-180292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurodegeneration biomarkers are routinely used in the diagnosis of Alzheimer's disease (AD). OBJECTIVE To evaluate the respective contributions of two neuroimaging biomarkers, structural MRI and 18FDG-PET, in the assessment of neurodegeneration in AD dementia. METHODS Patients with mild AD dementia diagnosed based on clinical and cerebrospinal fluid criteria and cognitively healthy subjects, from the Marseille cohort ADAge with cognitive, structural MRI and 18FDG-PET assessments, were included. Extent of atrophy on MRI and of hypometabolism on 18FDG-PET were individually evaluated in each patient using a voxel-based analysis on whole-brain approach and compared to healthy subjects. Patients were divided in distinct groups according to their atrophy extent on the one hand and to their hypometabolism extent on the other, then, to their imaging profile combining the extent of the two biomarkers. RESULTS Fifty-two patients were included. The MMSE score was significantly lower in the "Extensive hypometabolism" group than in the "Limited hypometabolism" group (respectively 19.5/30 versus 23/30). A lower Innotest Amyloid Tau Index was associated with an extensive hypometabolism (p = 0.04). There were more patients with low educational level in the "Extensive atrophy" group, while a higher educational level was more found in the "Limited atrophy" group (p = 0.005). CONCLUSION 18FDG-PET hypometabolism extent is associated with the pathological processes and clinical severity of AD, while MRI atrophy seems to be influenced by the cognitive reserve. In the context of mild AD dementia, these two biomarkers of neurodegeneration are thus not interchangeable and require to be considered in combination rather than in isolation.
Collapse
Affiliation(s)
- Agnès Benvenutto
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernard Giusiano
- Department of Public Health, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Lejla Koric
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Claude Gueriot
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Mira Didic
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Olivier Felician
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, Timone University Hospital, CEMEREM, Marseille, France
| | - Eric Guedj
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.,Department of Nuclear Medecine, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CERIMED, Aix-Marseille Univ, Marseille, France
| | - Mathieu Ceccaldi
- Neurology and Neuropsychology Department and CMMR PACA Ouest, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Institut de Neurosciences des Systèmes, Aix-Marseille Univ, INSERM UMR 1106, Marseille, France
| |
Collapse
|
50
|
Brendel M, Deussing M, Blume T, Kaiser L, Probst F, Overhoff F, Peters F, von Ungern-Sternberg B, Ryazanov S, Leonov A, Griesinger C, Zwergal A, Levin J, Bartenstein P, Yakushev I, Cumming P, Boening G, Ziegler S, Herms J, Giese A, Rominger A. Late-stage Anle138b treatment ameliorates tau pathology and metabolic decline in a mouse model of human Alzheimer's disease tau. Alzheimers Res Ther 2019; 11:67. [PMID: 31370885 PMCID: PMC6670231 DOI: 10.1186/s13195-019-0522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Sergey Ryazanov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrei Leonov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Yakushev
- Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Feodor Lynen-Str. 23, 81377 Munich, Germany
| | - Armin Giese
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| |
Collapse
|