1
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2025; 62:5311-5332. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
3
|
Angeloni E, Germelli L, Costa B, Martini C, Da Pozzo E. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. Neurochem Int 2025; 182:105916. [PMID: 39681140 DOI: 10.1016/j.neuint.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
4
|
He XB, Guo F, Zhang W, Fan J, Le W, Chen Q, Ma Y, Zheng Y, Lee SH, Wang HJ, Wu Y, Zhou Q, Yang R. JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain. Acta Neuropathol Commun 2024; 12:201. [PMID: 39716224 DOI: 10.1186/s40478-024-01912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons. Mice carrying Jmjd3 conditional knockout or undergoing pharmaceutical inhibition of JMJD3 showed consistent reduction of DA content in midbrain and striatum. Histological examination of both mice confirmed that TH and NURR1, two key molecules in DA biosynthesis pathway, were decreased in mDA neurons. Mechanistic experiments in vivo and in vitro further demonstrated that the transcriptions of Th and Nurr1 in mDA neurons were suppressed by JMJD3 deficiency, because of increased repressive H3K27me3 and attenuated bindings of JMJD3 and NURR1 on the promoters of both genes. On behavioral level, a significant prolonged inflammation-induced mechanical hyperalgesia was found in conditional knockout mice regardless of sex and age, whereas motor function appeared to be intact. Our findings establish a novel link between DA level in mDA neurons with intrinsic JMJD3 activity, and suggest prolonged chronic inflammatory pain as a major loss-of-function consequence.
Collapse
Affiliation(s)
- Xi-Biao He
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Fan
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Weidong Le
- Center for Translational Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Qi Chen
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Yongjun Ma
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- The Interdisciplinary Research Center of Biology and Chemistry, Chinese Academy of sciences, Shanghai, 200120, China
| | - Yong Zheng
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Wu
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Yang
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| |
Collapse
|
5
|
Mayer E, Winkler I, Huber E, Urbanek M, Kiechl-Kohlendorfer U, Griesmaier E, Posod A. Effects of DHEA and DHEAS in Neonatal Hypoxic-Ischemic Brain Injury. Antioxidants (Basel) 2024; 13:1542. [PMID: 39765870 PMCID: PMC11726961 DOI: 10.3390/antiox13121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Neonatal brain injury remains a significant issue with limited treatment options. This study investigates the potential of the endogenous neurosteroid dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) as neuroprotective agents, building on evidence of their mechanisms in adult brain injury models. The primary objective was to evaluate their neuroprotective and anti-oxidative properties in a mouse model of neonatal hypoxic-ischemic brain injury. Using the modified Rice-Vannucci model, brain injury was induced in 7-day-old mouse pups, followed by treatment with various concentrations of DHEA and DHEAS (0.1, 1, and 10 µg/g body weight) via intraperitoneal injection after a 2 h recovery period. Mice were sacrificed after 24 hours for analysis of somatometry, brain injury, apoptosis, microglial activation, and oxidative stress markers (NOX2, 4-HNE, 8-OHdG), along with the anti-oxidant marker SOD1. While no statistically significant effects of DHEA or DHEAS were observed at the tested doses and time points, the absence of toxic or adverse effects highlights their safety profile. These findings provide a foundation for further research into optimizing dosing strategies, timing, and delivery methods. Future studies should refine these variables to maximize neuroprotective efficacy, investigate DHEA(S)' exact mechanisms of action, and explore their potential for clinical application in neonatal care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Posod
- Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Paoletti I, Coccurello R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. Int J Mol Sci 2024; 25:13480. [PMID: 39769243 PMCID: PMC11676223 DOI: 10.3390/ijms252413480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress. It promotes osteogenesis and mitigates bone loss in osteoporosis and sarcopenia. Irisin exhibits anti-inflammatory effects by inhibiting NF-κB signaling and countering insulin resistance. In the brain, it reduces amyloid-β toxicity, inflammation, and oxidative stress, enhancing brain-derived neurotrophic factor (BDNF) signaling, which improves cognition and synaptic health in AD models. It also regulates dopamine pathways, potentially alleviating neuropsychiatric symptoms like depression and apathy. By linking physical activity to systemic health, irisin emphasizes its role in the muscle-bone-brain axis. Its multifaceted benefits highlight its potential as a therapeutic target for AD and related disorders, with applications in prevention, in treatment, and as a complement to exercise strategies.
Collapse
Affiliation(s)
- Ilaria Paoletti
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| |
Collapse
|
7
|
Sun R, Ma T, Zhao Z, Gao Y, Feng J, Yang X. Phospholipase D Family Member 4 Regulates Microglial Phagocytosis and Remyelination via the AKT Pathway in a Cuprizone-Induced Multiple Sclerosis Mouse Model. CNS Neurosci Ther 2024; 30:e70111. [PMID: 39548665 PMCID: PMC11567942 DOI: 10.1111/cns.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
AIMS Remyelination is an endogenous repair process that is often deficient in multiple sclerosis (MS). Stimulation of remyelination is thought to help limit the progression of MS. This study aimed to investigate the expression pattern and function of a microglial phagocytosis-related gene, phospholipase D family member 4 (PLD4), in a cuprizone (CPZ)-induced MS mouse model. METHODS The extent of remyelination was assessed using LFB staining. Myelin phagocytosis assay was used to investigate the effect of Pld4 on microglial phagocytic activity. RESULTS Pld4 was upregulated in the corpus callosum during demyelination and remyelination. AAV9-mediated Pld4 deficiency impaired remyelination and reduced the number of Olig2-positive cells. In the corpus callosum of Pld4-deficient mice, the microglial phagocytosis marker MAC2 was reduced, accompanied by inhibition of TrkA/AKT signaling. Similarly, the phagocytosis assay showed that Pld4 knockdown significantly inhibited myelin debris phagocytosis by BV2 cells. The AKT activator SC79 reversed the Pld4 deficiency-induced inhibition of microglial phagocytic activity and rescued the impaired remyelination in Pld4-deficient mice. CONCLUSION PLD4 is upregulated in CPZ-induced MS and modulates microglial phagocytosis and remyelination via the AKT pathway. Our findings provide experimental evidence for a better understanding of the molecular mechanism of MS.
Collapse
Affiliation(s)
- Ran Sun
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Tengyun Ma
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Juan Feng
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| |
Collapse
|
8
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
9
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
10
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Cui M, Meng P, Wang S, Feng Q, Liu G, Zhao P. Differential effects of AKT1 and AKT2 on sleep-wake activity under basal conditions and in response to LPS challenge in mice. Sleep Biol Rhythms 2024; 22:411-421. [PMID: 38962788 PMCID: PMC11217225 DOI: 10.1007/s41105-024-00519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/13/2024] [Indexed: 07/05/2024]
Abstract
Infectious challenge can trigger alterations in sleep-wake behavior. Accumulating evidence has shown that the serine/threonine kinases Akt1 and Akt2 are important targets in both physiological and infectious signaling processes. However, the involvement of Akt1 and Akt2 in sleep-wake activity under basal conditions and in response to inflammatory stimulation has not been established. In the present study, we assessed the precise role of Akt1 and Akt2 in sleep-wake behavior using electroencephalography (EEG)/electromyography (EMG) data from Akt1- and Akt2-deficient mice and wild-type (WT) mice. The results showed that both Akt1 and Akt2 deficiency affect sleep-wake activity, as indicated by reduced nonrapid eye movement (NREM) sleep and increased wakefulness in mutant mice compared to WT mice. Sleep amount and intensity (delta, theta and alpha activity) at night were also drastically attenuated in Akt1- and Akt2-deficient mice. Moreover, since Akt1 and Akt2 are involved in immune responses, we assessed their roles in the sleep response to the inflammatory stimulus lipopolysaccharide (LPS) throughout the following 24 h. We observed that the decrease in wakefulness and increase in NREM sleep induced by LPS were restored in Akt1 knockout mice but not in Akt2 knockout mice. Correspondingly, the decrease in the number of positive orexin-A neurons induced by LPS was abrogated in Akt1 knockout mice but not in Akt2 knockout mice. Our results revealed that both Akt1 and Akt2 deficiency affect the sleep response under basal conditions, but only Akt1 deficiency protects against the aberrant changes in sleep behavior induced by peripheral immune challenge. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-024-00519-y.
Collapse
Affiliation(s)
- Meng Cui
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Pengfei Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Shaohe Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Qingyuan Feng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Guangming Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Peng Zhao
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214000 Jiangsu Province People’s Republic of China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| |
Collapse
|
12
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
13
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Bulut O, Temba GS, Koeken VACM, Moorlag SJCFM, de Bree LCJ, Mourits VP, Kullaya VI, Jaeger M, Qi C, Riksen NP, Domínguez-Andrés J, Xu CJ, Joosten LAB, Li Y, de Mast Q, Netea MG. Common and distinct metabolomic markers related to immune aging in Western European and East African populations. Mech Ageing Dev 2024; 218:111916. [PMID: 38364983 DOI: 10.1016/j.mad.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands.
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cancan Qi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn53115 Germany
| |
Collapse
|
15
|
Li Z, Yuan W, Yang X, Jiang J, Zhang QL, Yan XX, Zuo YC. Maresin 1 Activates LGR6 to Alleviate Neuroinflammation via the CREB/JMJD3/IRF4 Pathway in a Rat Model of Subarachnoid Hemorrhage. Neuroscience 2024; 542:21-32. [PMID: 38340785 DOI: 10.1016/j.neuroscience.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Neuroinflammation is an early event of brain injury after subarachnoid hemorrhage (SAH). Whether the macrophage mediators in resolving inflammation 1 (MaR1) is involved in SAH pathogenesis is unknown. In this study, 205 male Sprague-Dawley rats were subjected to SAH via endovascular perforation in the experimental and control groups. MaR1 was dosed intranasally at 1 h after SAH, with LGR6 siRNA and KG-501, GSK-J4 administered to determine the signaling pathway. Neurobehavioral, histological and biochemical data were obtained from the animal groups with designated treatments. The results showed: (i) The leucine-rich repeat containing G protein-coupled receptor 6 (LGR6) was decreased after SAH and reached to the lowest level at 24 h after SAH. Jumonji d3 (JMJD3) protein levels tended to increase and peaked at 24 h after SAH. LGR6 and JMJD3 expression were co-localized with microglia. (ii) MaR1 administration mitigated short-term neurological deficits, brain edema and long-term neurobehavioral performance after SAH, and attenuated microglial activation and neutrophil infiltration. (iii) Knockdown of LGR6, inhibition of CREB phosphorylation or JMJD3 activity abolished the anti-neuroinflammatory effect of MaR1 on the expression of CREB, CBP, JMJD3, IRF4, IRF5, IL-1β, IL-6 and IL-10, thus prevented microglial activation and neutrophil infiltration. Together, the results show that MaR1 can activate LGR6 and affect CREB/JMJD3/IRF4 signaling to attenuate neuroinflammation after SAH, pointing to a potential pharmacological utility in this disorder.
Collapse
Affiliation(s)
- Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine Central South University, Zhuzhou 412007, China
| | - Xian Yang
- Department of Dermatology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
16
|
Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Current methods for the microglia isolation: Overview and comparative analysis of approaches. Cell Tissue Res 2024; 395:147-158. [PMID: 38099956 DOI: 10.1007/s00441-023-03853-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Microglia represent a distinct population of neuroglia, constituting ~ 10% of all CNS cells and exhibit high plasticity. Proper functioning of microglia is critical in the event of CNS damage due to the rapid modulation of their functions. Microglia are not only the first stage of immune defense against injury and infection, contributing to both the innate and adaptive local immune response, but also play a vital role in maintaining homeostasis of the brain and spinal cord. For this reason, microglia deserve special attention in the study of neuropathological responses. Studying microglia behavior in various in vivo models of neuropathologies is certainly a priority, as it allows us to evaluate the behavior in the context of the changing microenvironment of nervous tissue. However, sometimes there are some technological problems that hinder the identification of the features of intercellular interactions, ensured cooperation between microglia and other cell types. In this regard, the use of in vitro models remains relevant today, contributing to a more in-depth understanding of the mechanisms of microglial involvement in neuropathology. The methods considered in this review for obtaining an isolated culture of microglia, along with their advantages and disadvantages, can help researchers in selecting the appropriate source and method for obtaining these cells, thereby opening up opportunities for gaining new neurobiological knowledge.
Collapse
Affiliation(s)
- E R Akhmetzyanova
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia.
| | - A A Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia
| | - Y O Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
17
|
Millet A, Ledo JH, Tavazoie SF. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer's brains. Immunity 2024; 57:153-170.e6. [PMID: 38159571 PMCID: PMC10805152 DOI: 10.1016/j.immuni.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. An analogous population was detectable in the brains of human AD patients, including in the cortical tissue, using multiplexed spatial transcriptomics. This population, which we designate as terminally inflammatory microglia (TIM), exhibited defects in amyloid-β clearance and altered cell-cell communication during aducanumab treatment. TIM may represent an exhausted-like state for inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 carriers and the elderly, thus presenting a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Alon Millet
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, The Rockefeller University, New York, NY 10065, USA
| | - Jose Henrique Ledo
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Department of Pathology and Laboratory of Medicine, Department of Neuroscience, South Carolina Alzheimer's Disease Research Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
18
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
19
|
Khor SLQ, Ng KY, Koh RY, Chye SM. Blood-brain Barrier and Neurovascular Unit Dysfunction in Parkinson's Disease: From Clinical Insights to Pathogenic Mechanisms and Novel Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:315-330. [PMID: 36999187 DOI: 10.2174/1871527322666230330093829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.
Collapse
Affiliation(s)
- Sarah Lei Qi Khor
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Liu L, Zhang R, Chen C, Xia C, Yao G, He X, Xia B. The effect of Banxia-houpo decoction on CUMS-induced depression by promoting M2 microglia polarization via TrkA/Akt signalling. J Cell Mol Med 2023; 27:3339-3353. [PMID: 37581474 PMCID: PMC10623515 DOI: 10.1111/jcmm.17906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
It has been reported that Banxia-houpo decoction (BXHPD) serves as the anti-depressant treatment for a mild and severe depressive disease with limited side effects. The present study was performed to evaluate the protective effect of BXHPD on chronic unpredicted mild stress (CUMS)-induced depression and explore its effect on TrkA/Akt-mediated microglia polarization. The CUMS procedure was carried out, and the mice were intragastrically treated with BXHPD once daily. The selective TrkA inhibitor GW441756 was applied to further investigate the role of TrkA in BXHPD-mediated microglia polarization. The behaviour test including open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), tail suspension test (TST) and forced swim test (FST) was performed. The concentrations of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, IL-12 and anti-inflammatory cytokines IL-4, IL-10 were determined using Enzyme-linked immunosorbent assay. The population of Iba1+ cells and the length of microglia processes were observed under the fluorescence microscope. The mRNA expressions of Arg1, Ym1 and Fizzl1 were measured by PCR. The protein expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3 were detected by western blot. Our results showed that BXHPD attenuated CUMS-induced depressive-like behaviour, promoted anti-inflammatory cytokines, inhibited pro-inflammatory cytokines, suppressed microglia activation, promoted M2 phenotype-specific indices and upregulated the expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3. The above beneficial effect of BXHPD can be blocked by TrkA inhibitor GW441756. This work demonstrated that BXHPD exerted an anti-depressant effect by promoting M2 phenotype microglia polarization via TrkA/Akt pathway.
Collapse
Affiliation(s)
- Li Liu
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Rong Zhang
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Chang Chen
- School of Elderly Care Services and ManagementNanjing University of Chinese MedicineNanjingChina
| | - Changbo Xia
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiaogang He
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Baomei Xia
- School of PharmacyGuangdong Medical UniversityDongguanChina
- Faculty of Rehabilitation ScienceNanjing Normal University of Special EducationNanjingChina
| |
Collapse
|
21
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
22
|
Narducci D, Charou D, Rogdakis T, Zota I, Bafiti V, Zervou M, Katsila T, Gravanis A, Prousis KC, Charalampopoulos I, Calogeropoulou T. A quest for the stereo-electronic requirements for selective agonism for the neurotrophin receptors TrkA and TrkB in 17-spirocyclic-dehydroepiandrosterone derivatives. Front Mol Neurosci 2023; 16:1244133. [PMID: 37840771 PMCID: PMC10568017 DOI: 10.3389/fnmol.2023.1244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The neurotrophin system plays a pivotal role in the development, morphology, and survival of the nervous system, and its dysregulation has been manifested in numerous neurodegenerative and neuroinflammatory diseases. Neurotrophins NGF and BDNF are major growth factors that prevent neuronal death and synaptic loss through binding with high affinity to their specific tropomyosin-related kinase receptors namely, TrkA and TrkB, respectively. The poor pharmacokinetic properties prohibit the use of neurotrophins as therapeutic agents. Our group has previously synthesized BNN27, a prototype small molecule based on dehydroepiandrosterone, mimicking NGF through the activation of the TrkA receptor. Methods To obtain a better understanding of the stereo-electronic requirements for selective activation of TrkA and TrkB receptors, 27 new dehydroepiandrosterone derivatives bearing a C17-spiro-dihydropyran or cyclobutyl moiety were synthesized. The new compounds were evaluated for their ability (a) to selectively activate the TrkA receptor and its downstream signaling kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death, and (b) to induce phosphorylation of TrkB and to promote cell survival under serum deprivation conditions in NIH3T3 cells stable transfected with the TrkB receptor and primary cortical astrocytes. In addition the metabolic stability and CYP-mediated reaction was assessed. Results Among the novel derivatives, six were able to selectively protect PC12 cells through interaction with the TrkA receptor and five more to selectively protect TrkB-expressing cells via interaction with the TrkB receptor. In particular, compound ENT-A025 strongly induces TrkA and Erk1/2 phosphorylation, comparable to NGF, and can protect PC12 cells against serum deprivation-induced cell death. Furthermore, ENT-A065, ENT-A066, ENT-A068, ENT-A069, and ENT-A070 showed promising pro-survival effects in the PC12 cell line. Concerning TrkB agonists, ENT-A009 and ENT-A055 were able to induce phosphorylation of TrkB and reduce cell death levels in NIH3T3-TrkB cells. In addition, ENT-A076, ENT-A087, and ENT-A088 possessed antiapoptotic activity in NIH-3T3-TrkB cells exclusively mediated through the TrkB receptor. The metabolic stability and CYP-mediated reaction phenotyping of the potent analogs did not reveal any major liabilities. Discussion We have identified small molecule selective agonists of TrkA and TrkB receptors as promising lead neurotrophin mimetics for the development of potential therapeutics against neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniele Narducci
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Despoina Charou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Thanasis Rogdakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Ioanna Zota
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Achille Gravanis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Ioannis Charalampopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | | |
Collapse
|
23
|
Gao Y, Yu W, Song J, Nie J, Cui Z, Wen S, Liu B, Liang H. JMJD3 ablation in myeloid cells confers renoprotection in mice with DOCA/salt-induced hypertension. Hypertens Res 2023; 46:1934-1948. [PMID: 37248323 DOI: 10.1038/s41440-023-01312-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Hypertension-induced renal injury is characterized by robust inflammation and tubulointerstitial fibrosis. Jumonji domain containing-3 (JMJD3) is closely linked with inflammatory response and fibrogenesis. Here we examined the effect of myeloid JMJD3 ablation on kidney inflammation and fibrosis in deoxycorticosterone acetate (DOCA)/salt hypertension. Our results showed that JMJD3 is notably induced in the kidneys with hypertensive injury. DOCA/salt stress causes an elevation in blood pressure that was no difference between myeloid specific JMJD3-deficient mice and wild-type control mice. Compared with wild-type control mice, myeloid JMJD3 ablation ameliorated kidney function and injury of mice in response to DOCA/salt challenge. Myeloid JMJD3 ablation attenuated collagen deposition, extracellular matrix proteins expression, and fibroblasts activation in injured kidneys following DOCA/salt treatment. Furthermore, myeloid JMJD3 ablation blunts inflammatory response in injured kidneys after DOCA/salt stress. Finally, myeloid JMJD3 ablation precluded myeloid myofibroblasts activation and protected against macrophages to myofibroblasts transition in injured kidneys. These beneficial effects were accompanied by reduced expression of interferon regulator factor 4. In summary, JMJD3 ablation in myeloid cells reduces kidney inflammation and fibrosis in DOCA salt-induced hypertension. Inhibition of myeloid JMJD3 may be a novel potential therapeutic target for hypertensive nephropathy. Myeloid JMJD3 deficiency reduces inflammatory response, myeloid fibroblasts activation, macrophages to myofibroblasts transition, and delays kidney fibrosis progression.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Wenqiang Yu
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Jinfang Song
- Zhuhai Campus, Zunyi Medical University, Zhuhai, 519041, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Zichan Cui
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Shihong Wen
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China
| | - Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| |
Collapse
|
24
|
Prakash C, Rabidas SS, Tyagi J, Sharma D. Dehydroepiandrosterone Attenuates Astroglial Activation, Neuronal Loss and Dendritic Degeneration in Iron-Induced Post-Traumatic Epilepsy. Brain Sci 2023; 13:brainsci13040563. [PMID: 37190528 DOI: 10.3390/brainsci13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-induced experimental epilepsy in rodents reproduces features of post-traumatic epilepsy (PTE) in humans. The neural network of the brain seems to be highly affected during the course of epileptogenesis and determines the occurrence of sudden and recurrent seizures. The aim of the current study was to evaluate astroglial and neuronal response as well as dendritic arborization, and the spine density of pyramidal neurons in the cortex and hippocampus of epileptic rats. We also evaluated the effect of exogenous administration of a neuroactive steroid, dehydroepiandrosterone (DHEA), in epileptic rats. To induce epilepsy, male Wistar rats were given an intracortical injection of 100 mM solution (5 µL) of iron chloride (FeCl3). After 20 days, DHEA was administered intraperitoneally for 21 consecutive days. Results showed epileptic seizures and hippocampal Mossy Fibers (MFs) sprouting in epileptic rats, while DHEA treatment significantly reduced the MFs’ sprouting. Astroglial activation and neuronal loss were subdued in rats that received DHEA compared to epileptic rats. Dendritic arborization and spine density of pyramidal neurons was diminished in epileptic rats, while DHEA treatment partially restored their normal morphology in the cortex and hippocampus regions of the brain. Overall, these findings suggest that DHEA’s antiepileptic effects may contribute to alleviating astroglial activation and neuronal loss along with enhancing dendritic arborization and spine density in PTE.
Collapse
|
25
|
DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis. Int J Mol Sci 2023; 24:ijms24065301. [PMID: 36982376 PMCID: PMC10049419 DOI: 10.3390/ijms24065301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) is an abundant steroid and precursor of sex hormones. During aging, the reduction in DHEA synthesis causes a significant depletion of estrogens and androgens in different organs, such as the ovaries, brain, and liver. Primary Biliary Cholangitis (PBC) is a cholestatic liver disease that begins with immune-mediated bile duct damage, and is followed by liver fibrosis, and finally, cirrhosis. PBC primarily affects postmenopausal women, with an average age of diagnosis of 65 years, but younger women are also affected. Here, we analyzed the levels of DHEA, estradiol (E2), and estriol (E3) in the PBC sera of females at an age of diagnosis under 40 (n = 37) and above 65 (n = 29). Our results indicate that in PBC patients at an age of diagnosis under 40, E2 was significantly lower compared to that in healthy women. In contrast, the levels of DHEA and E3 were in a normal range. Furthermore, ELISA assays revealed that in PBC patients at an age of diagnosis above 65, the levels of DHEA, E2, and E3 significantly declined in comparison to those in younger patients. In addition, flow cytometry analysis showed that the level of IL-8 significantly decreased while the level of TNF-α increased in older PBC patients compared to younger ones. Moreover, we showed for the first time that the sulfonated form of DHEA, DHEA-S, reduces the levels of both pro-inflammatory interleukins, IL-8 and TNF-α, in PBC-like cholangiocytes (H69-miR506), while it diminishes the level of the pro-fibrotic interleukin, IL-13, in hepatocytes (Hep-G2). Finally, we demonstrated that the expression of the pro-fibrotic agent TGF-β significantly increased in both the early (F0–F3) and cirrhotic (F4) stages of PBC, and this elevation was accompanied by higher α-SMA expression.
Collapse
|
26
|
Zhang X, Huang Y, Xu N, Feng W, Qiao J, Liu M. Low serum dehydroepiandrosterone levels are associated with diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes Investig 2023; 14:675-685. [PMID: 36811237 PMCID: PMC10119925 DOI: 10.1111/jdi.13997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
AIMS This cross-sectional study assessed the association of serum dehydroepiandrosterone levels with the risk of diabetic retinopathy in patients with type 2 diabetes mellitus in China. MATERIALS AND METHODS Patients with type 2 diabetes mellitus were included in a multivariate logistic regression analysis to assess the association of dehydroepiandrosterone with diabetic retinopathy after adjusting for confounding factors. A restricted cubic spline was also used to model the association of serum dehydroepiandrosterone level with the risk of diabetic retinopathy and to describe the overall dose-response correlation. Additionally, an interaction test was conducted in the multivariate logistic regression analysis to compare the effects of dehydroepiandrosterone on diabetic retinopathy among age, sex, obesity status, hypertension, dyslipidemia, and glycosylated hemoglobin level subgroups. RESULTS In total, 1,519 patients were included in the final analysis. Low serum dehydroepiandrosterone was significantly associated with diabetic retinopathy in patients with type 2 diabetes mellitus after adjustment for confounding factors (odds ratio [quartile 4 vs quartile 1]: 0.51; 95% confidence interval: 0.32-0.81; P = 0.012 for the trend). Additionally, the restricted cubic spline indicated that the odds of diabetic retinopathy decreased linearly as the dehydroepiandrosterone concentration increased (P-overall = 0.044; P-nonlinear = 0.364). Finally, the subgroup analyses showed that the dehydroepiandrosterone level stably affected diabetic retinopathy (all P for interaction >0.05). CONCLUSIONS Low serum dehydroepiandrosterone levels were significantly associated with diabetic retinopathy in patients with type 2 diabetes mellitus, suggesting that dehydroepiandrosterone contributes to the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yadi Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
29
|
Zhang X, Yao W, Zhao W, Sun Y, Wu Z, He W, Ji Y, Gao Y, Niu X, Li L, Wang H. The construction of neurogenesis-related ceRNA network of ischemic stroke treated by oxymatrine. Neuroreport 2022; 33:641-648. [PMID: 36126261 PMCID: PMC9477865 DOI: 10.1097/wnr.0000000000001827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Known as a disease associated with high mortality, disability and a significant financial burden, ischemic stroke ranks as one of the three diseases threatening human health. Recent advances in omics technology created opportunities to uncover the mechanism in ischemic stroke occurrence and treatment. In this study, we aimed to construct the competitive endogenous RNA (ceRNA) networks of ischemic stroke treated by oxymatrine intervention. METHOD The middle cerebral artery occlusion (MCAO) mouse model of ischemic stroke was constructed, and oxymatrine was administered. Then RNA-Sequencing was performed and integrated analysis of mRNAs, lncRNAs and circRNAs was conducted to reveal the pharmacology of oxymatrine. Functional enrichment analysis was performed to explore the underlying mechanism of differentially expressed (DE) mRNAs. The protein-protein interaction (PPI) network of neurogenesis-related genes and long noncoding RNAs (lncRNAs)/circular RNAs (circRNAs) based ceRNA networks were constructed. RESULTS First, this study revealed the DE-mRNAs, DE-lncRNAs and DE-circRNAs between Oxymatrine treated group and the MCAO group. Then, the common 1231 DE-mRNAs, 32 DE-lncRNAs and 31 DE-circRNAs with opposite trends were identified. The Kyoto Encyclopedia of Genes and Genomes to identify the functional enrichment of 1231 DE-mRNAs were enriched in neurogenesis-related biological processes. Based on neurogenesis-related DE-mRNAs, the PPI network was constructed, and hub genes were identified based on centrality. Finally, both the lncRNA-based and circRNAs-based ceRNA networks were constructed. CONCLUSION In summary, this study identified novel coding and noncoding ischemic stroke targets of oxymatrine-treated MCAO. Most importantly, we identified lncRNAs and circRNAs candidates as potential oxymatrine targets and constructed the neurogenesis-related ceRNA networks.
Collapse
Affiliation(s)
| | - Wentao Yao
- Department of Neurology, Hebei General Hospital
| | - Wannian Zhao
- Department of Neurology, Hebei General Hospital
- The Graduate School of Hebei Medical University, Hebei Medical University, ZhongShanDong Road, Shijiazhuang, Hebei, China
| | - Yingru Sun
- Department of Neurology, Hebei General Hospital
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital
| | - Weiliang He
- Department of Neurology, Hebei General Hospital
| | - Yingxiao Ji
- Department of Neurology, Hebei General Hospital
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital
| | - Litao Li
- Department of Neurology, Hebei General Hospital
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital
| |
Collapse
|
30
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
31
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
32
|
Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z, Yan H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol 2022; 110:109045. [DOI: 10.1016/j.intimp.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
|
33
|
Ding H, Wang Y, Li Z, Li Q, Liu H, Zhao J, Lu W, Wang J. Baogong decoction treats endometritis in mice by regulating uterine microbiota structure and metabolites. Microb Biotechnol 2022; 15:2786-2799. [PMID: 35932174 DOI: 10.1111/1751-7915.14127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022] Open
Abstract
Endometritis is persistent inflammation caused by bacteria, which can lead to infertility. Although traditional Chinese medicine (TCM) has been used to treat endometritis, the underlying mechanism is still unclear. Here, Baogong Decoction (BGD), a TCM compound, was used to treat mouse endometritis induced by Escherichia coli (E. coli), and then 16S rRNA sequencing and non-targeted metabolomics were used to investigate the change of uterine microbiota and metabolomes in serum and uterine after BGD treatment. Finally, the therapeutic effect of potential metabolites for treating mouse endometritis screened by combined omics analyses was verified using pathological model. The results showed that BGD treatment could effectively treat endometritis associated with the increasing relative abundance of Firmicutes, Bacteroides, Lactobacillus and Lactococcus, and the decreasing relative abundance of Cupriavidus and Proteobacteria. 133 and 130 metabolites were found to be potential biomarkers in serum and uterine tissue respectively. In serum and tissues, dehydroepiandrosterone (DHEA) and catechol were significantly increased in the BGD treatment versus the inflammation group. Results of combined omics analyses demonstrated that DHEA was positively correlated with changes in microbiota. Results of pathological model demonstrated that DHEA could cure endometritis effectively associated with the decreasing infiltration of inflammatory cells and expression of inflammatory factors in the uterus. In summary, our results demonstrated that BGD could cure endometritis in mice by modulating the structure of the uterine microbiota and its metabolites, in which DHEA may be one of the main components of the therapeutic effect of BGD.
Collapse
Affiliation(s)
- He Ding
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Youyuan Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qianqing Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
34
|
A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells 2022; 11:cells11111835. [PMID: 35681529 PMCID: PMC9180430 DOI: 10.3390/cells11111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Microglia are the only immune cell population present in the brain parenchyma. Their vantage position in the central nervous system (CNS) enables these myeloid cells to perform the most disparate of tasks: from the classical immune functions of fighting infections and surveilling the extracellular space for pathogens and damage, to sculpting the neuronal circuitry by pruning unnecessary synapses and assisting neurons in spine formation, aiding in the maintenance of brain homeostasis. The neurotrophin field has always been dominated by the neurocentric view that the primary target of these molecules must be neurons: this holds true even for the Nerve Growth Factor (NGF), which owes its popularity in the neuroscience community to its trophic and tropic activity towards sensory and sympathetic neurons in the peripheral nervous system, and cholinergic neurons in the CNS. The increasing evidence that microglia are an integral part of neuronal computation calls for a closer look as to whether these glial cells are capable of responding directly to NGF. In this review, we will first outline evidence in support of a role for NGF as a molecule mediating neuroimmune communication. Then, we will illustrate some of those non-immune features that have made microglial cells one of the hottest topics of this last decade. In conclusion, we will discuss evidence in support of a microglial function for NGF.
Collapse
|
35
|
Dehydroepiandrosterone exacerbates nigericin-induced abnormal autophagy and pyroptosis via GPER activation in LPS-primed macrophages. Cell Death Dis 2022; 13:372. [PMID: 35440074 PMCID: PMC9018772 DOI: 10.1038/s41419-022-04841-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
As a widely acknowledged FDA-approved dietary supplement or over-the-counter medicines, dehydroepiandrosterone (DHEA) exerts anti-inflammatory and immunomodulatory function. Pyroptosis is an important form of programmed cell death (PCD), and which acts a key role in the body's anti-infection and inflammatory responses. But the effects and mechanisms of DHEA on pyroptosis remain unclear. Here, we found that DHEA inhibited the NLRP3 inflammasome components expression by blocking inflammatory signals in lipopolysaccharide (LPS)-primed macrophages, and prevented the bacterial toxin nigericin (Nig)-induced NLRP3 inflammasome assembly. However, DHEA exacerbated NLRP3-independent cell death in Nig-treated inflammatory macrophages. During this process, DHEA induced the abnormal autophagy, which reflected as the blocking of autophagic flux and the accumulation of autophagy receptor p62 (SQSTM1) protein. In addition, DHEA caused a burst of reactive oxygen species (ROS) and activated extracellular signal-regulated kinase (ERK) phosphorylation in LPS plus Nig-stimulated macrophages but not in LPS-treated macrophages. Mechanistically, the present study certified that the activation of G protein-coupled estrogen receptor (GPER) signal mediated the cell death induced by DHEA in Nig-stimulated inflammatory macrophages, as GPER specific inhibitor G15 alleviated the abnormal autophagy and ultimately prevented the gasdermin D (GSDMD)-mediated pyroptosis induced by DHEA. Collectively, DHEA can exacerbate Nig-induced abnormal autophagy and pyroptosis via activation of GPER in LPS-primed macrophages, which prompts us the potential application value of DHEA in anti-infection or anti-tumor immunity.
Collapse
|
36
|
ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules 2022; 12:biom12030424. [PMID: 35327616 PMCID: PMC8946810 DOI: 10.3390/biom12030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or the neurosteroid dehydroepiandrosterone (DHEA) may combat neurodegeneration and regulate microglial function. In the present study, we synthesized a C-17-spiro-cyclopropyl DHEA derivative (ENT-A010), which was capable of activating TRKA. ENT-A010 protected PC12 cells against serum starvation-induced cell death, dorsal root ganglia (DRG) neurons against NGF deprivation-induced apoptosis and hippocampal neurons against Aβ-induced apoptosis. In addition, ENT-A010 pretreatment partially restored homeostatic features of microglia in the hippocampus of lipopolysaccharide (LPS)-treated mice, enhanced Aβ phagocytosis, and increased Ngf expression in microglia in vitro. In conclusion, the small molecule ENT-A010 elicited neuroprotective effects and modulated microglial function, thereby emerging as an interesting compound, which merits further study in the treatment of CNS disorders.
Collapse
|
37
|
Lactylation: a Passing Fad or the Future of Posttranslational Modification. Inflammation 2022; 45:1419-1429. [PMID: 35224683 PMCID: PMC9197907 DOI: 10.1007/s10753-022-01637-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
Lactate is a glycolytic product and a significant energy source. Moreover, it regulates gene transcription via lactylation of histones and non-histone proteins, i.e., a novel posttranslational modification. This review summarizes recent advances related to lactylation in lactate metabolism and diseases. Notably, lactylation plays a vital role in cancer, inflammation, and regeneration; however, the specific mechanism remains unclear. Histone lactylation regulates oncogenic processes by targeting gene transcription and inflammation via macrophage activation. Eventually, we identified research gaps and recommended several primary directions for further studies.
Collapse
|
38
|
Isoform-selective HDAC Inhibitor Mocetinostat (MGCD0103) Alleviates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection through the HDACs/CREB/PGC-1α Signaling Pathway. J Cardiovasc Pharmacol 2021; 79:217-228. [PMID: 34983914 DOI: 10.1097/fjc.0000000000001174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Over the past decade, histone deacetylases (HDACs) has been proven to manipulate development and exacerbation of cardiovascular diseases, including myocardial ischemia/reperfusion injury (MIRI), cardiac hypertrophy, ventricular remodeling, myocardial fibrosis. Inhibition of histone deacetylases, especially class-I HDACs, is potent to protection of ischemic myocardium after ischemia/reperfusion. Herein, we examine whether mocetinostat (MGCD0103, MOCE), a class-I selective HDAC inhibitor in phase-II clinical trial, conducts cardioprotection under ischemia/reperfusion (I/R) in vivo and vitro, if so, reveal its potential pharmacological mechanism to provide an experimental and theoretical basis for mocetinostat usage in a clinical setting. HCMs were exposed to hypoxia and reoxygenation (H/R), with or without mocetinostat treatment. H/R reduced mitochondrial membrane potential (MMP) and induced HCMs apoptosis. Mocetinostat pre-treatment reversed these H/R-induced mitochondrial damage and cellular apoptosis and upregulated CREB, p-CREB and PGC-1α in HCMs during H/R. Transfection with siRNA against PGC-1α or CREB abolished the protective effects of mocetinostat on cardiomyocytes undergoing H/R. In vivo, mocetinostat was demonstrated to protect myocardial injury posed by myocardial ischemia/reperfusion (I/R) via activation of CREB and upregulation of PGC-1α. Mocetinostat (MGCD0103) can protect myocardium from ischemia/reperfusion injury through mitochondrial protection mediated by CREB/PGC-1α pathway. Therefore, activation of the CREB/PGC-1α signaling pathway via inhibition of Class-I HDACs may be a promising new therapeutic strategy for alleviating myocardial reperfusion injury.
Collapse
|
39
|
Li L, Wang H, Yao Y, Cao J, Jiang Z, Yan W, Chu X, Li Q, Lu M, Ma H. The sex steroid precursor dehydroepiandrosterone prevents nonalcoholic steatohepatitis by activating the AMPK pathway mediated by GPR30. Redox Biol 2021; 48:102187. [PMID: 34781165 PMCID: PMC8604675 DOI: 10.1016/j.redox.2021.102187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) caused by estrogen deficiency increased sharply in recent decades and has become a major threat to liver health in postmenopausal women. There is no effective strategy to control the incidence and development of NASH. Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid with immune and metabolic regulatory properties, and its level markedly declines with increasing age in humans. Importantly, DHEA can convert into active sex hormones depending on the local needs of target tissues with little diffusion, which serves to avoid systemic side-effects from other tissues' exposure to estrogen. Here, we found that DHEA prevented the incidence and development of NASH, which is characterized by the reduction of hepatic steatosis, fibrosis, and inflammation in female mice fed with high-fat/high-cholesterol diets and effectively attenuated lipid accumulation, inflammatory response, and oxidative stress in palmitic acid-challenged hepatocytes. Mechanistically, in vitro and in vivo studies showed that the anti-NASH function of DHEA depended on its biotransformation into estrogen rather than androgen, and which up-regulates the expression of G protein-coupled estrogen receptor (GPR30), a non-classical estrogen receptor. The activation of GPR30-mediated AMP-activated protein kinase signaling is a necessary prerequisite for the alleviative effects of DHEA on NASH. Collectively, our data show the mechanisms of DHEA treatment and its effects on NASH that were previously overlooked; the data also show that GPR30 can be used as a target for treating lipid metabolism disorders and related diseases, such as NASH. Furthermore, these findings have the potential to help researchers develop new strategies for preventing NASH in postmenopausal women.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjun Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyuan Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Chu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaomiao Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
41
|
Hou Y, Yang D, Wang X, Wang H, Zhang H, Wang P, Liu Y, Gao X, Yang J, Wu C. Pseudoginsenoside-F11 promotes functional recovery after transient cerebral ischemia by regulating the microglia/macrophage polarization in rats. Int Immunopharmacol 2021; 99:107896. [PMID: 34246061 DOI: 10.1016/j.intimp.2021.107896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
The polarization of microglia/macrophages after cerebral ischemia is critical for post-stroke damage/recovery. Previously, we found that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, has neuroprotective effects on permanent and transient cerebral ischemia in rats. This study aimed to investigate the effects and potential mechanisms of PF11 on microglia/macrophage polarization following transient cerebral ischemia in rats. In vivo data showed that oral administration of PF11 (12 mg/kg) significantly attenuated cognitive deficits and sensorimotor dysfunction, infarct volume and brain edema in transient middle cerebral artery occlusion (tMCAO)-treated rats, as well as reduced the loss of neurons and the over-activation of microglia in penumbra of ipsilateral striatum and cortex. Notably, the proportion of M2 microglia/macrophages in the total activated microglia/macrophages peaked on day 14 after tMCAO in rats, while PF11 promoted its peak advancing to day 3 post-tMCAO, which allowing the damaged brain to enter the repair period more quickly. Furthermore, PF11 increased the expression of anti-inflammatory markers and decreased the expression of pro-inflammatory markers in ipsilateral striatum and cortex. In addition, in vitro data showed that PF11 inhibited the induction of M1 microglia by oxygen glucose deprivation/re-oxygenation (OGD/R)-induced neurons, and promoted the polarization of microglia to M2 phenotype in a Jumonji domain-containing protein 3 (Jmjd3)-dependent manner. Moreover, PF11 promoted the protection of M2 microglia and attenuated the exacerbation of M1 microglia on OGD/R-induced neuronal damage. Taken together, these results indicate that PF11 protects ischemic neurons by promoting M2 microglia/macrophage polarization in a Jmjd3-dependent manner, ultimately facilitating the functional recovery following transient cerebral ischemia.
Collapse
Affiliation(s)
- Ying Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Depeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xianshi Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Pengwei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yinglu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiaoyun Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
42
|
Wang J, Liu B, Xu Y, Luan H, Wang C, Yang M, Zhao R, Song M, Liu J, Sun L, You J, Wang W, Sun F, Yan H. Thioperamide attenuates neuroinflammation and cognitive impairments in Alzheimer's disease via inhibiting gliosis. Exp Neurol 2021; 347:113870. [PMID: 34563511 DOI: 10.1016/j.expneurol.2021.113870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-β (Aβ) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aβ clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haiyun Luan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Runming Zhao
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Linshan Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
43
|
Poulaki S, Rassouli O, Liapakis G, Gravanis A, Venihaki M. Analgesic and Anti-Inflammatory Effects of the Synthetic Neurosteroid Analogue BNN27 during CFA-Induced Hyperalgesia. Biomedicines 2021; 9:biomedicines9091185. [PMID: 34572370 PMCID: PMC8469064 DOI: 10.3390/biomedicines9091185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Dehydroepiandrosterone (DHEA), an adrenal and neurosteroid hormone with strong neuroprotective and immunomodulatory properties, and ligand for all high-affinity neurotrophin tyrosine kinase receptors (Trk), also exerts important effects on hyperalgesia. Its synthetic, 17-spiro-epoxy analogue, BNN27, cannot be converted to estrogen or androgen as DHEA; it is a specific agonist of TrkA, the receptor of pain regulator Nerve Growth Factor (NGF), and it conserves the immunomodulatory properties of DHEA. Our study aimed to evaluate the anti-nociceptive and anti-inflammatory properties of BNN27 during Complete Freund’s Adjuvant (CFA)-induced inflammatory hyperalgesia in mice. Hyperalgesia was evaluated using the Hargreaves test. Inflammatory markers such as cytokines, NGF and opioids were measured, additionally to corticosterone and the protein kinase B (AKT) signaling pathway. We showed for the first time that treatment with BNN27 reversed hyperalgesia produced by CFA. The effect of BNN27 involved the inhibition of NGF in the dorsal root ganglia (DRG) and the increased synthesis of opioid peptides and their receptors in the inflamed paw. We also found alterations in the cytokine levels as well as in the phosphorylation of AKT2. Our findings strongly support that BNN27 represents a lead molecule for the development of analgesic and anti-inflammatory compounds with potential therapeutic applications in inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Smaragda Poulaki
- Department of Clinical Chemistry, Medical School, University of Crete, Voutes, 71110 Heraklion, Greece; (S.P.); (O.R.)
| | - Olga Rassouli
- Department of Clinical Chemistry, Medical School, University of Crete, Voutes, 71110 Heraklion, Greece; (S.P.); (O.R.)
| | - George Liapakis
- Department of Pharmacology, Medical School, University of Crete, Voutes, 71110 Heraklion, Greece; (G.L.); (A.G.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Voutes, 71110 Heraklion, Greece; (G.L.); (A.G.)
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, 71110 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, Medical School, University of Crete, Voutes, 71110 Heraklion, Greece; (S.P.); (O.R.)
- Correspondence: ; Tel.: +30-2810-394583
| |
Collapse
|
44
|
Xiao J, Cai T, Fang Y, Liu R, Flores JJ, Wang W, Gao L, Liu Y, Lu Q, Tang L, Zhang JH, Lu H, Tang J. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation 2021; 18:160. [PMID: 34275493 PMCID: PMC8286626 DOI: 10.1186/s12974-021-02209-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is defined by the rupture of immature blood vessels in the germinal matrix, where subsequent hemorrhage enters the subependymal zone and the cerebral lateral ventricles. The consequent blood clot has been identified as the causative factor of secondary brain injury, which triggers a series of complex parallel and sequential harmful mechanisms, including neuroinflammation. The orphan G-protein-coupled receptor 40 (GPR40), a free fatty acid (FFA) receptor 1, has been shown to exert anti-inflammatory effects when activated and improved outcomes in animal models of stroke. We aimed to investigate the anti-inflammatory effects of GPR40 and its underlying mechanisms after GMH. METHODS GMH model was induced in 7-day-old rat pups by an intraparenchymal injection of bacterial collagenase. GPR40 agonist, GW9508, was administered intranasally 1 h, 25 h, and 49 h after GMH induction. CRISPR targeting GPR40, PAK4, and KDM6B were administered through intracerebroventricular injection 48 h before GMH induction. Neurologic scores, microglia polarization, and brain morphology were evaluated by negative geotaxis, right reflex, rotarod test, foot fault test, Morris water maze, immunofluorescence staining, Western blots, and nissl staining respectfully. RESULTS The results demonstrated that GW9508 improved neurological and morphological outcomes after GMH in the short (24 h, 48 h, 72h) and long-term (days 21-27). However, the neuroprotective effects of treatment were abolished by GW1100, a selective GPR40 antagonist. GW9508 treatment increased populations of M2 microglia and decreased M1 microglia in periventricular areas 24 h after GMH induction. GW9508 upregulated the phosphorylation of PAK4, CREB, and protein level of KDM6B, CD206, IL-10, which was also met with the downregulation of inflammatory markers IL-1β and TNF-α. The mechanism study demonstrated that the knockdown of GPR40, PAK4, and KDM6B reversed the neuroprotective effects brought on by GW9508. This evidence suggests that GPR40/PAK4/CREB/KDM6B signaling pathway in microglia plays a role in the attenuation of neuroinflammation after GMH. CONCLUSIONS In conclusion, the present study demonstrates that the activation of GPR40 attenuated GMH-induced neuroinflammation through the activation of the PAK4/CREB/KDM6B signaling pathway, and M2 microglia may be a major mediator of this effect. Thus, GPR40 may serve as a potential target in the reduction of the inflammatory response following GMH, thereby improving neurological outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Tao Cai
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | - Yuanjian Fang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Yu Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lihui Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
| |
Collapse
|
45
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
46
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
47
|
Wang Y, Pan W, Bai X, Wang X, Wang Y, Yin Y. microRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: Mechanisms and cardioprotective implications. J Cell Mol Med 2021; 25:5082-5098. [PMID: 33949117 PMCID: PMC8178253 DOI: 10.1111/jcmm.16491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to investigate the mechanism by which miR-454 influences the progression of heart failure (HF) in relation to the neural precursor cell expressed, developmentally downregulated 4-2 (NEDD4-2)/tropomyosin receptor kinase A (TrkA)/cyclic adenosine 3',5'-monophosphate (cAMP) axis. Sprague-Dawley rats were used to establish a HF animal model via ligation of the left anterior descending branch of the coronary artery. The cardiomyocyte H9c2 cells were treated with H2 O2 to stimulate oxidative stress injury in vitro. RT-qPCR and Western blot assay were subsequently performed to determine the expression patterns of miR-454, NEDD4-2, TrkA, apoptosis-related proteins and cAMP pathway markers. Dual-luciferase reporter gene assay coupled with co-immunoprecipitation was performed to elucidate the relationship between miR-454, NEDD4-2 and TrkA. Gain- or loss-of-function experiments as well as rescue experiments were conducted via transient transfection (in vitro) and adenovirus infection (in vivo) to examine their respective functions on H9c2 cell apoptosis and myocardial damage. Our results suggested that miR-454 was aberrantly downregulated in the context of HF, while evidence was obtained suggesting that it targeted NEDD4-2 to downregulate NEDD4-2 in cardiomyocytes. miR-454 exerted anti-apoptotic and protective effects on cardiomyocytes through inhibition of NEDD4-2, while NEDD4-2 stimulated ubiquitination and degradation of TrkA protein. Furthermore, miR-454 activated the cAMP pathway via the NEDD4-2/TrkA axis, which ultimately suppressed cardiomyocyte apoptosis and attenuated myocardial damage. Taken together, the key findings of the current study highlight the cardioprotective role of miR-454, which is achieved through activation of the cAMP pathway by impairing NEDD4-2-induced TrkA ubiquitination.
Collapse
Affiliation(s)
- Yaowen Wang
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Pan
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xukai Wang
- Department of Cardiology, Institute of Field Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuehui Yin
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin-Jian Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Han-Cheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ming-Xin Dong
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
49
|
Kalafatakis I, Patellis A, Charalampopoulos I, Gravanis A, Karagogeos D. The beneficial role of the synthetic microneurotrophin BNN20 in a focal demyelination model. J Neurosci Res 2021; 99:1474-1495. [PMID: 33583101 DOI: 10.1002/jnr.24809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/08/2022]
Abstract
BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model. It diminishes astrocytic accumulation during the demyelination phase leading to a faster remyelination process, while it does not affect oligodendrocyte precursor cell recruitment or microglia/macrophage accumulation. Additionally, our in vitro studies showed that BNN20 acts directly to OLs and enhances their maturation even after they were treated with LPC. This beneficial effect of BNN20 is mediated, primarily, through the neurotrophin receptor TrkA. In addition, BNN20 reduces microglial activation and their transition to their pro-inflammatory state upon lipopolysaccharides stimulation in vitro. Taken together our results suggest that BNN20 could serve as an important molecule to develop blood-brain barrier-permeable synthetic agonists of neurotrophin receptors that could reduce inflammation, protect and increase the number of functional OLs by promoting their differentiation/maturation.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | | | - Ioannis Charalampopoulos
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece.,Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | - Achille Gravanis
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece.,Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| |
Collapse
|
50
|
Cao J, Li Q, Shen X, Yao Y, Li L, Ma H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol Immunol 2021; 131:97-111. [PMID: 33461765 DOI: 10.1016/j.molimm.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the major steroid hormone in humans and animals, which can regulate the body's inflammatory responses. However, the detail mechanism of this beneficial function is still poorly understood. The present study aimed to explore the anti-inflammation effect of DHEA and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The findings showed that DHEA significantly inhibited the inflammation-related mediators production and pro-inflammatory cytokines expression level. Further research found that DHEA obviously blocked the LPS-stimulated PI3K/AKT, MAPK and NF-κB activation in RAW 264.7 cells. Meanwhile, DHEA enhanced the autophagy-dependent Keap1 protein degradation, subsequently activated the Nrf2 pathway to alleviate the redox imbalance and inflammatory responses. In conclusion, our data demonstrated that DHEA suppresses inflammatory responses through the activation of Nrf2 and inhibition of NF-κB in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|