1
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
2
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Eliseev MS, Zheliabina OV, Nasonov EL. [Uric acid, cognitive disorders, neurodegeneration]. TERAPEVT ARKH 2024; 96:447-452. [PMID: 38829804 DOI: 10.26442/00403660.2024.05.202698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
This article examines the role of uric acid (UA) in cognitive changes and neurodegeneration, focusing on its functions as an antioxidant and prooxidant. Research suggests that changes in serum UA levels may be associated with the development or delay of cognitive impairment, especially in the context of neurodegenerative diseases such as Alzheimer's disease. It was revealed that there is a relationship between the level of UA and the dynamics of cognitive functions, indicating the potential neuroprotective properties of UA. Particular attention is paid to the balance between the antioxidant and prooxidant properties of UA, which may play a key role in protecting neurons from damage. However, research results are not clear-cut, highlighting the need for further research to more fully understand the role of UA in cognitive processes. Determining the optimal serum UA level may be an important step in developing strategies for the prevention and treatment of cognitive impairment associated with neurodegeneration. Overall, these studies advance the understanding of the mechanisms underlying the interaction between uric acid metabolism and brain health.
Collapse
Affiliation(s)
| | | | - E L Nasonov
- Nasonova Research Institute of Rheumatology
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
4
|
Feng Y, Lin L, Wu T, Feng Y, Liang F, Li G, Li Y, Guan Y, Liu S, Zhang Y, Xu G, Pei Z. Cortical microinfarcts potentiate recurrent ischemic injury through NLRP3-dependent trained immunity. Cell Death Dis 2024; 15:36. [PMID: 38216560 PMCID: PMC10786939 DOI: 10.1038/s41419-023-06414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Microinfarcts are common among the elderly and patients with microinfarcts are more vulnerable to another stroke. However, the impact of microinfarcts on recurrent stroke has yet to be fully understood. The purpose of this study was to explore the negative effects of microinfarcts on recurrent stroke. To achieve this, two-photon laser was used to induce microinfarcts, while photothrombotic stroke was induced on the opposite side. The results showed that microinfarcts led to trained immunity in microglia, which worsened the pro-inflammatory response and ischemic injury in the secondary photothrombotic stroke. Additionally, the study clarified the role of NLRP3 in microglial nuclei, indicating that it interacts with the MLL1 complex through NACHT domain and increases H3K4 methylation, which suggests that NLRP3 is critical in the formation of innate immune memory caused by microinfarcts. Furthermore, the knockout of NLRP3 in microglia alleviated the trained immunity and reduced the harmful effects of microinfarcts on recurrent stroke. This study emphasizes the detrimental effect of trained immunity on recurrent stroke and highlights the critical role of NLRP3 in mediating the formation of this memory, which may offer a potential therapeutic target for mitigating recurrent strokes.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
- Department of Neurology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Tengteng Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yukun Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
- Department of Neurology, Hainan General Hospital, 570311, Hainan, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Yongchao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
6
|
Priest N, Guo S, Gondek D, Lacey RE, Burgner D, Downes M, Slopen N, Goldfeld S, Moreno-Betancur M, Kerr JA, Cahill S, Wake M, Juonala M, Lycett K, O'Connor M. The effect of adverse and positive experiences on inflammatory markers in Australian and UK children. Brain Behav Immun Health 2022; 26:100550. [PMID: 36420372 PMCID: PMC9677086 DOI: 10.1016/j.bbih.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background The relationship between childhood adversity and inflammation is well-established. Examination of positive experiences can provide a more complete understanding of intervention opportunities. We investigated associations of adverse and positive experiences, and their intersection, with inflammation in children and adolescents. Methods Data sources: Longitudinal Study of Australian Children (LSAC; N = 1237) and Avon Longitudinal Study of Parents and Children (ALSPAC; N = 3488). Exposures: Adverse and positive experiences assessed repeatedly (LSAC: 0-11 years; ALSPAC: 0-15 years). Outcomes: Inflammation quantified by high sensitivity C-reactive protein (hsCRP) and glycoprotein acetyls (GlycA) (LSAC: 11-12 years; ALSPAC: 15.5 years). Analyses: Linear regression on the log-transformed outcomes estimated the relative difference in inflammatory markers with adverse/positive experiences, adjusting for socio-demographics and concurrent positive/adverse experiences, respectively. Results Most associations were in the expected direction but differed in magnitude by exposure, outcome and cohort. Across both cohorts, adverse experiences were associated with up to 7.3% higher hsCRP (95% CI: -18.6%, 33.2%) and up to 2.0% higher GlycA (95% CI: 0.5%, 3.5%); while positive experiences were associated with up to 22.1% lower hsCRP (95% CI: -49.0%, 4.7%) and 1.3% lower GlycA (95% CI: -2.7%, 0.2%). In LSAC, the beneficial effect of positive experiences on inflammation was more pronounced among those with fewer concurrent adverse experiences. Conclusion Across two cohorts, we found small but directionally consistent associations between adverse experiences and higher inflammation, and positive experiences and lower inflammation, particularly for GlycA. Future research should give further consideration to positive experiences to complement the current focus on adversity and inform the design and evaluation of early life interventions.
Collapse
Affiliation(s)
- Naomi Priest
- ANU Centre for Social Research & Methods, The Australian National University, Canberra, Australia
- Centre for Community Child Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Shuaijun Guo
- Centre for Community Child Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Dawid Gondek
- Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Rebecca E. Lacey
- Research Department of Epidemiology and Public Health, University College London, London, UK
| | - David Burgner
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Inflammatory Origins Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
- Department of Pediatrics, Monash University, Melbourne, Australia
| | - Marnie Downes
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sharon Goldfeld
- Centre for Community Child Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Margarita Moreno-Betancur
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Jessica A. Kerr
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Population Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Psychological Medicine, University of Otago Christchurch, New Zealand
| | - Stephanie Cahill
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Melissa Wake
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Population Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Pediatrics & the Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Markus Juonala
- Population Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Kate Lycett
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Population Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Centre for Social & Early Emotional Development, Deakin University, Burwood, Australia
| | - Meredith O'Connor
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Population Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
7
|
Chen S, Fan F, Xuan FL, Yan L, Xiu M, Fan H, Cui Y, Zhang P, Yu T, Yang F, Tian B, Hong LE, Tan Y, Tian L. Monocytic Subsets Impact Cerebral Cortex and Cognition: Differences Between Healthy Subjects and Patients With First-Episode Schizophrenia. Front Immunol 2022; 13:900284. [PMID: 35898501 PMCID: PMC9309358 DOI: 10.3389/fimmu.2022.900284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Monocytes are a highly heterogeneous population subcategorized into classical, intermediate and nonclassical subsets. How monocytes and their subsets may shape brain structures and functions in schizophrenia remains unclear. The primary goal of this cross-sectional study was to investigate monocytic subsets and their specific signature genes in regulation of cerebral cortical thickness and cognitive functions in first-episode schizophrenia (FES) patients. Whole-blood RNA sequencing of 128 FES patients and 111 healthy controls (HCs) were conducted and monocyte-specific differentially expressed genes were further analyzed. The MATRICS Consensus Cognitive Battery (MCCB) test, cortical neuroimaging and flow cytometric staining of peripheral blood monocytic subsets were performed among the participants. Significant changes in expressions of 54 monocytic signature genes were found in patients, especially for intermediate and nonclassical monocytic subsets with the most outstanding alterations being downregulated S100 Calcium Binding Protein A (S100A) and upregulated Interferon Induced Transmembrane Protein (IFITM) family members, respectively. Meanwhile, percentage of blood nonclassical monocytes was decreased in patients. Cortical thicknesses and MCCB performance were expectantly reduced and weaker intra-relationships among monocytic signature genes and cortices, respectively, were noted in patients compared to HCs. Monocytic genes were negatively associated with both cortical thicknesses and cognition in HCs, which was interestingly weakened or even reversed in patients, with nonclassical monocytic genes showing the greatest statistical significance. This study reveals that while monocytes may have negative effects on brain structure and cognition, the ameliorated phenomenon observed in schizophrenia may reflect an (mal)adaptive change of monocytes at early stage of the disorder.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Fang-Ling Xuan
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ling Yan
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hongzhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
- *Correspondence: Li Tian, ; Yunlong Tan,
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
- *Correspondence: Li Tian, ; Yunlong Tan,
| |
Collapse
|
8
|
Duan N, Zhang Y, Tan S, Sun J, Ye M, Gao H, Pu K, Wu M, Wang Q, Zhai Q. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis 2022; 169:105739. [DOI: 10.1016/j.nbd.2022.105739] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022] Open
|
9
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
10
|
Heidari A, Rostam-Abadi Y, Rezaei N. The immune system and autism spectrum disorder: association and therapeutic challenges. Acta Neurobiol Exp (Wars) 2021; 81:249-263. [PMID: 34672295 DOI: 10.21307/ane-2021-023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, affecting communication and behavior. Historically, ASD had been described as a purely psychiatric disorder with genetic factors playing the most critical role. Recently, a growing body of literature has been emphasizing the importance of environmental and immunological factors in its pathogenesis, with the autoimmune process attracting the most attention. This study provides a review of the autoimmune involvement in the pathogenesis of ASD. The\r\nmicrobiome, the representative of the innate immune system in the central nervous system (CNS), plays a critical role in triggering inflammation. Besides, a bidirectional communicational pathway between the CNS and the intestine called the gut‑brain‑axis is linked to the development of ASD. Moreover, the higher plasma level of pro‑inflammatory cytokines in ASD patients and the higher prevalence of autoimmune disorders in the first‑degree family members of affected persons are other clues of the immune system involvement in\r\nthe pathogenesis of ASD. Furthermore, some anti‑inflammatory drugs, including resveratrol and palmitoylethanolamide have shown promising effects by relieving the manifestations of ASD. Although considerable advances have been made in elucidating the role of autoimmunity in the ASD pathogenesis, further studies with stronger methodologies are needed to apply the knowledge to the definitive treatment of ASD.
Collapse
Affiliation(s)
- Arash Heidari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasna Rostam-Abadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
11
|
Westfall S, Caracci F, Estill M, Frolinger T, Shen L, Pasinetti GM. Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis Immunity. Front Immunol 2021; 12:670500. [PMID: 34248950 PMCID: PMC8264434 DOI: 10.3389/fimmu.2021.670500] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic stress manifests as depressive- and anxiety-like behavior while recurrent stress elicits disproportionate behavioral impairments linked to stress-induced immunological priming. The gut-brain-microbiota-axis is a promising therapeutic target for stress-induced behavioral impairments as it simultaneously modulates peripheral and brain immunological landscapes. In this study, a combination of probiotics and prebiotics, known as a synbiotic, promoted behavioral resilience to chronic and recurrent stress by normalizing gut microbiota populations and promoting regulatory T cell (Treg) expansion through modulation of ileal innate lymphoid cell (ILC)3 activity, an impact reflecting behavioral responses better than limbic brain region neuroinflammation. Supporting this conclusion, a multivariate machine learning model correlatively predicted a cross-tissue immunological signature of stress-induced behavioral impairment where the ileal Treg/T helper17 cell ratio associated to hippocampal chemotactic chemokine and prefrontal cortex IL-1β production in the context of stress-induced behavioral deficits. In conclusion, stress-induced behavioral impairments depend on the gut-brain-microbiota-axis and through ileal immune regulation, synbiotics attenuate the associated depressive- and anxiety-like behavior.
Collapse
Affiliation(s)
- Susan Westfall
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francesca Caracci
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
12
|
Deng H, Zeng L, Chang K, Lv Y, Du H, Lu S, Liu Y, Zhou P, Mao H, Hu C. Grass carp (Ctenopharyngodon idellus) Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:104014. [PMID: 33460677 DOI: 10.1016/j.dci.2021.104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
In vertebrates, TANK Binding Kinase 1 (TBK1) plays an important role in innate immunity, mainly because it can mediate production of interferon to resist the invasion of pathogens. In mammals, cell division cycle-25a (Cdc25a) is a member of the Cdc25 family of cell division cycle proteins. It is a phosphatase that plays an important role in cell cycle regulation by dephosphorylating its substrate proteins. Currently, many phosphatases are reported to play a role in innate immunity. This is because the phosphatases can shut down or reduce immune signaling pathways by down-regulating phosphorylation signals. However, there are no reports on fish Cdc25a in innate immunity. In this paper, we conducted a preliminary study on the involvement of grass carp Cdc25a in innate immunity. First, we cloned the full-length cDNA of grass carp Cdc25a (CiCdc25a), and found that it shares the highest genetic relationship with that of Anabarilius grahami through phylogenetic tree comparison. In grass carp tissues and CIK cells, the expression of CiCdc25a mRNA was up-regulated under poly (I:C) stimulation. Therefore, CiCdc25a can respond to poly (I:C). The subcellular localization results showed that CiCdc25a is distributed both in the cytoplasm and nucleus. We also found that CiCdc25a can down-regulate the expression of IFN 1 with or without poly (I:C) stimulation. In other words, the down-regulation of IFN1 by CiCdc25a is independent of poly (I:C) stimulation. Further functional studies have shown that the inhibition of IFN1 expression by CiCdc25a may be related to decrease of TBK1 activity. We also confirmed that the phosphorylation of TBK1 at Ser172 is essential for production of IFN 1. In short, CiCdc25a can interact with TBK1 and subsequently inhibits the phosphorylation of TBK1, thereby weakens TBK1 activity. These results indicated that grass carp Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation.
Collapse
Affiliation(s)
- Hang Deng
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Nanchang, 330038, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shina Lu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
13
|
Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:207. [PMID: 33467414 PMCID: PMC7830034 DOI: 10.3390/nano11010207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Understanding the modes of interaction between human monocytes/macrophages and engineered nanoparticles is the basis for assessing particle safety, in terms of activation of innate/inflammatory reactions, and their possible exploitation for medical applications. In vitro assessment of nanoparticle-macrophage interaction allows for examining the response of primary human cells, but the conventional 2D cultures do not reproduce the three-dimensional spacing of a tissue and the interaction of macrophages with the extracellular tissue matrix, conditions that shape macrophage recognition capacity and reactivity. Here, we have compared traditional 2D cultures with cultures on a 3D collagen matrix for evaluating the capacity gold nanoparticles to induce monocyte activation and subsequent innate memory in human blood monocytes in comparison to bacterial LPS. Results show that monocytes react to stimuli almost in the same way in 2D and 3D cultures in terms of production of TNFα and IL-6, but that notable differences are found when IL-8 and IL-1Ra are examined, in particular in the recall/memory response of primed cells to a second stimulation, with the 3D cultures showing cell activation and memory effects of nanoparticles better. In addition, the response variations in monocytes/macrophages from different donors point towards a personalized assessment of the nanoparticle effects on macrophage activation.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Laura Rehak
- Athena Biomedical Innovations, 00100 Roma, Italy;
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Victor. F. Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain;
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
14
|
Giacobbe J, Pariante CM, Borsini A. The innate immune system and neurogenesis as modulating mechanisms of electroconvulsive therapy in pre-clinical studies. J Psychopharmacol 2020; 34:1086-1097. [PMID: 32648795 PMCID: PMC7672674 DOI: 10.1177/0269881120936538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a powerful and fast-acting anti-depressant strategy, often used in treatment-resistant patients. In turn, patients with treatment-resistant depression often present an increased inflammatory response. The impact of ECT on several pathophysiological mechanisms of depression has been investigated, with a focus which has largely been on cellular and synaptic plasticity. Although changes in the immune system are known to influence neurogenesis, these processes have principally been explored independently from each other in the context of ECT. OBJECTIVE The aim of this review was to compare the time-dependent consequences of acute and chronic ECT on concomitant innate immune system and neurogenesis-related outcomes measured in the central nervous system in pre-clinical studies. RESULTS During the few hours following acute electroconvulsive shock (ECS), the expression of the astrocytic reactivity marker glial fibrillary acidic protein (GFAP) and inflammatory genes, such as cyclooxygenase-2 (COX2), were significantly increased together with the neurogenic brain-derived neurotrophic factor (BDNF) and cell proliferation. Similarly, chronic ECS caused an initial upregulation of the same astrocytic marker, immune genes, and neurogenic factors. Interestingly, over time, inflammation appeared to be dampened, while glial activation and neurogenesis were maintained, after either acute or chronic ECS. CONCLUSION Regardless of treatment duration ECS would seemingly trigger a rapid increase in inflammatory molecules, dampened over time, as well as a long-lasting activation of astrocytes and production of growth and neurotrophic factors, leading to cell proliferation. This suggests that both innate immune system response and neurogenesis might contribute to the efficacy of ECT.
Collapse
Affiliation(s)
| | | | - Alessandra Borsini
- Alessandra Borsini, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Division of Psychological Medicine, Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RT, UK.
| |
Collapse
|
15
|
Bossù P, Toppi E, Sterbini V, Spalletta G. Implication of Aging Related Chronic Neuroinflammation on COVID-19 Pandemic. J Pers Med 2020; 10:E102. [PMID: 32858874 PMCID: PMC7563730 DOI: 10.3390/jpm10030102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, leads to a respiratory syndrome and other manifestations. Most affected people show no or mild symptoms, but the risk of severe disease and death increases in older people. Here, we report a narrative review on selected studies targeting aging-related chronic neuroinflammation in the COVID-19 pandemic. A hyperactivation of the innate immune system with elevated levels of pro-inflammatory cytokines occurs during severe COVID-19, pointing to an important role of the innate immune dysregulation in the disease outcome. Aging is characterized by a general condition of low-grade inflammation, also connected to chronic inflammation of the brain (neuroinflammation), which is involved in frailty syndrome and contributes to several age-associated diseases, including neurodegenerative and neuropsychiatric disorders. Since neuroinflammation can be induced or worsened by the virus infection itself, as well as by stressful conditions like those linked to the recent pandemic, the role of neuroinflammatory mechanisms could be central in a vicious circle leading to an increase in the mortality risk in aged COVID-19 patients. Furthermore, triggered neuroinflammatory pathways and consequent neurodegenerative and neuropsychiatric conditions might be potential long-term complications of COVID-19. In order to provide insights to help clinicians in identifying patients who progress to a more severe case of the disease, this review underlines the potential implications of aging-related neuroinflammation in COVID-19 pandemic.
Collapse
Affiliation(s)
- Paola Bossù
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Elisa Toppi
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Valentina Sterbini
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Gianfranco Spalletta
- Neuropsychiatry Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Adeatina 306, 00179 Rome, Italy;
| |
Collapse
|
16
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
18
|
Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:237-257. [PMID: 32578150 DOI: 10.1007/978-3-030-45493-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders are among the most challenging human diseases to understand at a mechanistic level due to the heterogeneity of symptoms within established diagnostic categories, the general absence of focal pathology, and the genetic complexity inherent in these mostly polygenic disorders. Each of these features presents unique challenges to disease modeling for biological discovery, drug development, or improved diagnostics. In addition, live human neural tissue has been largely inaccessible to experimentation, leaving gaps in our knowledge derived from animal models that cannot fully recapitulate the features of the disease, indirect measures of brain function in human patients, and from analyses of postmortem tissue that can be confounded by comorbid conditions and medication history.
Collapse
|
19
|
Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory. Front Immunol 2019; 10:2441. [PMID: 31749793 PMCID: PMC6842962 DOI: 10.3389/fimmu.2019.02441] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota significantly regulates the development and function of the innate and adaptive immune system. The attribute of immunological memory has long been linked only with adaptive immunity. Recent evidence indicates that memory is also present in the innate immune cells such as monocytes/macrophages and natural killer cells. These cells exhibit pattern recognition receptors (PRRs) that recognize microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs) expressed by the microbes. Interaction between PRRs and MAMPs is quite crucial since it triggers the sequence of signaling events and epigenetic rewiring that not only play a cardinal role in modulating the activation and function of the innate cells but also impart a sense of memory response. We discuss here how gut microbiota can influence the generation of innate memory and functional reprogramming of bone marrow progenitors that helps in protection against infections. This article will broaden our current perspective of association between the gut microbiome and innate memory. In the future, this knowledge may pave avenues for development and designing of novel immunotherapies and vaccination strategies.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Gastroenterology Division, Washington University in St. Louis, St. Louis, MO, United States
| | - Deepjyoti Kumar Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Sajid Nadeem
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Biomedical Engineering, Indian Institute of Technology-Ropar, Rupnagar, India
| |
Collapse
|
20
|
van de Wouw M, Boehme M, Dinan TG, Cryan JF. Monocyte mobilisation, microbiota & mental illness. Brain Behav Immun 2019; 81:74-91. [PMID: 31330299 DOI: 10.1016/j.bbi.2019.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Jyonouchi H, Geng L. Associations between Monocyte and T Cell Cytokine Profiles in Autism Spectrum Disorders: Effects of Dysregulated Innate Immune Responses on Adaptive Responses to Recall Antigens in a Subset of ASD Children. Int J Mol Sci 2019; 20:ijms20194731. [PMID: 31554204 PMCID: PMC6801811 DOI: 10.3390/ijms20194731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Changes in monocyte cytokine production with toll like receptor (TLR) agonists in subjects with autism spectrum disorders (ASD) were best reflected by the IL-1β/IL-10 ratios in our previous research. The IL-1β/IL-10 based subgrouping (low, normal, and high) of ASD samples revealed marked differences in microRNA expression, and mitochondrial respiration. However, it is unknown whether the IL-1β/IL-10 ratio based subgrouping is associated with changes in T cell cytokine profiles or monocyte cytokine profiles with non-TLR agonists. In ASD (n = 152) and non-ASD (n = 41) subjects, cytokine production by peripheral blood monocytes (PBMo) with TLR agonists and β-glucan, an inflammasome agonist, and T cell cytokine production by peripheral blood mononuclear cells (PBMCs) with recall antigens (Ags) (food and candida Ags) were concurrently measured. Changes in monocyte cytokine profiles were observed with β-glucan in the IL-1β/IL-10 ratio based ASD subgroups, along with changes in T cell cytokine production and ASD subgroup-specific correlations between T cell and monocyte cytokine production. Non-ASD controls revealed considerably less of such correlations. Altered innate immune responses in a subset of ASD children are not restricted to TLR pathways and correlated with changes in T cell cytokine production. Altered trained immunity may play a role in the above described changes.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ 08901, USA.
- Department of Pediatrics, Rutgers-Robert Wood Johnson medical school, New Brunswick, NJ 08901, USA.
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Salani F, Sterbini V, Sacchinelli E, Garramone M, Bossù P. Is Innate Memory a Double-Edge Sword in Alzheimer's Disease? A Reappraisal of New Concepts and Old Data. Front Immunol 2019; 10:1768. [PMID: 31440234 PMCID: PMC6692769 DOI: 10.3389/fimmu.2019.01768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
An emergent concept in immunology suggests that innate immune system is capable to undergo non-specific long-term responses and to provide resistance by modifying the reactivity to sequential pathogen challenge. This phenomenon, named innate memory, involves epigenetic, and metabolic reprogramming of innate immune cells. Current literature shows that the innate memory process has a mainly beneficial role in host defense, but sometimes can exert detrimental effects, as common in many diseases. Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and dementia. Accumulating findings demonstrate that inflammation is involved in AD pathogenesis and progression and recent genetic and functional data confirm the driving role of the innate immune component in the disease. Furthermore, AD patients show high burden of the most relevant infectious agents and up-regulation of inflammatory features in their innate immune cells, including an activated, or “primed” status of myeloid phagocytic cells in both brain and periphery, resembling trained immunity conditions. Thus, it is conceivable that AD innate cells may be firstly involved in the attempt to resolve recurrent/persistent inflammation but then acquire a trained phenotype mostly unable to maintain the immune regulation, leaving uncontrolled or sometimes supporting the progression of neurodegeneration. The present review aims to summarize evidence evoking innate immune memory mechanisms in AD, and to interpret their potential role, either protective or harmful, in disease progression. A better understanding of such mechanisms will provide a fertile ground for development of novel diagnostic, and therapeutic pathways in AD cure.
Collapse
Affiliation(s)
- Francesca Salani
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valentina Sterbini
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | - Paola Bossù
- Experimental Neuropsychobiology Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
23
|
Trained Innate Immunity Not Always Amicable. Int J Mol Sci 2019; 20:ijms20102565. [PMID: 31137759 PMCID: PMC6567865 DOI: 10.3390/ijms20102565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
The concept of „trained innate immunity" is understood as the ability of innate immune cells to remember invading agents and to respond nonspecifically to reinfection with increased strength. Trained immunity is orchestrated by epigenetic modifications leading to changes in gene expression and cell physiology. Although this phenomenon was originally seen mainly as a beneficial effect, since it confers broad immunological protection, enhanced immune response of reprogrammed innate immune cells might result in the development or persistence of chronic metabolic, autoimmune or neuroinfalmmatory disorders. This paper overviews several examples where the induction of trained immunity may be essential in the development of diseases characterized by flawed innate immune response.
Collapse
|
24
|
|