1
|
Miller BR, Gonzaga-Jauregui C, Brigatti KW, de Jong J, Breese RS, Ko SY, Puffenberger EG, Van Hout C, Young M, Luna VM, Staples J, First MB, Gregoire HJ, Dwork AJ, Pefanis E, McCarthy S, Brydges S, Rojas J, Ye B, Stahl E, Di Gioia SA, Hen R, Elwood K, Rosoklija G, Li D, Mellis S, Carey D, Croll SD, Overton JD, Macdonald LE, Economides AN, Shuldiner AR, Chuhma N, Rayport S, Amin N, Kushner SA, Alessandri-Haber N, Markx S, Strauss KA. A rare variant in GPR156 associated with depression in a Mennonite pedigree causes habenula hyperactivity and stress sensitivity in mice. Proc Natl Acad Sci U S A 2025; 122:e2404754122. [PMID: 40228124 PMCID: PMC12037005 DOI: 10.1073/pnas.2404754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Risk for MDD is heritable, and the genetic structure of founder populations enables investigation of rare susceptibility alleles with large effect. In an extended Old Order Mennonite family cohort, we identified a rare missense variant in GPR156 (c.1599G>T, p.Glu533Asp) associated with a two-fold increase in the relative risk of MDD. GPR156 is an orphan G protein-coupled receptor localized in the medial habenula, a region implicated in mood regulation. Insertion of a human sequence containing c.1599G>T into the murine Gpr156 locus induced medial habenula hyperactivity and abnormal stress-related behaviors. This work reveals a human variant that is associated with depression, implicates GPR156 as a target for mood regulation, and introduces informative murine models for investigating the pathophysiology and treatment of affective disorders.
Collapse
Affiliation(s)
- Bradley R. Miller
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | | | - Job de Jong
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | | | - Seung Yeon Ko
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Cristopher Van Hout
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | - Millie Young
- Clinic for Special Children, Gordonville, PA17529
| | - Victor M. Luna
- Department of Neural Sciences, Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140
| | | | - Michael B. First
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Hilledna J. Gregoire
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University, New York, NY10032
| | | | | | | | - Jose Rojas
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY10591
| | | | - René Hen
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Scott Mellis
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Susan D. Croll
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | | | - Aris N. Economides
- Regeneron Genetics Center, Tarrytown, NY10591
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Nao Chuhma
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Stephen Rayport
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Najaf Amin
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Kevin A. Strauss
- Clinic for Special Children, Gordonville, PA17529
- Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA17602
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA01655
| |
Collapse
|
2
|
Wang Y, Sams EI, Slaugh R, Crocker S, Hurtado EC, Tracy S, Hou YCC, Markovic C, Valle K, Tate V, Belhassan K, Appelbaum E, Akinwe T, Tzovenos RS, Cao Y, Neilson A, Liu Y, Jensen N, Ghasemi R, Lindsay T, Manuel J, Couteranis S, Kremitzki M, Ustanik J, Antonacci T, Ng JK, Emory A, Metz L, DeLuca T, Lyons KN, Sinnwell T, Thomeczek B, Wang K, Sisneros N, Muraleedharan M, Kethireddy A, Corbo M, Gowda H, King K, Gurnett CA, Dutcher SK, Gooch C, Li YE, Mitchell MW, Peterson KA, Horani A, Rosenfeld JA, Bi W, Stankiewicz P, Chao HT, Posey J, Grochowski CM, Dardas Z, Puffenberger E, Pearson CE, Kooy F, Annear D, Innes AM, Heinz M, Head R, Fulton R, Toutain S, Antonacci-Fulton L, Cui X, Mitra RD, Cole FS, Neidich J, Dickson PI, Milbrandt J, Turner TN. Whole-Genome Sequencing Reveals Individual and Cohort Level Insights into Chromosome 9p Syndromes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.28.25324850. [PMID: 40196253 PMCID: PMC11974940 DOI: 10.1101/2025.03.28.25324850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous genomic efforts on chromosome 9p deletion and duplication syndromes have utilized low resolution strategies (i.e., karyotypes, chromosome microarrays). We present the first large-scale whole-genome sequencing (WGS) study of 100 individuals from families with 9p-related syndromes including 85 unrelated probands through the 9P-ARCH (Advanced Research in Chromosomal Health: Genomic, Phenotypic, and Functional Aspects of 9p-Related syndromes) research network. We analyzed the genomic architecture of these syndromes, highlighting fundamental features and their commonalities and differences across individuals. This work includes a machine-learning model that predicts 9p deletion syndrome from gene copy number estimates using WGS data. Two Late Replicating Regions (LRR1 [a previously un-named human fragile site], LRR2) were identified that contain most structural variant breakpoints in 9p deletion syndrome pointing to replication-based issues in structural variant formation. Furthermore, we show the utility of using WGS information to obtain a comprehensive understanding of 9p-related variation in an individual with complex structural variation where chromothripsis is the likely mechanism. Genes on 9p were prioritized based on statistical assessment of human genomic variation. Furthermore, through application of spatial transcriptomics to embryonic mouse tissue we examined 9p-gene expression in craniofacial and brain development. Through these strategies, we identified 24 important genes for the majority (83%) of individuals with 9p deletion syndrome including AK3, BRD10, CD274, CDC37L1, DMRT1, DMRT2, DMRT3, DOCK8, GLIS3, JAK2, KANK1, KDM4C, PLPP6, PTPRD, PUM3, RANBP6, RCL1, RFX3, RIC1, SLC1A1, SMARCA2, UHRF2, VLDLR, and ZNG1A. Two genes (AK3, ZNG1A) are involved in mitochondrial function and testing of the mitochondrial genome revealed excess copy number in individuals with 9p deletion syndrome. This study presents the most comprehensive genomic analysis of 9p-related syndromes to date, with plans for further expansion through our 9P-ARCH research network.
Collapse
Affiliation(s)
- Yingxi Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eleanor I. Sams
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel Slaugh
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandra Crocker
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Cordova Hurtado
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sophia Tracy
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying-Chen Claire Hou
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Markovic
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kostandin Valle
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victoria Tate
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Khadija Belhassan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Appelbaum
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Titilope Akinwe
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rodrigo Starosta Tzovenos
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yang Cao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber Neilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathaniel Jensen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reza Ghasemi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tina Lindsay
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sophia Couteranis
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jack Ustanik
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Antonacci
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Emory
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Metz
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tracie DeLuca
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine N. Lyons
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Toni Sinnwell
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brianne Thomeczek
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | - Marco Corbo
- Medgenome Laboratory, Foster City, CA 94404, USA
| | - Harsha Gowda
- Medgenome Laboratory, Foster City, CA 94404, USA
| | - Katherine King
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A. Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine Gooch
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yang E. Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosugery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Amjad Horani
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher M. Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Dale Annear
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - A. Micheil Innes
- Departments of Medical Genetics and Pediatrics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Heinz
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard Head
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - 9P-ARCH
- 9P-ARCH Research Network - Advanced Research in Chromosomal Health: Genomic, Phenotypic, and Functional Aspects of 9p-Related syndromes
| | | | - Xiaoxia Cui
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robi D. Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - F. Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie Neidich
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patricia I. Dickson
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Zhang Y, Zhang CY, Yuan J, Jiang H, Sun P, Hui L, Xu L, Yu L, Guo Z, Wang L, Yang Y, Li M, Li SW, Yang J, Li W, Teng Z, Xiao X. Human mood disorder risk gene Synaptotagmin-14 contributes to mania-like behaviors in mice. Mol Psychiatry 2025:10.1038/s41380-025-02933-1. [PMID: 39966626 DOI: 10.1038/s41380-025-02933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) and major depressive disorder (MDD) are the most prevalent mood disorders and cause considerable burden worldwide. Compelling evidence suggests a pronounced overlap between these two disorders in clinical symptoms, treatment strategies, and genetic etiology. Here we leverage a BD GWAS (1822 cases and 4650 controls) and a MDD GWAS (5303 cases and 5337 controls), followed by independent replications, to investigate their shared genetic basis among Han Chinese. We have herein identified a lead SNP rs126277 at the 1q32.2 locus, which also exhibited nominal associations with mood disorders and several relevant sub-clinical phenotypes (e.g., mania) in European populations. Bulk tissue and single-cell eQTL analyses suggest that the risk G-allele of rs126277 predicted lower SYT14 mRNA expression in human brains. We generated mice lacking Syt14 (Syt14-/-) and mice with insufficient expression of Syt14 in the hippocampus (Syt14-KD), and found that depletion of Syt14 resulted in mania-like behaviors including hyperactivity and anti-depressive behaviors, resembling aspects of mood disorders. We also confirmed that deficiency of this gene in the hippocampus was sufficient to induce hyperactivity in mice. RNA-sequencing analyses of the hippocampus of Syt14-/- mice revealed significant upregulation of Per1 as well as downregulation of Slc7a11 and Ptprb. Ultrastructural analyses showed significant alteration of the number of vesicles within 50 nm to the active zone and the width of synaptic cleft in the ventral hippocampus of Syt14-/- mice compared with the control mice. Overall, we have identified a novel mood disorder risk gene SYT14, and confirmed its impact on mania-like behaviors. While the current study identifies an essential mood disorder risk gene, further investigations elucidating the detailed mechanisms by which SYT14 contributes to the pathogenesis of the illnesses are needed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Yuan
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Xu
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Yu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zeyi Guo
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lu Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianzhong Yang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaowei Teng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Ciani C, Falcone C. Interlaminar and varicose-projection astrocytes: toward a new understanding of the primate brain. Front Cell Neurosci 2024; 18:1477753. [PMID: 39655243 PMCID: PMC11626530 DOI: 10.3389/fncel.2024.1477753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
In the last years, science started to move toward a more glio-neurocentric view, in which astrocytes are hypothesized to be directly involved in cognitive functions. Indeed, astrocytes show a variety of shapes with species-specific characteristics, suggesting a specialization of roles during evolution. Interlaminar (ILA) and varicose-projection (VP-As) astrocytes show an anatomical organization that is different compared to the classical horizontal net typically formed by protoplasmic and fibrous astrocytes. ILAs show a modular architecture with the soma in the first cortical layer and processes toward the deep layers with species-specific length. VP-As reside in the deep layers of the cortex, are characterized by varicosities on the longest processes, and are individual-specific. These characteristics suggest roles that are more complex than what was theorized until now. Here, we recapitulate what we know so far from literature from the first time ILAs were described to the most recent discoveries, spanning from morphology description, hypothesis on the development to their features in diseases. For a complete glance on this topic, we included a final paragraph on which techniques and models were used to study ILAs and VP-As, and what new avenues may be opened thanks to more novel methods.
Collapse
Affiliation(s)
| | - Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
5
|
Lendemeijer B, Unkel M, Smeenk H, Mossink B, Hijazi S, Gordillo-Sampedro S, Shpak G, Slump DE, van den Hout MCGN, van IJcken WFJ, Bindels EMJ, Hoogendijk WJG, Nadif Kasri N, de Vrij FMS, Kushner SA. Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes. eNeuro 2024; 11:ENEURO.0148-24.2024. [PMID: 39227152 PMCID: PMC11404293 DOI: 10.1523/eneuro.0148-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm2 (hPSC-derived), 8.39 ± 0.63/100 μm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| | - Maurits Unkel
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Sara Gordillo-Sampedro
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Denise E Slump
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Witte J G Hoogendijk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| |
Collapse
|
6
|
Oh EY, Han KM, Kim A, Kang Y, Tae WS, Han MR, Ham BJ. Integration of whole-exome sequencing and structural neuroimaging analysis in major depressive disorder: a joint study. Transl Psychiatry 2024; 14:141. [PMID: 38461185 PMCID: PMC10924915 DOI: 10.1038/s41398-024-02849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Major depressive disorder (MDD) is a common mental illness worldwide and is triggered by an intricate interplay between environmental and genetic factors. Although there are several studies on common variants in MDD, studies on rare variants are relatively limited. In addition, few studies have examined the genetic contributions to neurostructural alterations in MDD using whole-exome sequencing (WES). We performed WES in 367 patients with MDD and 161 healthy controls (HCs) to detect germline and copy number variations in the Korean population. Gene-based rare variants were analyzed to investigate the association between the genes and individuals, followed by neuroimaging-genetic analysis to explore the neural mechanisms underlying the genetic impact in 234 patients with MDD and 135 HCs using diffusion tensor imaging data. We identified 40 MDD-related genes and observed 95 recurrent regions of copy number variations. We also discovered a novel gene, FRMPD3, carrying rare variants that influence MDD. In addition, the single nucleotide polymorphism rs771995197 in the MUC6 gene was significantly associated with the integrity of widespread white matter tracts. Moreover, we identified 918 rare exonic missense variants in genes associated with MDD susceptibility. We postulate that rare variants of FRMPD3 may contribute significantly to MDD, with a mild penetration effect.
Collapse
Affiliation(s)
- Eun-Young Oh
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Gonzales EL, Jeon SJ, Han KM, Yang SJ, Kim Y, Remonde CG, Ahn TJ, Ham BJ, Shin CY. Correlation between immune-related genes and depression-like features in an animal model and in humans. Brain Behav Immun 2023; 113:29-43. [PMID: 37379963 DOI: 10.1016/j.bbi.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
A growing body of evidence suggests that immune-related genes play pivotal roles in the pathophysiology of depression. In the present study, we investigated a plausible connection between gene expression, DNA methylation, and brain structural changes in the pathophysiology of depression using a combined approach of murine and human studies. We ranked the immobility behaviors of 30 outbred Crl:CD1 (ICR) mice in the forced swim test (FST) and harvested their prefrontal cortices for RNA sequencing. Of the 24,532 analyzed genes, 141 showed significant correlations with FST immobility time, as determined through linear regression analysis with p ≤ 0.01. The identified genes were mostly involved in immune responses, especially interferon signaling pathways. Moreover, induction of virus-like neuroinflammation in the brains of two separate mouse cohorts (n = 30 each) using intracerebroventricular polyinosinic:polycytidylic acid injection resulted in increased immobility during FST and similar expression of top immobility-correlated genes. In human blood samples, candidate gene (top 5%) expression profiling using DNA methylation analysis found the interferon-related USP18 (cg25484698, p = 7.04 × 10-11, Δβ = 1.57 × 10-2; cg02518889, p = 2.92 × 10-3, Δβ = - 8.20 × 10-3) and IFI44 (cg07107453, p = 3.76 × 10-3, Δβ = - 4.94 × 10-3) genes to be differentially methylated between patients with major depressive disorder (n = 350) and healthy controls (n = 161). Furthermore, cortical thickness analyses using T1-weighted images revealed that the DNA methylation scores for USP18 were negatively correlated with the thicknesses of several cortical regions, including the prefrontal cortex. Our results reveal the important role of the interferon pathway in depression and suggest USP18 as a potential candidate target. The results of the correlation analysis between transcriptomic data and animal behavior carried out in this study provide insights that could enhance our understanding of depression in humans.
Collapse
Affiliation(s)
- Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Jin Yang
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Yujeong Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Jin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Dattilo V, Ulivi S, Minelli A, La Bianca M, Giacopuzzi E, Bortolomasi M, Bignotti S, Gennarelli M, Gasparini P, Concas MP. Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World J Biol Psychiatry 2023; 24:135-148. [PMID: 35615967 DOI: 10.1080/15622975.2022.2082523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is a psychiatric disorder with pathogenesis influenced by both genetic and environmental factors. To date, the molecular-level understanding of its aetiology remains unclear. Thus, we aimed to identify genetic variants and susceptibility genes for MDD with a genome-wide association study (GWAS) approach. METHODS We performed a meta-analysis of GWASs and a gene-based analysis on two Northern Italy isolated populations (cases/controls n = 166/472 and 33/320), followed by replication and polygenic risk score (PRS) analyses in Italian independent samples (cases n = 464, controls n = 339). RESULTS We identified two novel MDD-associated genes, KCNQ5 (lead SNP rs867262, p = 3.82 × 10-9) and CTNNA2 (rs6729523, p = 1.25 × 10-8). The gene-based analysis revealed another six genes (p < 2.703 × 10-6): GRM7, CTNT4, SNRK, SRGAP3, TRAPPC9, and FHIT. No replication of the genome-wide significant SNPs was found in the independent cohort, even if 14 SNPs around CTNNA2 showed association with MDD and related phenotypes at the nominal level of p (<0.05). Furthermore, the PRS model developed in the discovery cohort discriminated cases and controls in the replication cohort. CONCLUSIONS Our work suggests new possible genes associated with MDD, and the PRS analysis confirms the polygenic nature of this disorder. Future studies are required to better understand the role of these findings in MDD.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Minelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina La Bianca
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, Oxford University, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Stefano Bignotti
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
9
|
Lima LS, Galiciolli MEA, Pereira ME, Felisbino K, Machado-Souza C, de Oliveira CS, Guiloski IC. Modification by genetic polymorphism of lead-induced IQ alteration: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43435-43447. [PMID: 35386084 DOI: 10.1007/s11356-022-19981-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
As well as a lead-related environmental factor, genetic factors could also corroborate important changes in intelligence quotient (IQ) through single-nucleotide polymorphisms. Thus, a systematic review was carried out to evaluate the possible influence of polymorphism on blood Pb levels and IQ points in pediatric patients (0-19 years old). Following the PRISMA guideline, the studies were systematically collected on PubMed, Scopus, and Embase databases. Six genes (transferrin (TF); glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A); glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B); dopamine receptor D2/ankyrin repeat and kinase domain containing 1 ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1); aminolevulinate dehydratase (ALAD); vitamin D receptor (VDR)) were found in six selected articles. In these genes, 11 single-nucleotide polymorphisms were searched and six different types of variations (missense variant, intron variant, synonymous variant, stop, stop gained) were observed. Due to the few studies in the literature, there is no conclusive data to point out that there is a direct relationship between polymorphisms, Pb levels, and reduction of IQ points.
Collapse
Affiliation(s)
- Luíza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Karoline Felisbino
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Cleber Machado-Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Cláudia Sirlene de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba, PR, 80.250-200, Brazil.
- Programa de Pós-Graduação em Biotecnologia da Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Alecu JE, Saffari A, Jumo H, Ziegler M, Strelko O, Brownstein CA, Gonzalez-Heydrich J, Rodan LH, Gorman MP, Sahin M, Ebrahimi-Fakhari D. Novel CAPN1 missense variants in complex hereditary spastic paraplegia with early-onset psychosis. Ann Clin Transl Neurol 2022; 9:570-576. [PMID: 35297214 PMCID: PMC8994985 DOI: 10.1002/acn3.51531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
CAPN1-associated hereditary spastic paraplegia (SPG76) is a rare and clinically heterogenous syndrome due to loss of calpain-1 function. Here we illustrate a translational approach to the case of an 18-year-old patient who first presented with psychiatric symptoms followed by spastic gait, intention tremor, and neurogenic bladder dysfunction, consistent with a complex form of HSP. Exome sequencing showed compound-heterozygous missense variants in CAPN1 (NM_001198868.2: c.1712A>G (p.Asn571Ser)/c.1991C>T (p.Ser664Leu)) and a previously reported heterozygous stop-gain variant in RCL1. In silico analyses of the CAPN1 variants predicted a deleterious effect and in vitro functional studies confirmed reduced calpain-1 activity and dysregulated downstream signaling. These findings support a diagnosis of SPG76 and highlight that the psychiatric symptoms can precede the motor symptoms in HSP. Our results also suggest that multiple genes can potentially contribute to complex neuropsychiatric diseases.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Afshin Saffari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hellen Jumo
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oleksandr Strelko
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joseph Gonzalez-Heydrich
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lance H Rodan
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mark P Gorman
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Kasyanov E, Rakitko A, Rukavishnikov G, Golimbet V, Shmukler A, Iliinsky V, Neznanov N, Kibitov A, Mazo G. Contemporary GWAS studies of depression: the critical role of phenotyping. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:50-61. [DOI: 10.17116/jnevro202212201150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kendall KM, Van Assche E, Andlauer TFM, Choi KW, Luykx JJ, Schulte EC, Lu Y. The genetic basis of major depression. Psychol Med 2021; 51:2217-2230. [PMID: 33682643 DOI: 10.1017/s0033291721000441] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common, debilitating, phenotypically heterogeneous disorder with heritability ranges from 30% to 50%. Compared to other psychiatric disorders, its high prevalence, moderate heritability, and strong polygenicity have posed major challenges for gene-mapping in MDD. Studies of common genetic variation in MDD, driven by large international collaborations such as the Psychiatric Genomics Consortium, have confirmed the highly polygenic nature of the disorder and implicated over 100 genetic risk loci to date. Rare copy number variants associated with MDD risk were also recently identified. The goal of this review is to present a broad picture of our current understanding of the epidemiology, genetic epidemiology, molecular genetics, and gene-environment interplay in MDD. Insights into the impact of genetic factors on the aetiology of this complex disorder hold great promise for improving clinical care.
Collapse
Affiliation(s)
- K M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - E Van Assche
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - T F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - K W Choi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA02115, USA
| | - J J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - E C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Y Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Curtis D. Analysis of 200 000 exome-sequenced UK Biobank subjects fails to identify genes influencing probability of developing a mood disorder resulting in psychiatric referral. Psychiatr Genet 2021; 31:194-198. [PMID: 34050118 DOI: 10.1097/ypg.0000000000000282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Depression is moderately heritable but there is no common genetic variant which has a major effect on susceptibility. A previous analysis of 50 000 exome-sequenced subjects failed to implicate any genes or sets of genes in which rare variants were associated with risk of affective disorder requiring specialist treatment. A much larger exome-sequenced dataset is now available. METHODS Data from 200 632 exome-sequenced UK Biobank participants was analysed. Subjects were treated as cases if they had reported having seen a psychiatrist for 'nerves, anxiety, tension or depression'. Gene-wise weighted burden analysis was performed to see if there were any genes or sets of genes for which there was an excess of rare, functional variants in cases. RESULTS There were 22 886 cases and 176 486 controls. There were 22 642 informative genes but no gene or gene set produced a statistically significant result after correction for multiple testing. None of the genes or gene sets with the lowest P values appeared to be an obvious biological candidate. CONCLUSIONS The results conform exactly with the expectation under the null hypothesis. It seems unlikely that the use of common, poorly defined phenotypes will produce useful advances in understanding genetic contributions to affective disorder and it might be preferable to focus instead on obtaining large exome-sequenced samples of conditions such as bipolar 1 disorder and severe, recurrent depression. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London
- Centre for Psychiatry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Liu J, Zhang SQ, Chen J, Li ZB, Chen JX, Lu QQ, Han YS, Dai W, Xie C, Li JC. Identifying Prognostic Significance of RCL1 and Four-Gene Signature as Novel Potential Biomarkers in HCC Patients. JOURNAL OF ONCOLOGY 2021; 2021:5574150. [PMID: 34257652 PMCID: PMC8260302 DOI: 10.1155/2021/5574150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. METHODS The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). RESULTS The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7-0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. CONCLUSION Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shan-Qiang Zhang
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jia-Xi Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Qi-Qi Lu
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenjie Dai
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Chongwei Xie
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Ji-Cheng Li
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Zhu Q, Tao B, Chen H, Shi H, Huang L, Chen J, Hu M, Lo LJ, Peng J. Rcl1 depletion impairs 18S pre-rRNA processing at the A1-site and up-regulates a cohort of ribosome biogenesis genes in zebrafish. Nucleic Acids Res 2021; 49:5743-5759. [PMID: 34019640 PMCID: PMC8191805 DOI: 10.1093/nar/gkab381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast Rcl1 is a potential endonuclease that mediates pre-RNA cleavage at the A2-site to separate 18S rRNA from 5.8S and 25S rRNAs. However, the biological function of Rcl1 in opisthokonta is poorly defined. Moreover, there is no information regarding the exact positions of 18S pre-rRNA processing in zebrafish. Here, we report that zebrafish pre-rRNA harbours three major cleavage sites in the 5′ETS, namely –477nt (A′-site), –97nt (A0-site) and the 5′ETS and 18S rRNA link (A1-site), as well as two major cleavage regions within the ITS1, namely 208–218nt (site 2) and 20–33nt (site E). We also demonstrate that depletion of zebrafish Rcl1 mainly impairs cleavage at the A1-site. Phenotypically, rcl1–/– mutants exhibit a small liver and exocrine pancreas and die before 15 days post-fertilization. RNA-seq analysis revealed that the most significant event in rcl1–/– mutants is the up-regulated expression of a cohort of genes related to ribosome biogenesis and tRNA production. Our data demonstrate that Rcl1 is essential for 18S rRNA maturation at the A1-site and for digestive organogenesis in zebrafish. Rcl1 deficiency, similar to deficiencies in other ribosome biogenesis factors, might trigger a common mechanism to upregulate the expression of genes responsible for ribosome biogenesis.
Collapse
Affiliation(s)
- Qinfang Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hong Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Ling Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| |
Collapse
|
16
|
Brownstein CA, Smith RS, Rodan LH, Gorman MP, Hojlo MA, Garvey EA, Li J, Cabral K, Bowen JJ, Rao AS, Genetti CA, Carroll D, Deaso EA, Agrawal PB, Rosenfeld JA, Bi W, Howe J, Stavropoulos DJ, Hansen AW, Hamoda HM, Pinard F, Caracansi A, Walsh CA, D'Angelo EJ, Beggs AH, Zarrei M, Gibbs RA, Scherer SW, Glahn DC, Gonzalez-Heydrich J. RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes. Mol Psychiatry 2021; 26:1706-1718. [PMID: 33597717 PMCID: PMC8159744 DOI: 10.1038/s41380-021-01035-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.
Collapse
Affiliation(s)
- Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA.
- EPICenter, Boston Children's Hospital, Boston, MA, USA.
| | - Richard S Smith
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Margaret A Hojlo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emily A Garvey
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Jianqiao Li
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Kristin Cabral
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Joshua J Bowen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Abhijit S Rao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Devon Carroll
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emma A Deaso
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Jennifer Howe
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam W Hansen
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hesham M Hamoda
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ferne Pinard
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annmarie Caracansi
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eugene J D'Angelo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard A Gibbs
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen W Scherer
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Joseph Gonzalez-Heydrich
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Toma C, Shaw AD, Heath A, Pierce KD, Mitchell PB, Schofield PR, Fullerton JM. A linkage and exome study of multiplex families with bipolar disorder implicates rare coding variants of ANK3 and additional rare alleles at 10q11-q21. J Psychiatry Neurosci 2021; 46:E247-E257. [PMID: 33729739 PMCID: PMC8061732 DOI: 10.1503/jpn.200083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bipolar disorder is a highly heritable psychiatric condition for which specific genetic factors remain largely unknown. In the present study, we used combined whole-exome sequencing and linkage analysis to identify risk loci and dissect the contribution of common and rare variants in families with a high density of illness. METHODS Overall, 117 participants from 15 Australian extended families with bipolar disorder (72 with affective disorder, including 50 with bipolar disorder type I or II, 13 with schizoaffective disorder-manic type and 9 with recurrent unipolar disorder) underwent whole-exome sequencing. We performed genome-wide linkage analysis using MERLIN and conditional linkage analysis using LAMP. We assessed the contribution of potentially functional rare variants using a genebased segregation test. RESULTS We identified a significant linkage peak on chromosome 10q11-q21 (maximal single nucleotide polymorphism = rs10761725; exponential logarithm of the odds [LODexp] = 3.03; empirical p = 0.046). The linkage interval spanned 36 protein-coding genes, including a gene associated with bipolar disorder, ankyrin 3 (ANK3). Conditional linkage analysis showed that common ANK3 risk variants previously identified in genome-wide association studies - or variants in linkage disequilibrium with those variants - did not explain the linkage signal (rs10994397 LOD = 0.63; rs9804190 LOD = 0.04). A family-based segregation test with 34 rare variants from 14 genes under the linkage interval suggested rare variant contributions of 3 brain-expressed genes: NRBF2 (p = 0.005), PCDH15 (p = 0.002) and ANK3 (p = 0.014). LIMITATIONS We did not examine non-coding variants, but they may explain the remaining linkage signal. CONCLUSION Combining family-based linkage analysis with next-generation sequencing data is effective for identifying putative disease genes and specific risk variants in complex disorders. We identified rare missense variants in ANK3, PCDH15 and NRBF2 that could confer disease risk, providing valuable targets for functional characterization.
Collapse
Affiliation(s)
- Claudio Toma
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Alex D Shaw
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Anna Heath
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Kerrie D Pierce
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Philip B Mitchell
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Peter R Schofield
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| | - Janice M Fullerton
- From Neuroscience Research Australia, Sydney, Australia (Toma, Shaw, Heath, Pierce, Schofield); the School of Medical Sciences, University of New South Wales, Sydney, Australia (Toma, Shaw, Schofield, Fullerton); the Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid/CSIC, Madrid, Spain (Toma); the School of Psychiatry, University of New South Wales, Sydney, Australia (Mitchell); and the Black Dog Institute, Prince of Wales Hospital, Sydney, Australia (Mitchell)
| |
Collapse
|
18
|
Zhang C, Ran L, Ai M, Wang W, Chen J, Wu T, Liu W, Jin J, Wang S, Kuang L. Targeted sequencing of the BDNF gene in young Chinese Han people with major depressive disorder. Mol Genet Genomic Med 2020; 8:e1484. [PMID: 32869548 PMCID: PMC7549566 DOI: 10.1002/mgg3.1484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Adolescence and young adulthood are considered the peak age for the emergence of many psychiatric disorders, in particular major depressive disorder (MDD). Previous research has shown substantial heritability for MDD. In addition, the brain-derived neurotrophic factor (BDNF) gene is known to be associated with MDD. However, there has been no study conducting targeted sequencing of the BDNF gene in young MDD patients so far. METHOD To examine whether the BDNF gene is associated with the occurrence of MDD in young patients, we used targeted sequencing to detect the BDNF gene variants in 259 young Chinese Han people (105 MDD patients and 154 healthy subjects). RESULTS The BDNF variant rs4030470 was associated with MDD in young Chinese Han people (uncorrected p = 0.046), but this was no longer significant after applying FDR correction (p = 0.552, after FDR correction). We did not find any significant differences in genotype or haplotype frequencies between the case and control groups, and furthermore discovered no rare mutation variants any of the 259 subjects. CONCLUSION Our results do not support an association of the BDNF gene variants with MDD in young people in the Chinese Han population.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuyi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajia Jin
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Suya Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Alemany-Navarro M, Cruz R, Real E, Segalàs C, Bertolín S, Rabionet R, Carracedo Á, Menchón JM, Alonso P. Looking into the genetic bases of OCD dimensions: a pilot genome-wide association study. Transl Psychiatry 2020; 10:151. [PMID: 32424139 PMCID: PMC7235014 DOI: 10.1038/s41398-020-0804-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
The multidimensional nature of obsessive-compulsive disorder (OCD) has been consistently reported. Clinical and biological characteristics have been associated with OCD dimensions in different ways. Studies suggest the existence of specific genetic bases for the different OCD dimensions. In this study, we analyze the genomic markers, genes, gene ontology and biological pathways associated with the presence of aggressive/checking, symmetry/order, contamination/cleaning, hoarding, and sexual/religious symptoms, as assessed via the Dimensional Yale-Brown Obsessive Compulsive Scale (DY-BOCS) in 399 probands. Logistic regression analyses were performed at the single-nucleotide polymorphism (SNP) level. Gene-based and enrichment analyses were carried out for common (SNPs) and rare variants. No SNP was associated with any dimension at a genome-wide level (p < 5 × 10-8). Gene-based analyses showed one gene to be associated with hoarding (SETD3, p = 1.89 × 10-08); a gene highly expressed in the brain and which plays a role in apoptotic processes and transcriptomic changes, and another gene associated with aggressive symptoms (CPE; p = 4.42 × 10-6), which is involved in neurotrophic functions and the synthesis of peptide hormones and neurotransmitters. Different pathways or biological processes were represented by genes associated with aggressive (zinc ion response and lipid metabolism), order (lipid metabolism), sexual/religious (G protein-mediated processes) and hoarding (metabolic processes and anion transport) symptoms after FDR correction; while no pathway was associated with contamination. Specific genomic bases were found for each dimension assessed, especially in the enrichment analyses. Further research with larger samples and different techniques, such as next-generation sequencing, are needed to better understand the differential genetics of OCD dimensions.
Collapse
Affiliation(s)
- María Alemany-Navarro
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain. .,Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain.
| | - Raquel Cruz
- grid.11794.3a0000000109410645Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Real
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Cinto Segalàs
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Bertolín
- grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBERER, and Dept. Genetics, Microbiology & Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ángel Carracedo
- grid.11794.3a0000000109410645Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain ,Fundación Pública Galega de Medicina Xenómica, SERGAS, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jose M. Menchón
- grid.418284.30000 0004 0427 2257Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Pino Alonso
- grid.411129.e0000 0000 8836 0780OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol 2020; 35:483-517. [PMID: 32367290 PMCID: PMC7250962 DOI: 10.1007/s10654-020-00640-5] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years and outlines developments for the coming period.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Alemany-Navarro M, Cruz R, Real E, Segalàs C, Bertolín S, Baenas I, Domènech L, Rabionet R, Carracedo Á, Menchón JM, Alonso P. Exploring genetic variants in obsessive compulsive disorder severity: A GWAS approach. J Affect Disord 2020; 267:23-32. [PMID: 32063569 DOI: 10.1016/j.jad.2020.01.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND The severity of Obsessive-Compulsive Disorder (OCD) varies significantly among probands. No study has specifically investigated the genetic base of OCD severity. A previous study from our group found an OCD polygenic risk score to predict pre- and post-treatment severity. This study explores the genomic bases of OCD severity. METHODS We administered the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) to 401 patients at their first visit to our clinic to measure their OCD severity. Genotyping data was collected by using the Infinium PsychArray-24 BeadChip kit (Illumina). We analyzed genetic association with OCD severity in a linear regression analysis at single-nucleotide polymorphism (SNP)- and gene-levels, this last also considering rare variants. Enrichment analyses were performed from gene-based analyses' results. RESULTS No SNP reached significant association (p < 10-8) with the YBOCS. Six markers showed suggestive association (p < 10-5). The top SNP was an intergenic variant in chromosome 2: rs7578149 (p < 1.89 × 10-6), located in a region suggestively associated with MDD. Linkage disequilibrium was found for two clusters of SNPs located between SLC16A14 and SP110 in chromosome 2, all of them forming one peak of association. Enrichment analyses revealed OCD genes to be associated with porin activity (FDR = 0.01) and transmembrane structure (FDR = 0.04). LIMITATIONS The size of the sample and the transversal nature of the severity measure are limitations of this study. CONCLUSION This study contributes to better characterize OCD at an individual level, helping to know more about the prognosis of the disorder and develop more individualized treatments.
Collapse
Affiliation(s)
- María Alemany-Navarro
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain.
| | - Raquel Cruz
- Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases, CIMUS-, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Real
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Cinto Segalàs
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Isabel Baenas
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Laura Domènech
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBERER, and Dept. Genetics, Microbiology & statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases, CIMUS-, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, SERGAS, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jose M Menchón
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| |
Collapse
|
22
|
A study combining whole-exome sequencing and structural neuroimaging analysis for major depressive disorder. J Affect Disord 2020; 262:31-39. [PMID: 31706157 DOI: 10.1016/j.jad.2019.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genetic variations associated with major depressive disorder (MDD) may affect the structural aspects of neural networks mediated by the molecular pathways involved in neuronal survival and synaptic plasticity. However, few studies have applied a novel approach such as whole-exome sequencing (WES) analysis to investigate the genetic contribution to the neurostructural changes in MDD. METHODS In the first part of the study, we investigated rare variants of selected genes from previous WES studies using a WES analysis in 184 patients with MDD and 82 healthy controls. In the second part of the study, we explored the association between the common genetic variants from the WES analysis and cortical thickness in 91 patients with MDD and 75 healthy controls. The gray-matter thickness of each cortical region was measured using FreeSurfer. RESULTS We identified recurrent non-silent variants in 24 MDD-related genes including FASN, MYH13, UNC13D, LILRA1, CACNA1B, TRIO, HOMER3, and BCAR3, and observed eleven recurrently altered copy number alternations where a gain on 15q11.2 and losses on 7q34 and 15q11.1-q11.2 in MDD genomes. We also found that rs11592462 in CDH23, a calcium-dependent cell-adhesion molecule encoding gene, was significantly associated with thinning in the right anterior cingulate cortex. LIMITATION The small sample size may lead our findings to be underpowered regarding rare variants. CONCLUSION The present study identified that non-synonymous rare variants were significantly associated with risk of MDD and found that genetic contributions to the development of MDD may be mediated by alterations in cortical thickness of emotion-processing neural circuits.
Collapse
|
23
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Ran L, Ai M, Wang W, Chen J, Wu T, Liu W, Jin J, Wang S, Kuang L. Rare variants in SLC6A4 cause susceptibility to major depressive disorder with suicidal ideation in Han Chinese adolescents and young adults. Gene 2019; 726:144147. [PMID: 31629822 DOI: 10.1016/j.gene.2019.144147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Suicidal ideation (SI) is the most serious symptom of major depressive disorder (MDD) and considered an extreme state. The serotonin transporter gene (SLC6A4) plays a significant role in MDD and suicide pathophysiology. Previous studies have revealed an association between common variants of SLC6A4 with the risk of MDD and suicide. However, very few studies have so far focused on the degree to which rare variants of SLC6A4 are responsible for the depression observed in adolescent and young adult suicide patients. The aim of this study was to examine the impact of common and rare variants of SLC6A4 on the risk of Han Chinese adolescents and young adults suffering MDD with SI. METHODS Targeted sequencing of the SLC6A4 gene was conducted using FastTarget technology in Han Chinese adolescents and young adults, of which 74 were MDD patients with SI and 150 were healthy controls. Gene-based association analyses of rare variants were performed using enrichment analysis and a cumulative allele test. An allele association study was performed against common variants. RESULTS After sequencing and bioinformatics analysis, a total of 15 single nucleotide variants (SNVs) were detected in the targeted regions from all participants, including 9 common and 6 rare variants. Among these, 5 rare variants were identified within the study group. Enrichment analysis of rare variants demonstrated a statistical difference (p = 0.042) between the study and control groups. Using cumulative allele analysis, alternative alleles in the SLC6A4 gene exhibited an association with MDD patients with SI (cumulative allele: OR = 10.18, 95% CI = 1.18-87.32, p = 0.017). No significant association was found between the 9 common SLC6A4 variants and MDD patients with SI. CONCLUSIONS Our results suggest that rare variants of SLC6A4 may contribute to a genetic risk of adolescents and young adults suffering MDD with SI.
Collapse
Affiliation(s)
- Liuyi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Wei Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiajia Jin
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Suya Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
25
|
Davydova YD, Enikeeva RF, Kazantseva AV, Mustafin RN, Romanova AR, Malykh SB, Khusnutdinov EK. Genetic basis of depressive disorders. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Depression is a common mental disorder being one of the main causes of disability and mortality worldwide. Despite an intensive research during the past decades, the etiology of depressive disorders (DDs) remains incompletely understood; however, genetic factors are significantly involved in the liability to depression. The present review is focused on the studies based on a candidate gene approach, genome-wide association studies (GWAS) and whole exome sequencing (WES), which previously demonstrated associations between gene polymorphisms and DDs. According to the first approach, DD development is affected by serotonergic (TPH1, TPH2, HTR1A, HTR2A, and SLC6A4), dopaminergic (DRD4, SLC6A3) and noradrenergic (SLC6A2) system genes, and genes of enzymatic degradation (MAOA, COMT). In addition, there is evidence of the involvement of HPA-axis genes (OXTR, AVPR1A, and AVPR1B), sex hormone receptors genes (ESR1, ESR2, and AR), neurotrophin (BDNF) and methylenetetrahydrofolate reductase (MTHFR) genes, neuronal apoptosis (CASP3, BCL-XL, BAX, NPY, APP, and GRIN1) and inflammatory system (TNF, CRP, IL6, IL1B, PSMB4, PSMD9, and STAT3) genes in DD development. The results of the second approach (GWAS and WES) revealed that the PCLO, SIRT1, GNL3, GLT8D1, ITIH3, MTNR1A, BMP5, FHIT, KSR2, PCDH9, and AUTS2 genes predominantly responsible for neurogenesis and cell adhesion are involved in liability to depression. Therefore, the findings discussed suggest that genetic liability to DD is a complex process, which assumes simultaneous functioning of multiple genes including those reported previously, and requires future research in this field.
Collapse
Affiliation(s)
- Yu. D. Davydova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - R. F. Enikeeva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - A. V. Kazantseva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - R. N. Mustafin
- Bashkir State University;
Bashkir State Medical University of the Ministry of Health of the Russian Federation
| | | | - S. B. Malykh
- Psychological Institute of Russian Academy of Education
| | - E. K. Khusnutdinov
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS;
Bashkir State University
| |
Collapse
|
26
|
Avagliano Trezza R, Sonzogni M, Bossuyt SNV, Zampeta FI, Punt AM, van den Berg M, Rotaru DC, Koene LMC, Munshi ST, Stedehouder J, Kros JM, Williams M, Heussler H, de Vrij FMS, Mientjes EJ, van Woerden GM, Kushner SA, Distel B, Elgersma Y. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat Neurosci 2019; 22:1235-1247. [PMID: 31235931 DOI: 10.1038/s41593-019-0425-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.
Collapse
Affiliation(s)
- Rossella Avagliano Trezza
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monica Sonzogni
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stijn N V Bossuyt
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F Isabella Zampeta
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A Mattijs Punt
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana C Rotaru
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Linda M C Koene
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shashini T Munshi
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Stedehouder
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mark Williams
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Helen Heussler
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia.,Child Development Program, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Smith SP, Phillips JB, Johnson ML, Abbot P, Capra JA, Rokas A. Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evol Med Public Health 2019; 2019:93-103. [PMID: 31263560 PMCID: PMC6592264 DOI: 10.1093/emph/eoz015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and gestation length, from primary literature and breeders' handbooks. METHODOLOGY By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome-wide association analyses for these four reproductive traits, using body mass and kinship among breeds as covariates. RESULTS We identified 12 genome-wide significant associations between these traits and genetic loci, including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size, SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas others have been associated with domestication-related traits, including brachycephaly (SMOC2) and coat curl (KRT71). CONCLUSIONS AND IMPLICATIONS We hypothesize that the artificial selection that gave rise to dog breeds also influenced the observed variation in their reproductive traits. Overall, our work establishes the domestic dog as a system for studying the genetics of reproductive biology and disease. LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely unknown. We took advantage of the domestic dog, a powerful model system, to test for associations between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci, including ones previously associated with domestication-related traits, suggesting that selection on dog breeds also influenced their reproductive traits.
Collapse
Affiliation(s)
- Samuel P Smith
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biological Sciences, Cumberland University, Lebanon, TN 37087, USA
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Souren NY, Gerdes LA, Lutsik P, Gasparoni G, Beltrán E, Salhab A, Kümpfel T, Weichenhan D, Plass C, Hohlfeld R, Walter J. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat Commun 2019; 10:2094. [PMID: 31064978 PMCID: PMC6504952 DOI: 10.1038/s41467-019-09984-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system with a modest concordance rate in monozygotic twins, which strongly argues for involvement of epigenetic factors. We observe highly similar peripheral blood mononuclear cell-based methylomes in 45 MS-discordant monozygotic twins. Nevertheless, we identify seven MS-associated differentially methylated positions (DMPs) of which we validate two, including a region in the TMEM232 promoter and ZBTB16 enhancer. In CD4 + T cells we find an MS-associated differentially methylated region in FIRRE. Additionally, 45 regions show large methylation differences in individual pairs, but they do not clearly associate with MS. Furthermore, we present epigenetic biomarkers for current interferon-beta treatment, and extensive validation shows that the ZBTB16 DMP is a signature for prior glucocorticoid treatment. Taken together, this study represents an important reference for epigenomic MS studies, identifies new candidate epigenetic markers, and highlights treatment effects and genetic background as major confounders. Monozygotic (MZ) twins are ideal to study the influence of non-genetic factors on complex phenotypes. Here, Souren et al. perform an EWAS in peripheral blood mononuclear cells from 45 MZ twins discordant for multiple sclerosis and identify disease and treatment-associated epigenetic markers.
Collapse
Affiliation(s)
- Nicole Y Souren
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| | - Lisa A Gerdes
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gilles Gasparoni
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Abdulrahman Salhab
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
29
|
Vojinovic D, Kavousi M, Ghanbari M, Brouwer RWW, van Rooij JGJ, van den Hout MCGN, Kraaij R, van Ijcken WFJ, Uitterlinden AG, van Duijn CM, Amin N. Whole-Genome Linkage Scan Combined With Exome Sequencing Identifies Novel Candidate Genes for Carotid Intima-Media Thickness. Front Genet 2018; 9:420. [PMID: 30356672 PMCID: PMC6189289 DOI: 10.3389/fgene.2018.00420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023] Open
Abstract
Carotid intima-media thickness (cIMT) is an established heritable marker for subclinical atherosclerosis. In this study, we aim to identify rare variants with large effects driving differences in cIMT by performing genome-wide linkage analysis of individuals in the extremes of cIMT trait distribution (>90th percentile) in a large family-based study from a genetically isolated population in the Netherlands. Linked regions were subsequently explored by fine-mapping using exome sequencing. We observed significant evidence of linkage on chromosomes 2p16.3 [rs1017418, heterogeneity LOD (HLOD) = 3.35], 19q13.43 (rs3499, HLOD = 9.09), 20p13 (rs1434789, HLOD = 4.10), and 21q22.12 (rs2834949, HLOD = 3.59). Fine-mapping using exome sequencing data identified a non-coding variant (rs62165235) in PNPT1 gene under the linkage peak at chromosome 2 that is likely to have a regulatory function. The variant was associated with quantitative cIMT in the family-based study population (effect = 0.27, p-value = 0.013). Furthermore, we identified several genes under the linkage peak at chromosome 21 highly expressed in tissues relevant for atherosclerosis. To conclude, our linkage analysis identified four genomic regions significantly linked to cIMT. Further analyses are needed to demonstrate involvement of identified candidate genes in development of atherosclerosis.
Collapse
Affiliation(s)
- Dina Vojinovic
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rutger W W Brouwer
- Department of Cell Biology, Center for Biomics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wilfred F J van Ijcken
- Department of Cell Biology, Center for Biomics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
30
|
Nedeljkovic I, Terzikhan N, Vonk JM, van der Plaat DA, Lahousse L, van Diemen CC, Hobbs BD, Qiao D, Cho MH, Brusselle GG, Postma DS, Boezen HM, van Duijn CM, Amin N. A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants. Front Genet 2018; 9:133. [PMID: 29725345 PMCID: PMC5916965 DOI: 10.3389/fgene.2018.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein (AHNAK), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 (PLCB3), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 (SLC22A11), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 (MTL5), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample whole-genome sequencing should further confirm the associations at chromosome 11 and investigate the chromosome 15 and 5 linked regions.
Collapse
Affiliation(s)
- Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Judith M. Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Diana A. van der Plaat
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Pharmaceutical Care Unit, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Cleo C. van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Guy G. Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dirkje S. Postma
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pulmonary Medicine and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - H. M. Boezen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|