1
|
Alwithenani A, Hengswat P, Chiocca EA. Oncolytic viruses as cancer therapeutics: From mechanistic insights to clinical translation. Mol Ther 2025; 33:2217-2228. [PMID: 40143547 DOI: 10.1016/j.ymthe.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Oncolytic virotherapy is a therapeutic approach that leverages genetically engineered or naturally occurring viruses to selectively target and destroy cancer cells while sparing normal tissues. This review provides an overview of the mechanisms of action by oncolytic viruses (OVs), including direct oncolysis, immune activation, and tumor microenvironment (TME) modulation. Despite significant progress, challenges such as immune resistance, tumor evasion mechanisms, and delivery barriers continue to limit the efficacy of OVs. To address these obstacles, recent advances in OV engineering have focused on arming viruses with immunomodulatory molecules, utilizing tumor-specific promoters, and employing CRISPR-based genome editing. Emerging strategies, such as dual-targeting OVs and viral enhancer drugs, have demonstrated promising potential in preclinical and clinical settings. This review also highlights findings from recent clinical trials, underscoring the translational challenges in scaling OVs for widespread therapeutic application. By exploring these innovations and their implications, we aim to shed light on the future directions of oncolytic virotherapy and its transformative potential in cancer treatment.
Collapse
Affiliation(s)
- Akram Alwithenani
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Pranaidej Hengswat
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
3
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Li H, Song C, Zhang Y, Liu G, Mi H, Li Y, Chen Z, Ma X, Zhang P, Cheng L, Peng P, Zhu H, Chen Z, Dong M, Chen S, Meng H, Xiao Q, Li H, Wu Q, Wang B, Zhang S, Shu K, Wan F, Guo D, Zhou W, Zhou L, Mao F, Rich JN, Yu X. Transgelin Promotes Glioblastoma Stem Cell Hypoxic Responses and Maintenance Through p53 Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305620. [PMID: 38087889 PMCID: PMC10870072 DOI: 10.1002/advs.202305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/17/2024]
Abstract
Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Huan Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chao Song
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yang Zhang
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guohao Liu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hailong Mi
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yachao Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhiye Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ma
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Po Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lidong Cheng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Peng Peng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hongtao Zhu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zirong Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Minhai Dong
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sui Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Meng
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - QunGen Xiao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honglian Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiulian Wu
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
| | - Baofeng Wang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Suojun Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Shu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Wan
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dongsheng Guo
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenchao Zhou
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - Lin Zhou
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Mao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jeremy N. Rich
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Xingjiang Yu
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
5
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Lin ZZ, Hu MCT, Hsu C, Wu YM, Lu YS, Ho JAA, Yeh SH, Chen PJ, Cheng AL. Synergistic efficacy of telomerase-specific oncolytic adenoviral therapy and histone deacetylase inhibition in human hepatocellular carcinoma. Cancer Lett 2023; 556:216063. [PMID: 36669725 DOI: 10.1016/j.canlet.2023.216063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
The telomerase-specific oncolytic adenovirus Telomelysin and the histone deacetylase inhibitor AR42 have demonstrated anticancer effects in preclinical models of human hepatocellular carcinoma (HCC). However, the clinical development of Telomelysin may be hindered by human antiviral immunity and tumor resistance. Combining oncolytic and epigenetic therapies is a viable approach for treating various cancers. This study investigated the potential synergism of Telomelysin and AR42 and the relevant underlying mechanisms. Telomelysin and AR42 exhibited synergistic antiproliferative effects in human HCC models in vitro and in vivo. Apoptosis induced by Telomelysin was significantly enhanced by AR42 in both PLC5 and Hep3B HCC cells. AR42 treatment unexpectedly attenuated the expression of the coxsackievirus and adenovirus receptor and the mRNA levels of human telomerase reverse transcriptase, which may be positively associated with the cytotoxicity of Telomelysin. Meanwhile, the cellular antiviral interferon response was not altered by AR42 treatment. Further, we found that Telomelysin enhanced Akt phosphorylation in HCC cells. AR42 reduced Telomelysin-induced phospho-Akt activation and enhanced Telomelysin-induced apoptosis. The correlation of Akt phosphorylation with drug-induced apoptosis was validated in HCC cells with upregulated or downregulated Akt signaling. Combination therapy with Telomelysin and AR42 demonstrated synergistic anti-HCC efficacy. Clinical trials investigating this new combination regimen are warranted.
Collapse
Affiliation(s)
- Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Shen Lu
- Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
9
|
Zou H, Mou X, Zhu B. Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200094. [PMID: 36618103 PMCID: PMC9818137 DOI: 10.1002/gch2.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Oncolytic viruses have found a good place in the treatment of cancer. Administering oncolytic viruses directly or by applying genetic changes can be effective in cancer treatment through the lysis of tumor cells and, in some cases, by inducing immune system responses. Moreover, oncolytic viruses induce antitumor immune responses via releasing tumor antigens in the tumor microenvironment (TME) and affect tumor cell growth and metabolism. Despite the success of virotherapy in cancer therapies, there are several challenges and limitations, such as immunosuppressive TME, lack of effective penetration into tumor tissue, low efficiency in hypoxia, antiviral immune responses, and off-targeting. Evidence suggests that oncolytic viruses combined with cancer immunotherapy-based methods such as immune checkpoint inhibitors and adoptive cell therapies can effectively overcome these challenges. This review summarizes the latest data on the use of oncolytic viruses for the treatment of cancer and the challenges of this method. Additionally, the effectiveness of mono, dual, and triple therapies using oncolytic viruses and other anticancer agents has been discussed based on the latest findings.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Zhou Mou
- General SurgeryCancer CenterDepartment of Hepatobiliary and Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College)Hangzhou310014China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang ProvinceZhejiang Provincial People's HospitalAffiliated People's Hospital of Hangzhou Medical CollegeHangzhou310014China
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
10
|
Wu Y, Chen X, Wang L, Zhou X, Liu Y, Ji D, Ren P, Zhou GG, Zhao J. Histone Deacetylase Inhibitor Panobinostat Benefits the Therapeutic Efficacy of Oncolytic Herpes Simplex Virus Combined with PD-1/PD-L1 Blocking in Glioma and Squamous Cell Carcinoma Models. Viruses 2022; 14:v14122796. [PMID: 36560800 PMCID: PMC9781547 DOI: 10.3390/v14122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Combination therapy has been widely explored for oncolytic virus (OV), as it can be met with tumor resistance. The HDAC inhibitor (HDACi) panobinostat is a potent pan-deacetylase inhibitor which blocks multiple cancer-related pathways and reverses epigenetic events in cancer progression. METHODS In this study, oncolytic activity in vitro and antitumor therapeutic efficacy in vivo when combined with oHSV and panobinostat were investigated. RESULTS (1) Treatment with panobinostat enhanced oHSV propagation and cytotoxicity in human glioma A172 and squamous cell carcinoma SCC9 cells. (2) Combined treatment with oHSV and panobinostat enhanced virus replication mediated by the transcriptional downregulation of IFN-β- and IFN-responsive antiviral genes in human glioma A172 and squamous cell carcinoma SCC9 cells. (3) Panobinostat treatment induced upregulation of PD-L1 expression in both glioma and squamous cell carcinoma cells. (4) A significantly enhanced therapeutic efficacy was shown in vivo for the murine glioma CT-2A and squamous cell carcinoma SCC7 models when treated with a combination of oHSV, including PD-1/PD-L1 blockade and HDAC inhibition. CONCLUSIONS Consequently, these data provide some new clues for the clinical development of combination therapy with OVs, epigenetic modifiers, and checkpoint blockades for glioma and squamous cell carcinoma.
Collapse
Affiliation(s)
- Yinglin Wu
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Lei Wang
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xusha Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Yonghong Liu
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Dongmei Ji
- Department of Medical Oncology, Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peigen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Correspondence: (G.G.Z.); (J.Z.)
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Correspondence: (G.G.Z.); (J.Z.)
| |
Collapse
|
11
|
Kawamura Y, Hua L, Gurtner A, Wong E, Kiyokawa J, Shah N, Gorham J, Wakimoto H, Rabkin SD, Martuza RL, Wakimoto H. Histone deacetylase inhibitors enhance oncolytic herpes simplex virus therapy for malignant meningioma. Biomed Pharmacother 2022; 155:113843. [PMID: 36271587 PMCID: PMC9590235 DOI: 10.1016/j.biopha.2022.113843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 20% of meningiomas are not benign (higher grade) and tend to relapse after surgery and radiation therapy. Malignant (anaplastic) meningioma (MM) is a minor subset of high-grade meningioma that is lethal with no effective treatment options currently. Oncolytic herpes simplex virus (oHSV) is a powerful anti-cancer modality that induces both direct cell death and anti-tumor immunity, and has shown activity in preclinical models of MM. However, clinically meaningful efficacy will likely entail rational mechanistic combination approaches. We here show that epigenome modulator histone deacetylase inhibitors (HDACi) increase anti-cancer effects of oHSV in human MM models, IOMM-Lee (NF2 wild-type) and CH157 (NF2 mutant). Minimally toxic, sub-micromolar concentrations of pan-HDACi, Trichostatin A and Panobinostat, substantively increased the infectability and spread of oHSV G47Δ within MM cells in vitro, resulting in enhanced oHSV-mediated killing of target cells when infected at low multiplicity of infection (MOI). Transcriptomics analysis identified selective alteration of mRNA processing and splicing modules that might underlie the potent anti-MM effects of combining HDACi and oHSV. In vivo, HDACi treatment increased intratumoral oHSV replication and boosted the capacity of oHSV to control the growth of human MM xenografts. Thus, our work supports further translational development of the combination approach employing HDACi and oHSV for the treatment of MM.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingyang Hua
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Alessandra Gurtner
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ego Wong
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nadia Shah
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert L. Martuza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Correspondence to: Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA. (H. Wakimoto)
| |
Collapse
|
12
|
Cheng K, Zhang H, Guo Q, Zhai P, Zhou Y, Yang W, Wang Y, Lu Y, Shen Z, Wu H. Emerging trends and research foci of oncolytic virotherapy for central nervous system tumors: A bibliometric study. Front Immunol 2022; 13:975695. [PMID: 36148235 PMCID: PMC9486718 DOI: 10.3389/fimmu.2022.975695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundCentral nervous system tumor (CNST) is one of the most complicated and lethal forms of human tumors with very limited treatment options. In recent years, growing evidence indicates that oncolytic virotherapy (OVT) has emerged as a promising therapeutic strategy for CNSTs. And a considerable amount of literature on OVT-CNSTs has been published. However, there are still no studies summarizing the global research trends and hotspots of this field through a bibliometric approach. To fulfill this knowledge gap, bibliometric analysis was conducted based on all publications relating to OVT-CNSTs since 2000s.MethodsWe searched the Web of Science Core Collection for all relevant studies published between 2000 and 2022. Four different tools (online analysis platform, R-bibliometrix, CiteSpace and VOSviewer) were used to perform bibliometric analysis and network visualization, including annual publication output, active journals, contribution of countries, institutions, and authors, references, as well as keywords.ResultsA total of 473 articles and reviews were included. The annual number of publications on OVT-CNSTs showed a significant increasing trend. Molecular Therapy and Cancer Research were the most active and co-cited journals, respectively. In terms of contributions, there is no doubt that the United States occupied a leading position with the most publications (n=307, 64.9%) and the highest H-index (57). The institution and author that contributed the largest number of publications were Ohio State University and Chiocca EA, respectively. As can be seen from citation analysis, the current studies mainly focused on preclinical and phase I/II clinical results of various oncolytic virus for CNSTs treatment. Keywords co-occurrence and burst analysis revealed that the following research topics including immunotherapy, T-cells, tumor microenvironment, vaccine, blood-brain-barrier, checkpoint inhibitors, macrophage, stem cell, and recurrent glioblastoma have been research frontiers of this field and also have great potential to continue to be research hotspots in the future.ConclusionThere has been increasing attention on oncolytic viruses for use as CNSTs therapeutics. Oncolytic immunotherapy is a topic of great concern in this field. This bibliometric study provides a comprehensive analysis of the knowledge base, research hotspots, development perspective in the field of OVT-CNSTs, which could become an essential reference for scholars in this area.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Qiang Guo
- Department of Orhopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhai
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of NeuroSpine Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zhou
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Weiguang Yang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yanqiu Lu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| |
Collapse
|
13
|
Effect of alcohol on productivity and quality of adeno-associated virus 2 in HEK293 cells. J Biosci Bioeng 2022; 134:338-347. [PMID: 36031536 DOI: 10.1016/j.jbiosc.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Investigation of enhancers to improve recombinant adeno-associated virus 2 (rAAV2) productivity by human embryonic kidney 293 cells (HEK293) suspension culture showed that the addition of ethanol improved the productivity and packaged genome integrity of rAAV2. Further optimization showed that adding ethanol in the range of 0.09%-1.11% (v/v) during rAAV2 production effectively improved rAAV2 productivity and quality. In addition, ethanol addition improved cell viability. Furthermore, proteome and pathway analysis of the cells during rAAV2 production showed that the addition of ethanol resulted in the upregulation of pathways related to intercellular signaling, gene expression, cell morphology, intercellular maintenance, and others. In contrast, pathways related to cell death, immunity, and reactions to infection were downregulated. These changes in pathway regulation were responsible for the improvement in rAAV2 productivity, packaged genome integrity, and cell viability during rAAV2 production. The results of this study can be applied to the production of viral vectors for in vivo gene therapy in an inexpensive and safe manner.
Collapse
|
14
|
Shao S, Yang X, Zhang YN, Wang XJ, Li K, Zhao YL, Mou XZ, Hu PY. Oncolytic Virotherapy in Peritoneal Metastasis Gastric Cancer: The Challenges and Achievements. Front Mol Biosci 2022; 9:835300. [PMID: 35295845 PMCID: PMC8918680 DOI: 10.3389/fmolb.2022.835300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer death globally. Although the mortality rate in some parts of the world, such as East Asia, is still high, new treatments and lifestyle changes have effectively reduced deaths from this type of cancer. One of the main challenges of this type of cancer is its late diagnosis and poor prognosis. GC patients are usually diagnosed in the advanced stages of the disease, which is often associated with peritoneal metastasis (PM) and significantly reduces survival. This type of metastasis in patients with GC poses a serious challenge due to limitations in common therapies such as surgery and tumor resection, as well as failure to respond to systemic chemotherapy. To solve this problem, researchers have used virotherapy such as reovirus-based anticancer therapy in patients with GC along with PM who are resistant to current chemotherapies because this therapeutic approach is able to overcome immune suppression by activating dendritic cells (DCs) and eventually lead to the intrinsic activity of antitumor effector T cells. This review summarizes the immunopathogenesis of peritoneal metastasis of gastric cancer (PMGC) and the details for using virotherapy as an effective anticancer treatment approach, as well as its challenges and opportunities.
Collapse
Affiliation(s)
- Su Shao
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Xue Yang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Ke Li
- Guangdong Techpool Bio-pharma Co., Ltd., Guangzhou, China
| | - Ya-Long Zhao
- Guangdong Techpool Bio-pharma Co., Ltd., Guangzhou, China
| | - Xiao-Zhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiao-Zhou Mou, ; Pei-Yang Hu,
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Xiao-Zhou Mou, ; Pei-Yang Hu,
| |
Collapse
|
15
|
Shirbhate E, Veerasamy R, Boddu SH, Tiwari AK, Rajak H. Histone deacetylase inhibitor-based oncolytic virotherapy: a promising strategy for cancer treatment. Drug Discov Today 2022; 27:1689-1697. [DOI: 10.1016/j.drudis.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
16
|
Hu J, Lu R, Zhang Y, Li W, Hu Q, Chen C, Liu Z, Zhang W, Chen L, Xu R, Luo J, McLeod HL, He Y. β-adrenergic receptor inhibition enhances oncolytic herpes virus propagation through STAT3 activation in gastric cancer. Cell Biosci 2021; 11:174. [PMID: 34544479 PMCID: PMC8454049 DOI: 10.1186/s13578-021-00687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, OVs could activate the host innate immunity, then impair the viral propagation in tumor cells. In this study, we explored the effect of propranolol, a non-selective β-blocker, on the antitumor efficacy of T1012G virus in gastric cancer models. Methods The proliferation of gastric cancer cells treated with monotherapy or combination treatment was detected by CCK8 cell proliferation assay. The effect of propranolol was further evaluated by in vitro viral replication assays. In vivo tumor xenograft experiments were used to observe the effect of combination therapy on gastric cancer growth in mice. The expression levels of viral proteins and interferon responsive genes were detected in the gastric cancer cell lines treated with combined treatment by western blot. The impact of propranolol on IFN-α/β-mediated inhibition of viral propagation and the expression of antiviral gene PKR was detected by viral replication assays and western blot. Results Cell viability assay detected a 97.9% decrease of T1012G IC50 in HGC-27 when it was pretreated with propranolol along with a sevenfold increase of virus titers compared with T1012G only group (P < 0.001). Moreover, propranolol pretreatment caused sustained tumor regression (335.3 ± 36.92 mm3 vs. 1118 ± 210.0 mm3, P < 0.01) and enhanced the viral propagation (fourfold increase, P < 0.01) compared with T1012G only group. Propranolol pretreatment significantly enhanced the p-STAT3 (2.9-fold, P < 0.05) and suppressed p-PKR (65.94% ± 10.11%, P < 0.05) compared with T1012G only group. In addition, propranolol could counteract IFN-α/β-mediated inhibition of viral propagation (compared with IFNα: 5.1-fold, P < 0.001; IFNβ: 4.6-fold, P < 0.01) or enhancement of PKR activation (IFNα: 92.57% ± 1.77%, P < 0.001, IFNβ: 99.34% ± 0.13% decrease, P < 0.001). Conclusions In summary, β-blocker pretreatment could improve the propagation and therapeutic efficacy of T1012G in human gastric cancer by regulating STAT3-PKR signaling cascade, even in the presence of type I IFNs. These data support new strategies of improving the efficacy of OVs in gastric cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00687-1.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,Geriatric Oncology Consortium, Tampa, FL, USA
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
19
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
20
|
Otani Y, Sur H, Rachaiah G, Namagiri S, Chowdhury A, Lewis CT, Shimizu T, Gangaplara A, Wang X, Vézina A, Maric D, Jackson S, Yan Y, Zhengping Z, Ray-Chaudhury A, Kumar S, Ballester LY, Chittiboina P, Yoo JY, Heiss J, Kaur B, Kumar Banasavadi-Siddegowda Y. Inhibiting protein phosphatase 2A increases the antitumor effect of protein arginine methyltransferase 5 inhibition in models of glioblastoma. Neuro Oncol 2021; 23:1481-1493. [PMID: 33556161 DOI: 10.1093/neuonc/noab014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor treating fields, the median survival of Glioblastoma (GBM) patients is less than 15 months. Protein Arginine Methyltransferase 5 (PRMT5) catalyzes the symmetric di-methylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of Protein Phosphatase 2A (PP2A) can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS We found that PRMT5-depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5 intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5-depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sriya Namagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashis Chowdhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cole T Lewis
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amélie Vézina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yuanqing Yan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhuang Zhengping
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine and Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
21
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
22
|
Angelova A, Ferreira T, Bretscher C, Rommelaere J, Marchini A. Parvovirus-Based Combinatorial Immunotherapy: A Reinforced Therapeutic Strategy against Poor-Prognosis Solid Cancers. Cancers (Basel) 2021; 13:342. [PMID: 33477757 PMCID: PMC7832409 DOI: 10.3390/cancers13020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Resistance to anticancer treatments poses continuing challenges to oncology researchers and clinicians. The underlying mechanisms are complex and multifactorial. However, the immunologically "cold" tumor microenvironment (TME) has recently emerged as one of the critical players in cancer progression and therapeutic resistance. Therefore, TME modulation through induction of an immunological switch towards inflammation ("warming up") is among the leading approaches in modern oncology. Oncolytic viruses (OVs) are seen today not merely as tumor cell-killing (oncolytic) agents, but also as cancer therapeutics with multimodal antitumor action. Due to their intrinsic or engineered capacity for overcoming immune escape mechanisms, warming up the TME and promoting antitumor immune responses, OVs hold the potential for creating a proinflammatory background, which may in turn facilitate the action of other (immunomodulating) drugs. The latter provides the basis for the development of OV-based immunostimulatory anticancer combinations. This review deals with the smallest among all OVs, the H-1 parvovirus (H-1PV), and focuses on H-1PV-based combinatorial approaches, whose efficiency has been proven in preclinical and/or clinical settings. Special focus is given to cancer types with the most devastating impact on life expectancy that urgently call for novel therapies.
Collapse
Affiliation(s)
- Assia Angelova
- German Cancer Research Center (DKFZ), Research Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany;
| | - Tiago Ferreira
- German Cancer Research Center (DKFZ), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.); (A.M.)
| | - Clemens Bretscher
- German Cancer Research Center (DKFZ), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.); (A.M.)
| | - Jean Rommelaere
- German Cancer Research Center (DKFZ), Research Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany;
| | - Antonio Marchini
- German Cancer Research Center (DKFZ), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.); (A.M.)
- Luxembourg Institute of Health (LIH), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), 84 rue Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
23
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
24
|
Hamada M, Yura Y. Efficient Delivery and Replication of Oncolytic Virus for Successful Treatment of Head and Neck Cancer. Int J Mol Sci 2020; 21:E7073. [PMID: 32992948 PMCID: PMC7582277 DOI: 10.3390/ijms21197073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer has been treated by a combination of surgery, radiation, and chemotherapy. In recent years, the development of immune checkpoint inhibitors (ICIs) has made immunotherapy a new treatment method. Oncolytic virus (OV) therapy selectively infects tumor cells with a low-pathogenic virus, lyses tumor cells by the cytopathic effects of the virus, and induces anti-tumor immunity to destroy tumors by the action of immune cells. In OV therapy for head and neck squamous cell carcinoma (HNSCC), viruses, such as herpes simplex virus type 1 (HSV-1), vaccinia virus, adenovirus, reovirus, measles virus, and vesicular stomatitis virus (VSV), are mainly used. As the combined use of mutant HSV-1 and ICI was successful for the treatment of melanoma, studies are underway to combine OV therapy with radiation, chemotherapy, and other types of immunotherapy. In such therapy, it is important for the virus to selectively replicate in tumor cells, and to express the viral gene and the introduced foreign gene in the tumor cells. In OV therapy for HNSCC, it may be useful to combine systemic and local treatments that improve the delivery and replication of the inoculated oncolytic virus in the tumor cells.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan;
| | | |
Collapse
|
25
|
Kuroda S, Miyagawa Y, Sato Y, Yamamoto M, Adachi K, Kinoh H, Goins WF, Cohen JB, Glorioso JC, Taniai N, Yoshida H, Okada T. Protocol Optimization for the Production of the Non-Cytotoxic JΔNI5 HSV Vector Deficient in Expression of Immediately Early Genes. Mol Ther Methods Clin Dev 2020; 17:612-621. [PMID: 32300608 PMCID: PMC7150431 DOI: 10.1016/j.omtm.2020.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Non-toxic herpes simplex virus (HSV) vectors can be generated by functional deletion of all immediate-early (IE) genes, providing a benign vehicle with potential for gene therapy. However, deletion of multiple IE genes raises manufacturing concerns and thus limits clinical application of these vectors. To address this issue, we previously developed a novel production cell line, called U2OS-ICP4/27, by lentiviral transduction of human osteosarcoma U2OS cells with two essential HSV IE genes, ICP4 and ICP27. To optimize the process of vector manufacturing on this platform, we evaluated several cell culture parameters of U2OS-ICP4/27 for high-titer and -quality production of non-toxic HSV vectors, revealing that the yields and functionality of these vectors can be significantly influenced by culturing conditions. We also found that several chemical compounds can enhance the replication of non-toxic HSV vectors and their release from producer cells into the supernatants. Notably, the vector produced by our optimized protocol displayed a greatly improved vector yield and quality and showed elevated transgene expression in cultures of primary dorsal root ganglion neurons. Taken together, our optimized production approach emerges as a relevant protocol for high-yield and high-quality preparation of non-toxic HSV-based gene therapy vectors.
Collapse
Affiliation(s)
- Seiji Kuroda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
- Department of Surgery, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yuriko Sato
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiromi Kinoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Nobuhiko Taniai
- Department of Surgery, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Terrível M, Gromicho C, Matos AM. Oncolytic viruses: what to expect from their use in cancer treatment. Microbiol Immunol 2020; 64:477-492. [PMID: 31663631 DOI: 10.1111/1348-0421.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are biologic agents able to selectively infect and destroy cancer cells while sparing the normal ones. Furthermore, they also stimulate the host immune system to combat the tumor growth and to promote tumor removal. This review thoroughly describes different types of viruses developed for targeting specific cancers, as well as the strategies to improve the efficacy and safety of oncolytic virotherapy. It also explores how their potential as anticancer agents may be enhanced through combination with other traditional therapies, such as chemotherapy or more recent approaches, such as checkpoint inhibitors. There are many oncolytic viruses currently being tested in clinical trials for the treatment of various types of cancer, suggesting that this approach could become the near future of the oncology field.
Collapse
Affiliation(s)
| | | | - Ana Miguel Matos
- Laboratory of Microbiology, Faculty of Pharmacy, Centre on Chemical Processes Engineering and Forest Products (CIEPQF), University of Coimbra, Portugal
| |
Collapse
|
28
|
Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Virotherapy: From single agents to combinatorial treatments. Biochem Pharmacol 2020; 177:113986. [PMID: 32330494 DOI: 10.1016/j.bcp.2020.113986] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | | | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy.
| |
Collapse
|
29
|
Herbein G, Nehme Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:1-8. [PMID: 32300639 PMCID: PMC7150429 DOI: 10.1016/j.omto.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Belonging to the herpesviridae family, human cytomegalovirus (HCMV) is a well-known ubiquitous pathogen that establishes a lifelong infection in humans. Recently, a beneficial tumor-cytoreductive role of CMV infection has been defined in human and animal models. Described as a potential anti-tumoral activity, HCMV modulates the tumor microenvironment mainly by inducing cell death through apoptosis and prompting a robust stimulatory effect on the immune cells infiltrating the tumor tissue. However, major current limitations embrace transient protective effect and a viral dissemination potential in immunosuppressed hosts. The latter could be counteracted through direct viral intratumoral delivery, use of non-human strains, or even defective CMV vectors to ascertain transformed cells-selective tropism. This potential oncolytic activity could be complemented by tackling further platforms, namely combination with immune checkpoint inhibitors or epigenetic therapy, as well as the use of second-generation chimeric oncovirus, for instance HCMV/HSV-1 oncolytic virus. Overall, preliminary data support the use of CMV in viral oncolytic therapy as a viable option, establishing thus a potential new modality, where further assessment through extensive basic research armed by molecular biotechnology is compulsory.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Department of Virology, CHRU Besancon, 25030 Besançon, France
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Université Libanaise 1003, Beirut, Lebanon
| |
Collapse
|
30
|
Clinical Infections by Herpesviruses in Patients Treated with Valproic Acid: A Nested Case-Control Study in the Spanish Primary Care Database, BIFAP. J Clin Med 2019; 8:jcm8091442. [PMID: 31514402 PMCID: PMC6780826 DOI: 10.3390/jcm8091442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
The objective of this study is to evaluate the risk of clinical infections by herpesviruses in patients exposed to valproic acid (VPA). We performed a case-control study nested in a primary cohort selected from the Spanish primary care population-based research database BIFAP (Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria) over the period 2001–2015. The events of interest were those diseases caused by any herpesviruses known to infect humans. For each case, up to 10 controls per case matched by age, gender, and calendar date were randomly selected. A conditional logistic regression was used to compute adjusted odds ratios (OR) and their 95% confidence intervals (95% CI). Current use of VPA was associated with a trend towards a reduced risk of clinical infections by herpesviruses as compared with non-users (OR 0.84; CI 95% 0.7–1.0; p = 0.057). Among current users, a trend to a decreased risk with treatment durations longer than 90 days was also observed. The results show a trend to a reduced risk of clinical infection by herpesviruses in patients exposed to VPA. These results are consistent with those in vitro studies showing that, in cultured cells, VPA can inhibit the production of the infectious progeny of herpesviruses. This study also shows the efficient use of electronic healthcare records for clinical exploratory research studies.
Collapse
|
31
|
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, Reilly K, Donnelly O, Peach H, Dewar D, Harrington KJ, Pandha H, Samson A, Vile RG, Melcher AA, Errington-Mais F. Potentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition. Mol Ther 2019; 27:1139-1152. [PMID: 31053413 PMCID: PMC6554638 DOI: 10.1016/j.ymthe.2019.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023] Open
Abstract
A clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.
Collapse
Affiliation(s)
- Victoria A Jennings
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK; Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gina B Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Ailsa M S Rose
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Karen J Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gemma Migneco
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Brian Keller
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katrina Reilly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Oliver Donnelly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Howard Peach
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Donald Dewar
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Kevin J Harrington
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK
| | - Adel Samson
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | | | - Alan A Melcher
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK.
| | - Fiona Errington-Mais
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
32
|
Hua L, Wakimoto H. Oncolytic herpes simplex virus therapy for malignant glioma: current approaches to successful clinical application. Expert Opin Biol Ther 2019; 19:845-854. [PMID: 31046478 DOI: 10.1080/14712598.2019.1614557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION With the approval of talimogene laherparepvec (T-VEC) for advanced malignant melanoma, virotherapy using oncolytic herpes simplex virus (oHSV) is now emerging as a viable therapeutic option for cancer patients, including malignant gliomas. AREAS COVERED This review summarizes the most recent literature to provide cutting-edge knowledge about preclinical and clinical development of oHSV therapy for malignant gliomas, presenting current approaches to overcome obstacles to successful clinical application of oHSV in neuro-oncology. EXPERT OPINION Current strategies to improve the efficacy of oHSV therapy include engineering new viruses, modulation of innate and adaptive immune responses, combination with other treatments, and developing new oHSV delivery. All of these could rapidly be translated into clinical investigations, following several clinical trials that are currently ongoing.
Collapse
Affiliation(s)
- Lingyang Hua
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Hiroaki Wakimoto
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
33
|
Fox CR, Parks GD. Histone Deacetylase Inhibitors Enhance Cell Killing and Block Interferon-Beta Synthesis Elicited by Infection with an Oncolytic Parainfluenza Virus. Viruses 2019; 11:E431. [PMID: 31083335 PMCID: PMC6563284 DOI: 10.3390/v11050431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Previous results have shown that infection with the cytoplasmic-replicating parainfluenza virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in lung cancer cells that were engineered to express a protein which sequesters double stranded RNA. Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses - the La Crosse virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus through a population of cancer cells, and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together, these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI- mutant along with chemotherapeutic agents.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
34
|
Kim Y, Lee J, Lee D, Othmer HG. Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model. Cancers (Basel) 2019; 11:E215. [PMID: 30781871 PMCID: PMC6406513 DOI: 10.3390/cancers11020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for the treatment of glioblastoma, but the role of the TME in such therapies has not been studied. In this paper, we develop a mathematical model for combination therapies based on the proteosome inhibitor bortezomib and the oncolytic herpes simplex virus (oHSV), with the goal of understanding their roles in bortezomib-induced endoplasmic reticulum (ER) stress, and how the balance between apoptosis and necroptosis is affected by the treatment protocol. We show that the TME plays a significant role in anti-tumor efficacy in OV combination therapy, and illustrate the effect of different spatial patterns of OV injection. The results illustrate a possible phenotypic switch within tumor populations in a given microenvironment, and suggest new anti-invasion therapies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Banasavadi-Siddegowda YK, Welker AM, An M, Yang X, Zhou W, Shi G, Imitola J, Li C, Hsu S, Wang J, Phelps M, Zhang J, Beattie CE, Baiocchi R, Kaur B. PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol 2019; 20:753-763. [PMID: 29106602 DOI: 10.1093/neuonc/nox206] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background In spite of standard multimodal therapy consisting of surgical resection followed by radiation and concurrent chemotherapy, prognosis for glioblastoma (GBM) patients remains poor. The identification of both differentiated and undifferentiated "stem cell like" populations in the tumor highlights the significance of finding novel targets that affect the heterogeneous tumor cell population. Protein arginine methyltransferase 5 (PRMT5) is one such candidate gene whose nuclear expression correlates with poor survival and has been reported to be required for survival of differentiated GBM cells and self-renewal of undifferentiated GBM cells. In the current study we screened the specificity and efficacy of 4 novel PRMT5 inhibitors in the treatment of GBM. Methods Efficacies of these inhibitors were screened using an in vitro GBM neurosphere model and an in vivo intracranial zebrafish model of glioma. Standard molecular biology methods were employed to investigate changes in cell cycle, growth, and senescence. Results In vitro and in vivo studies revealed that among the 4 PRMT5 inhibitors, treatment of GBM cells with compound 5 (CMP5) mirrored the effects of PRMT5 knockdown wherein it led to apoptosis of differentiated GBM cells and drove undifferentiated primary patient derived GBM cells into a nonreplicative senescent state. Conclusion In vivo antitumor efficacy combined with the specificity of CMP5 underscores the importance of developing it for translation.
Collapse
Affiliation(s)
- Yeshavanth Kumar Banasavadi-Siddegowda
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Alessandra M Welker
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pathology, Center of Cancer Research, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min An
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida
| | - Guqin Shi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, Departments of Neurology and Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida.,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sigmund Hsu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jiang Wang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Christine E Beattie
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Robert Baiocchi
- College of Medicine, Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
37
|
Abstract
In the last decade, epigenetic drugs (such as inhibitors of DNA methyltransferases and histone deacetylases) have been intensively used for cancer treatment. Their applications have shown high anticancer effectivity and tolerable side effects. However, they are unfortunately not effective in the treatment of some types and phenotypes of cancers. Nevertheless, several studies have demonstrated that problems of drug efficacy can be overcome through the combined application of therapeutic modulates. Therefore, combined applications of epigenetic agents with chemotherapy, radiation therapy, immunotherapy, oncolytic virotherapy and hyperthermia have been presented. This review summarizes and discusses the general principles of this approach, as introduced and supported by numerous examples. In addition, predictions of the future potential applications of this methodology are included.
Collapse
|
38
|
Achard C, Surendran A, Wedge ME, Ungerechts G, Bell J, Ilkow CS. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine 2018; 31:17-24. [PMID: 29724655 PMCID: PMC6013846 DOI: 10.1016/j.ebiom.2018.04.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 02/09/2023] Open
Abstract
Oncolytic virus (OV) therapy is potentially a game-changing cancer treatment that has garnered significant interest due to its versatility and multi-modal approaches towards tumor eradication. In the field of cancer immunotherapy, the immunological phenotype of the tumor microenvironment (TME) is an important determinant of disease prognosis and therapeutic success. There is accumulating data that OVs are capable of dramatically altering the TME immune landscape, leading to improved antitumor activity alone or in combination with assorted immune modulators. Herein, we review how OVs disrupt the immunosuppressive TME and can be used strategically to create a "pro-immune" microenvironment that enables and promotes potent, long-lasting host antitumor immune responses.
Collapse
Affiliation(s)
- Carole Achard
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada
| | - Abera Surendran
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marie-Eve Wedge
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Guy Ungerechts
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Medical Oncology and Translational Oncology, National Center for Tumor Diseases (NCT), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
39
|
Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol 2017; 39:209-221. [PMID: 29275092 DOI: 10.1016/j.it.2017.11.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics. Administration of OVs to cancer-bearing hosts induces two distinct immunities: antiviral and antitumor. While antitumor immunity is beneficial, antiviral immune responses are often considered detrimental for the efficacy of OV-based therapy. The existing dogma postulates that anti-OV immune responses restrict viral replication and spread, and thus reduce direct OV-mediated killing of cancer cells. Accordingly, a myriad of therapeutic strategies aimed at mitigating anti-OV immune responses is presently being tested. Here, we advocate that OV-induced antiviral immune responses hold intrinsic anticancer benefits and are essential for establishing clinically desired antitumor immunity. Thus, to achieve the optimal efficacy of OV-based cancer immunotherapies, strategic management of anti-OV immune responses is of critical importance.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Department of Biology, Dalhousie University, NS, Canada; Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada; These authors contributed equally to this work
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; These authors contributed equally to this work
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Share senior co-authorship.
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Share senior co-authorship.
| |
Collapse
|
40
|
Currier MA, Sprague L, Rizvi TA, Nartker B, Chen CY, Wang PY, Hutzen BJ, Franczek MR, Patel AV, Chaney KE, Streby KA, Ecsedy JA, Conner J, Ratner N, Cripe TP. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget 2017; 8:17412-17427. [PMID: 28147331 PMCID: PMC5392259 DOI: 10.18632/oncotarget.14885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Les Sprague
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Brooke Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Meghan R Franczek
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Keri A Streby
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Joe Conner
- Virttu Biologics, Ltd, Biocity, Scotland, Newhouse, United Kingdom
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
41
|
Jaime-Ramirez AC, Yu JG, Caserta E, Yoo JY, Zhang J, Lee TJ, Hofmeister C, Lee JH, Kumar B, Pan Q, Kumar P, Baiocchi R, Teknos T, Pichiorri F, Kaur B, Old M. Reolysin and Histone Deacetylase Inhibition in the Treatment of Head and Neck Squamous Cell Carcinoma. Mol Ther Oncolytics 2017; 5:87-96. [PMID: 28812060 PMCID: PMC5440762 DOI: 10.1016/j.omto.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/03/2017] [Indexed: 02/09/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as powerful anti-cancer agents and are currently being tested for their safety and efficacy in patients. Reovirus (Reolysin), a naturally occurring non-pathogenic, double-stranded RNA virus, has natural oncolytic activity and is being tested in phase I-III clinical trials in a variety of tumor types. With its recent US Food and Drug Administration (FDA) orphan drug designation for several tumor types, Reolysin is a potential therapeutic agent for various cancers, including head and neck squamous cell carcinomas (HNSCCs), which have a 5-year survival of ∼55%. Histone deacetylase inhibitors (HDACis) comprise a structurally diverse class of compounds with targeted anti-cancer effects. The first FDA-approved HDACi, vorinostat (suberoylanilide hydroxamic acid [SAHA]), is currently being tested in patients with head and neck cancer. Recent findings indicate that HDAC inhibition in myeloma cells results in the upregulation of the Reolysin entry receptor, junctional adhesion molecule 1 (JAM-1), facilitating reovirus infection and tumor cell killing both in vitro and in vivo. In this study, we tested the anti-tumor efficacy of HDAC inhibitors AR-42 or SAHA in conjunction with Reolysin in HNSCCs. While HDAC inhibition increased JAM-1 and reovirus entry, the impact of this combination therapy was tested on the development of anti-tumor immune responses.
Collapse
Affiliation(s)
| | - Jun-Ge Yu
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Enrico Caserta
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ji Young Yoo
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianying Zhang
- Biomedical Informatics Department, Center for Biostatistics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tae Jin Lee
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Craig Hofmeister
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John H. Lee
- Department of Otolaryngology/Head and Neck Surgery, Sanford Health, Sioux Falls, SD 57105, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros Teknos
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Sanchala DS, Bhatt LK, Prabhavalkar KS. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells. Front Pharmacol 2017; 8:270. [PMID: 28559846 PMCID: PMC5432606 DOI: 10.3389/fphar.2017.00270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.
Collapse
Affiliation(s)
| | - Lokesh K. Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W)Mumbai, India
| | | |
Collapse
|
43
|
Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:259. [PMID: 28486989 PMCID: PMC5424332 DOI: 10.1186/s12906-017-1763-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Background Valproic acid (VPA) is used as a first-line antiepileptic agent and is undergoing clinical trials for use as a treatment for many disorders. Mothers undergoing VPA treatment during early pregnancy reportedly show increased rates of autism among their offspring. The benefits of curcumin supplementation were investigated using an animal model of VPA-induced autism. Methods The study was performed using a rodent model of autism by exposing rat fetuses to valproic acid (VPA) on the 12.5th day of gestation. At 7 days from their birth, the animals were supplemented with a specific dose of curcumin. Forty neonatal male Western Albino rats were divided into four groups. Rats in group I received only phosphate-buffered saline, rats in group II were the prenatal VPA exposure newborns, rats in group III underwent prenatal VPA exposure supplemented with postnatal curcumin, and rats in group IV were given only postnatal curcumin supplements. Results VPA rats exhibited delayed maturation and lower body and brain weights with numerous signs of brain toxicity, such as depletion of IFN-γ, serotonin, glutamine, reduced glutathione, glutathione S-transferase, lipid peroxidase with an increase in CYP450, IL-6, glutamate, and oxidized glutathione. A curcumin supplement moderately corrected these dysfunctions and was especially noticeable in improving delayed maturation and abnormal weight. Conclusions Curcumin plays a significant therapeutic role in attenuating brain damage that has been induced by prenatal VPA exposure in rats; however, its therapeutic role as a dietary supplement still must be certified for use in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1763-7) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Ebrahimi S, Ghorbani E, Khazaei M, Avan A, Ryzhikov M, Azadmanesh K, Hassanian SM. Interferon-Mediated Tumor Resistance to Oncolytic Virotherapy. J Cell Biochem 2017; 118:1994-1999. [DOI: 10.1002/jcb.25917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Elnaz Ghorbani
- Department of Microbiology; Al-Zahra University; Tehran Iran
| | - Majid Khazaei
- Department of Medical Physiology; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Amir Avan
- Metabolic Syndrome Research Center; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Molecular Medicine Group; Department of Modern Sciences and Technologies; School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology; St. Louis University School of Medicine; Saint Louis Missouri
| | | | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Metabolic Syndrome Research Center; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Microanatomy Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
45
|
Cilibrasi C, Riva G, Romano G, Cadamuro M, Bazzoni R, Butta V, Paoletta L, Dalprà L, Strazzabosco M, Lavitrano M, Giovannoni R, Bentivegna A. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS One 2017; 12:e0169854. [PMID: 28081224 PMCID: PMC5231344 DOI: 10.1371/journal.pone.0169854] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Riccardo Bazzoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Valentina Butta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Laura Paoletta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
- * E-mail:
| |
Collapse
|
46
|
Shapira L, Ralph M, Tomer E, Cohen S, Kobiler O. Histone Deacetylase Inhibitors Reduce the Number of Herpes Simplex Virus-1 Genomes Initiating Expression in Individual Cells. Front Microbiol 2016; 7:1970. [PMID: 27999572 PMCID: PMC5138200 DOI: 10.3389/fmicb.2016.01970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 01/31/2023] Open
Abstract
Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1) fluorescence expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi's). Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA), Suberohydroxamic Acid, Valporic Acid, and Suberoylanilide Hydroxamic Acid. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero, and U2OS), which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (promyelocytic leukemia and ATRX), which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in differences in the number of genomes that initiate expression.
Collapse
Affiliation(s)
- Lev Shapira
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Maya Ralph
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Enosh Tomer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Shai Cohen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
47
|
Bolyard C, Meisen WH, Banasavadi-Siddegowda Y, Hardcastle J, Yoo JY, Wohleb ES, Wojton J, Yu JG, Dubin S, Khosla M, Xu B, Smith J, Alvarez-Breckenridge C, Pow-Anpongkul P, Pichiorri F, Zhang J, Old M, Zhu D, Van Meir EG, Godbout JP, Caligiuri MA, Yu J, Kaur B. BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection-Implications for Oncolytic Viral Therapy. Clin Cancer Res 2016; 23:1809-1819. [PMID: 27852701 DOI: 10.1158/1078-0432.ccr-16-1818] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Purpose: Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV).Experimental Design: Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry. Co-culture of infected glioma cells with macrophages or microglia was used to examine antiviral signaling. Cytokine array gene expression and Ingenuity Pathway Analysis (IPA) helped evaluate changes in macrophage signaling in response to viral infection. TNFα-blocking antibodies and macrophages derived from Bai1-/- mice were used.Results: RAMBO treatment of mice reduced recruitment and activation of macrophages/microglia in mice with brain tumors, and showed increased virus replication compared with rHSVQ1. Cytokine gene expression array revealed that RAMBO significantly altered the macrophage inflammatory response to infected glioma cells via altered secretion of TNFα. Furthermore, we showed that BAI1 mediated macrophage TNFα induction in response to oHSV therapy. Intracranial inoculation of wild-type/RAMBO virus in Bai1-/- or wild-type non-tumor-bearing mice revealed the safety of this approach.Conclusions: We have uncovered a new role for BAI1 in facilitating macrophage anti-viral responses. We show that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophage antiviral response, without reducing safety. Clin Cancer Res; 23(7); 1809-19. ©2016 AACR.
Collapse
Affiliation(s)
- Chelsea Bolyard
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - W Hans Meisen
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yeshavanth Banasavadi-Siddegowda
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jayson Hardcastle
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ji Young Yoo
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Eric S Wohleb
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey Wojton
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jun-Ge Yu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Otolaryngology, Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Samuel Dubin
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Maninder Khosla
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Otolaryngology, Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Bo Xu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jonathan Smith
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Christopher Alvarez-Breckenridge
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Pete Pow-Anpongkul
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Flavia Pichiorri
- Department of Hematology, City of Hope Cancer Center, Duarte, California
| | - Jianying Zhang
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew Old
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Otolaryngology, Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Dan Zhu
- Departments of Neurosurgery and Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jonathan P Godbout
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michael A Caligiuri
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jianhua Yu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio. .,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
48
|
Ornaghi S, Davis JN, Gorres KL, Miller G, Paidas MJ, van den Pol AN. Mood stabilizers inhibit cytomegalovirus infection. Virology 2016; 499:121-135. [PMID: 27657833 DOI: 10.1016/j.virol.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/14/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Cytomegalovirus (CMV) infection can generate debilitating disease in immunocompromised individuals and neonates. It is also the most common infectious cause of congenital birth defects in infected fetuses. Available anti-CMV drugs are partially effective but are limited by some toxicity, potential viral resistance, and are not recommended for fetal exposure. Valproate, valpromide, and valnoctamide have been used for many years to treat epilepsy and mood disorders. We report for the first time that, in contrast to the virus-enhancing actions of valproate, structurally related valpromide and valnoctamide evoke a substantial and specific inhibition of mouse and human CMV in vitro. In vivo, both drugs safely attenuate mouse CMV, improving survival, body weight, and developmental maturation of infected newborns. The compounds appear to act by a novel mechanism that interferes with CMV attachment to the cell. Our work provides a novel potential direction for CMV therapeutics through repositioning of agents already approved for use in psychiatric disorders.
Collapse
Affiliation(s)
- Sara Ornaghi
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, 333 Cedar Street, 06510 New Haven, CT, USA; School of Medicine and Surgery, Ph.D. Program in Neuroscience, University of Milan-Bicocca, via Cadore 48, 20900 Monza, Italy; Department of Obstetrics and Gynecology, Foundation MBBM, University of Milan-Bicocca, via Pergolesi 33, 20900 Monza, Italy
| | - John N Davis
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Kelly L Gorres
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - George Miller
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA.
| |
Collapse
|
49
|
Ellerhoff TP, Berchtold S, Venturelli S, Burkard M, Smirnow I, Wulff T, Lauer UM. Novel epi-virotherapeutic treatment of pancreatic cancer combining the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus. Int J Oncol 2016; 49:1931-1944. [DOI: 10.3892/ijo.2016.3675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/22/2016] [Indexed: 11/05/2022] Open
|
50
|
Thotala D, Karvas RM, Engelbach JA, Garbow JR, Hallahan AN, DeWees TA, Laszlo A, Hallahan DE. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget 2016; 6:35004-22. [PMID: 26413814 PMCID: PMC4741505 DOI: 10.18632/oncotarget.5253] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2015] [Indexed: 12/18/2022] Open
Abstract
Neurocognitive deficits are serious sequelae that follow cranial irradiation used to treat patients with medulloblastoma and other brain neoplasms. Cranial irradiation causes apoptosis in the subgranular zone of the hippocampus leading to cognitive deficits. Valproic acid (VPA) treatment protected hippocampal neurons from radiation-induced damage in both cell culture and animal models. Radioprotection was observed in VPA-treated neuronal cells compared to cells treated with radiation alone. This protection is specific to normal neuronal cells and did not extend to cancer cells. In fact, VPA acted as a radiosensitizer in brain cancer cells. VPA treatment induced cell cycle arrest in cancer cells but not in normal neuronal cells. The level of anti-apoptotic protein Bcl-2 was increased and the pro-apoptotic protein Bax was reduced in VPA treated normal cells. VPA inhibited the activities of histone deacetylase (HDAC) and glycogen synthase kinase-3β (GSK3β), the latter of which is only inhibited in normal cells. The combination of VPA and radiation was most effective in inhibiting tumor growth in heterotopic brain tumor models. An intracranial orthotopic glioma tumor model was used to evaluate tumor growth by using dynamic contrast-enhanced magnetic resonance (DCE MRI) and mouse survival following treatment with VPA and radiation. VPA, in combination with radiation, significantly delayed tumor growth and improved mouse survival. Overall, VPA protects normal hippocampal neurons and not cancer cells from radiation-induced cytotoxicity both in vitro and in vivo. VPA treatment has the potential for attenuating neurocognitive deficits associated with cranial irradiation while enhancing the efficiency of glioma radiotherapy.
Collapse
Affiliation(s)
- Dinesh Thotala
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA
| | - Rowan M Karvas
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - John A Engelbach
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA
| | - Joel R Garbow
- School of Medicine, Washington University in St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA
| | - Andrew N Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Todd A DeWees
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA.,Hope Center, Washington University in St. Louis, Missouri, USA
| |
Collapse
|