1
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024; 65:705-726. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Matsuda A, Hasegawa T, Ikeda Y, Wada A, Ikeda S. Histological and molecular restoration of type VII collagen in Recessive dystrophic epidermolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J Dermatol Sci 2024; 115:42-50. [PMID: 38876908 DOI: 10.1016/j.jdermsci.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.
Collapse
Affiliation(s)
- Akinori Matsuda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Japan.
| |
Collapse
|
3
|
De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to Advanced Therapies for Epidermolysis Bullosa. Cold Spring Harb Perspect Biol 2023; 15:a041229. [PMID: 36167646 PMCID: PMC10071437 DOI: 10.1101/cshperspect.a041229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermolysis bullosa (EB) is a devastating genetic skin disease typified by a plethora of different phenotypes and ranking from severe, early lethal, to mild localized forms. Although there is no cure for EB, recent progress in pharmacology and molecular and cellular biology is boosting the development of new advanced therapeutic strategies. Here we will focus on two main categories of such therapies: (1) those aimed at controlling inflammation and inducing reepithelialization of the wounds, and (2) those, perhaps more challenging and ambitious, that aim to permanently regenerate a fully functional epidermis, which requires targeting of epidermal stem cells. In both cases, the genetic variants underlying the different EB forms and factors, such as genetic background, modifier genes, comorbidities, and lifestyle, all of which impinge on EB genotype-phenotype correlation, need to be defined.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate, S.r.l., 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
4
|
Naso G, Gkazi S, Georgiadis C, Jayarajan V, Jacków J, Fleck R, Allison L, Ogunbiyi O, McGrath J, Ilic D, Di W, Petrova A, Qasim W. Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human:murine skin model. JID INNOVATIONS 2023; 3:100191. [DOI: 10.1016/j.xjidi.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
|
5
|
Gurevich I, Agarwal P, Zhang P, Dolorito JA, Oliver S, Liu H, Reitze N, Sarma N, Bagci IS, Sridhar K, Kakarla V, Yenamandra VK, O'Malley M, Prisco M, Tufa SF, Keene DR, South AP, Krishnan SM, Marinkovich MP. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med 2022; 28:780-788. [PMID: 35347281 PMCID: PMC9018416 DOI: 10.1038/s41591-022-01737-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a lifelong genodermatosis associated with blistering, wounding, and scarring caused by mutations in COL7A1, the gene encoding the anchoring fibril component, collagen VII (C7). Here, we evaluated beremagene geperpavec (B-VEC), an engineered, non-replicating COL7A1 containing herpes simplex virus type 1 (HSV-1) vector, to treat RDEB skin. B-VEC restored C7 expression in RDEB keratinocytes, fibroblasts, RDEB mice and human RDEB xenografts. Subsequently, a randomized, placebo-controlled, phase 1 and 2 clinical trial (NCT03536143) evaluated matched wounds from nine RDEB patients receiving topical B-VEC or placebo repeatedly over 12 weeks. No grade 2 or above B-VEC-related adverse events or vector shedding or tissue-bound skin immunoreactants were noted. HSV-1 and C7 antibodies sometimes presented at baseline or increased after B-VEC treatment without an apparent impact on safety or efficacy. Primary and secondary objectives of C7 expression, anchoring fibril assembly, wound surface area reduction, duration of wound closure, and time to wound closure following B-VEC treatment were met. A patient-reported pain-severity secondary outcome was not assessed given the small proportion of wounds treated. A global assessment secondary endpoint was not pursued due to redundancy with regard to other endpoints. These studies show that B-VEC is an easily administered, safely tolerated, topical molecular corrective therapy promoting wound healing in patients with RDEB.
Collapse
Affiliation(s)
- Irina Gurevich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - John A Dolorito
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Henry Liu
- Krystal Biotech, Pittsburgh, PA, USA
| | | | | | - Isin Sinem Bagci
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kunju Sridhar
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Visesha Kakarla
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vamsi K Yenamandra
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marco Prisco
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara F Tufa
- Microscopy Unit, Shriners Hospital for Children, Portland, OR, USA
| | - Douglas R Keene
- Microscopy Unit, Shriners Hospital for Children, Portland, OR, USA
| | - Andrew P South
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - M Peter Marinkovich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA. .,Veterans Affairs Medical Center, Palo Alto, Stanford, CA, USA.
| |
Collapse
|
6
|
Subramaniam KS, Antoniou MN, McGrath JA, Lwin SM. The potential of gene therapy for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2021; 186:609-619. [PMID: 34862606 DOI: 10.1111/bjd.20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa (EB) encompasses a heterogeneous group of inherited skin fragility disorders with mutations in genes encoding the basement membrane zone (BMZ) proteins that normally ensure dermal-epidermal integrity. Of the four main EB types, recessive dystrophic EB (RDEB), especially the severe variant, represents one of the most debilitating clinical entities with recurrent mucocutaneous blistering and ulceration leading to chronic wounds, infections, inflammation, scarring and ultimately cutaneous squamous cell carcinoma, which leads to premature death. Improved understanding of the molecular genetics of EB over the past three decades and advances in biotechnology has led to rapid progress in developing gene and cell-based regenerative therapies for EB. In particular, RDEB is at the vanguard of advances in human clinical trials of advanced therapeutics. Furthermore, the past decade has witnessed the emergence of a real collective, global effort involving academia and industry, supported by international EB patient organisations such as the Dystrophic Epidermolysis Bullosa Research Association (DEBRA), amongst others, to develop clinically relevant and marketable targeted therapeutics for EB. Thus, there is an increasing need for the practising dermatologist to become familiar with the concept of gene therapy, fundamental differences between various approaches and their human applications. This review explains the principles of different approaches of gene therapy; summarises its journey and discusses its current and future impact in RDEB.
Collapse
Affiliation(s)
- K S Subramaniam
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - M N Antoniou
- Gene Expression and Therapy Group, Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - S M Lwin
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
7
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
8
|
Zeng M, Xu Q, Zhou D, A S, Alshehri F, Lara-Sáez I, Zheng Y, Li M, Wang W. Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 2021; 176:113842. [PMID: 34293384 DOI: 10.1016/j.addr.2021.113842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(β-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.
Collapse
|
9
|
Welponer T, Prodinger C, Pinon-Hofbauer J, Hintersteininger A, Breitenbach-Koller H, Bauer JW, Laimer M. Clinical Perspectives of Gene-Targeted Therapies for Epidermolysis Bullosa. Dermatol Ther (Heidelb) 2021; 11:1175-1197. [PMID: 34110606 PMCID: PMC8322229 DOI: 10.1007/s13555-021-00561-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into molecular genetics and pathomechanisms in epidermolysis bullosa (EB), methodological and technological advances in molecular biology as well as designated funding initiatives and facilitated approval procedures for orphan drugs have boosted translational research perspectives for this devastating disease. This is echoed by the increasing number of clinical trials assessing innovative molecular therapies in the field of EB. Despite remarkable progress, gene-corrective modalities, aimed at sustained or permanent restoration of functional protein expression, still await broad clinical availability. This also reflects the methodological and technological shortcomings of current strategies, including the translatability of certain methodologies beyond preclinical models as well as the safe, specific, efficient, feasible, sustained and cost-effective delivery of therapeutic/corrective information to target cells. This review gives an updated overview on status, prospects, challenges and limitations of current gene-targeted therapies.
Collapse
Affiliation(s)
- Tobias Welponer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Christine Prodinger
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Josefina Pinon-Hofbauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Arno Hintersteininger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Johann W Bauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
10
|
Koller U, Bauer JW. Gene Replacement Therapies for Genodermatoses: A Status Quo. Front Genet 2021; 12:658295. [PMID: 33995490 PMCID: PMC8120236 DOI: 10.3389/fgene.2021.658295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Epidermolysis bullosa (EB) is a genodermatosis, characterized by the formation of extended blisters and lesions on the skin and mucous membranes upon minimal mechanical trauma. The disease is caused by mutations in genes encoding proteins that are essential for skin stability. Functional impairment, reduction, or absence of one of these proteins results in skin fragility due to reduced connectivity between dermis and epidermis. Currently, gene therapy represents the only treatment option with the potential to cure this severe blistering skin disease. Two promising forms of gene therapy are potentially feasible for EB: gene replacement and genome editing. While genome editing for genodermatoses remains at the preclinical stage, gene replacement approaches are clinically advanced and have been applied already to a small number of patients with junctional and dystrophic forms of EB. Here, the viral transduction of the “wild-type” transgene into skin stem cells, followed by autologous grafting of corrected epidermal sheets, led to the regeneration of stable skin. Recent developments regarding designer nuclease-based gene editing strategies enable the establishment of alternative options to restore the gene function in genodermatoses. This is particularly true in cases wherein genetic constellation hinders gene therapy-based gene replacement.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Titeux M, Bonnet des Claustres M, Izmiryan A, Ragot H, Hovnanian A. Emerging drugs for the treatment of epidermolysis bullosa. Expert Opin Emerg Drugs 2020; 25:467-489. [DOI: 10.1080/14728214.2020.1839049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matthias Titeux
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | | | - Araksya Izmiryan
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Helene Ragot
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Alain Hovnanian
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
- Départment de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
12
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
14
|
Petrova A, Georgiadis C, Fleck RA, Allison L, McGrath JA, Dazzi F, Di WL, Qasim W. Human Mesenchymal Stromal Cells Engineered to Express Collagen VII Can Restore Anchoring Fibrils in Recessive Dystrophic Epidermolysis Bullosa Skin Graft Chimeras. J Invest Dermatol 2020; 140:121-131.e6. [DOI: 10.1016/j.jid.2019.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
15
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
16
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
17
|
Lwin SM, Syed F, Di WL, Kadiyirire T, Liu L, Guy A, Petrova A, Abdul-Wahab A, Reid F, Phillips R, Elstad M, Georgiadis C, Aristodemou S, Lovell PA, McMillan JR, Mee J, Miskinyte S, Titeux M, Ozoemena L, Pramanik R, Serrano S, Rowles R, Maurin C, Orrin E, Martinez-Queipo M, Rashidghamat E, Tziotzios C, Onoufriadis A, Chen M, Chan L, Farzaneh F, Del Rio M, Tolar J, Bauer JW, Larcher F, Antoniou MN, Hovnanian A, Thrasher AJ, Mellerio JE, Qasim W, McGrath JA. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight 2019; 4:126243. [PMID: 31167965 DOI: 10.1172/jci.insight.126243] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a severe form of skin fragility disorder due to mutations in COL7A1 encoding basement membrane type VII collagen (C7), the main constituent of anchoring fibrils (AFs) in skin. We developed a self-inactivating lentiviral platform encoding a codon-optimized COL7A1 cDNA under the control of a human phosphoglycerate kinase promoter for phase I evaluation.METHODSIn this single-center, open-label phase I trial, 4 adults with RDEB each received 3 intradermal injections (~1 × 106 cells/cm2 of intact skin) of COL7A1-modified autologous fibroblasts and were followed up for 12 months. The primary outcome was safety, including autoimmune reactions against recombinant C7. Secondary outcomes included C7 expression, AF morphology, and presence of transgene in the injected skin.RESULTSGene-modified fibroblasts were well tolerated, without serious adverse reactions or autoimmune reactions against recombinant C7. Regarding efficacy, there was a significant (P < 0.05) 1.26-fold to 26.10-fold increase in C7 mean fluorescence intensity in the injected skin compared with noninjected skin in 3 of 4 subjects, with a sustained increase up to 12 months in 2 of 4 subjects. The presence of transgene (codon-optimized COL7A1 cDNA) was demonstrated in the injected skin at month 12 in 1 subject, but no new mature AFs were detected.CONCLUSIONTo our knowledge, this is the first human study demonstrating safety and potential efficacy of lentiviral fibroblast gene therapy with the presence of COL7A1 transgene and subsequent C7 restoration in vivo in treated skin at 1 year after gene therapy. These data provide a rationale for phase II studies for further clinical evaluation.TRIAL REGISTRATIONClincalTrials.gov NCT02493816.FUNDINGCure EB, Dystrophic Epidermolysis Bullosa Research Association (UK), UK NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, and Fondation René Touraine Short-Exchange Award.
Collapse
Affiliation(s)
- Su M Lwin
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Farhatullah Syed
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tendai Kadiyirire
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Lu Liu
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Alyson Guy
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alya Abdul-Wahab
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Fiona Reid
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Rachel Phillips
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Maria Elstad
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Christos Georgiadis
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sophia Aristodemou
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Patricia A Lovell
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - James R McMillan
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - John Mee
- Immunodermatology Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Snaigune Miskinyte
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Matthias Titeux
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Linda Ozoemena
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Rashida Pramanik
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Sonia Serrano
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Racheal Rowles
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Clarisse Maurin
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Elizabeth Orrin
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Magdalena Martinez-Queipo
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Ellie Rashidghamat
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Christos Tziotzios
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Lucas Chan
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Farzin Farzaneh
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Marcela Del Rio
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT); Department of Biomedical Engineering, Carlos III University (UC3M); Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Jakub Tolar
- Department of Pediatric Oncology, Hematology and Bone Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | - Johann W Bauer
- Department of Dermatology and EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Fernando Larcher
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT); Department of Biomedical Engineering, Carlos III University (UC3M); Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Alain Hovnanian
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jemima E Mellerio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Marinkovich MP, Tang JY. Gene Therapy for Epidermolysis Bullosa. J Invest Dermatol 2019; 139:1221-1226. [PMID: 31068252 DOI: 10.1016/j.jid.2018.11.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is a family of diseases characterized by blistering and fragility of the skin in response to mechanical trauma. Advances in our understanding of epidermolysis bullosa pathophysiology have provided the necessary foundation for the first clinical trials of gene therapy for junctional and dystrophic epidermolysis bullosa. These therapies show that gene therapy is both safe and effective, with the potential to correct the molecular and clinical phenotype of patients with epidermolysis bullosa. Improvements in gene delivery and in preventing immune reactions will be among the challenges that lie ahead during further therapeutic development.
Collapse
Affiliation(s)
- M Peter Marinkovich
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA; Department of Dermatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, California, USA.
| | - Jean Y Tang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
19
|
Dourado Alcorte M, Sogayar MC, Demasi MA. Patent landscape of molecular and cellular targeted therapies for recessive dystrophic epidermolysis bullosa. Expert Opin Ther Pat 2019; 29:327-337. [PMID: 31017019 DOI: 10.1080/13543776.2019.1608181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a monogenetic inherited genodermatosis associated with deleterious mutations in the gene encoding type VII collagen (COL7A1). COL7A1 is essential for promoting attachment of the epidermis to the dermis, and its dysfunction may lead to generalized mucosal and cutaneous blistering associated to severe deformities. Currently, management of RDEB patients is limited to supportive care, being aimed at treating and preventing common complications associated with this condition. There is a great demand to develop targeted therapies for this devastating disease and RDEB research advances are currently being translated into clinical trials. AREAS COVERED Based on the literature and patent search, the authors have grouped the RDEB targeted therapies into five categories: a) cell-based therapies; b) gene therapy; c) protein replacement therapy; d) molecular therapy based on exon skipping; and e) drug-mediated premature termination codon read-through. The patent searching strategy involved inquiring Google and USPTO patent databases to reveal companies and institutions that are active in the area of RDEB targeted therapies. EXPERT OPINION The patent landscape related to targeted therapies for RDEB is quite heterogeneous, with each targeted therapeutic approach being associated with its own challenges in achieving robust patent protection and identifying opportunities for future development.
Collapse
Affiliation(s)
| | - Mari Cleide Sogayar
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| | - Marcos Angelo Demasi
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| |
Collapse
|
20
|
Abstract
The term epidermolysis bullosa (EB) refers to a group of hereditary skin blistering diseases. The group is clinically and genetically heterogeneous, but all EB forms are associated with mechanically induced skin blistering and fragility. The causative gene mutations of most EB types are known. The current international consensus classification contains four main types: EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler syndrome (KS). The classification is based on the morphological level of blister formation. In EBS, the split is intra-epidermal, in JEB along the basement membrane and in DEB below the basement membrane. In Kindler syndrome, the dermal-epidermal junction is disorganized, and blisters can occur on all three levels. Each major EB type has further subtypes which may differ in terms of their genetic, biological or clinical characteristics. Traditionally, EB treatments have been symptomatic, but increasing understanding of disease etio-pathogenesis is facilitating development of novel evidence-based therapy approaches. First gene- and cell-based therapies are being tested at preclinical level and in clinical trials. New knowledge on secondary disease mechanisms has led to development and clinical testing of urgently needed symptom-relief therapies using small molecules and biologicals.
Collapse
Affiliation(s)
- Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, Freiburg 79104, Baden-Wuerttemberg, Germany
| |
Collapse
|
21
|
Jung JP, Lin WH, Riddle MJ, Tolar J, Ogle BM. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. J Biomed Mater Res A 2018; 106:3231-3238. [PMID: 30208260 PMCID: PMC6283247 DOI: 10.1002/jbm.a.36519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
Recessive dystrophic Epidermolysis Bullosa (RDEB) is caused by mutations in collagen‐type VII gene critical for the dermoepidermal junction (DEJ) formation. Neither tissues of animal models nor currently available in vitro models are amenable to the quantitative assessment of mechanical adhesion between dermal and epidermal layers. Here, we created a 3D in vitro DEJ model using extracellular matrix (ECM) proteins of the DEJ anchored to a poly(ethylene glycol)‐based slab (termed ECM composites) and seeded with human keratinocytes and dermal fibroblasts. Keratinocytes and fibroblasts of healthy individuals were well maintained in the ECM composite and showed the expression of collagen type VII over a 2‐week period. The ECM composites with healthy keratinocytes and fibroblasts exhibited yield stress associated with the separation of the model DEJ at 0.268 ± 0.057 kPa. When we benchmarked this measure of adhesive strength with that of the model DEJ fabricated with cells of individuals with RDEB, the yield stress was significantly lower (0.153 ± 0.064 kPa) consistent with our current mechanistic understanding of RDEB. In summary, a 3D in vitro model DEJ was developed for quantification of mechanical adhesion between epidermal‐ and dermal‐mimicking layers, which can be utilized for assessment of mechanical adhesion of the model DEJ applicable for Epidermolysis Bullosa‐associated therapeutics. © 2018 The Authors. Journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3231–3238, 2018.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Megan J Riddle
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Institute for Engineering in Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
22
|
Liao Y, Ivanova L, Sivalenka R, Plumer T, Zhu H, Zhang X, Christiano AM, McGrath JA, Gurney JP, Cairo MS. Efficacy of Human Placental-Derived Stem Cells in Collagen VII Knockout (Recessive Dystrophic Epidermolysis Bullosa) Animal Model. Stem Cells Transl Med 2018; 7:530-542. [PMID: 29745997 PMCID: PMC6052609 DOI: 10.1002/sctm.17-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating inherited skin blistering disease caused by mutations in the COL7A1 gene that encodes type VII collagen (C7), a major structural component of anchoring fibrils at the dermal-epidermal junction (DEJ). We recently demonstrated that human cord blood-derived unrestricted somatic stem cells promote wound healing and ameliorate the blistering phenotype in a RDEB (col7a1-/- ) mouse model. Here, we demonstrate significant therapeutic effect of a further novel stem cell product in RDEB, that is, human placental-derived stem cells (HPDSCs), currently being used as human leukocyte antigen-independent donor cells with allogeneic umbilical cord blood stem cell transplantation in patients with malignant and nonmalignant diseases. HPDSCs are isolated from full-term placentas following saline perfusion, red blood cell depletion, and volume reduction. HPDSCs contain significantly higher level of both hematopoietic and nonhematopoietic stem and progenitor cells than cord blood and are low in T cell content. A single intrahepatic administration of HPDSCs significantly elongated the median life span of the col7a1-/- mice from 2 to 7 days and an additional intrahepatic administration significantly extended the median life span to 18 days. We further demonstrated that after intrahepatic administration, HPDSCs engrafted short-term in the organs affected by RDEB, that is, skin and gastrointestinal tract of col7a1-/- mice, increased adhesion at the DEJ and deposited C7 even at 4 months after administration of HPDSCs, without inducing anti-C7 antibodies. This study warrants future clinical investigation to determine the safety and efficacy of HPDSCs in patients with severe RDEB. Stem Cells Translational Medicine 2018;7:530-542.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Xiaokui Zhang
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Jodi P Gurney
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
23
|
Liemberger B, Piñón Hofbauer J, Wally V, Arzt C, Hainzl S, Kocher T, Murauer EM, Bauer JW, Reichelt J, Koller U. RNA Trans-Splicing Modulation via Antisense Molecule Interference. Int J Mol Sci 2018. [PMID: 29518954 PMCID: PMC5877623 DOI: 10.3390/ijms19030762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.
Collapse
Affiliation(s)
- Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Claudia Arzt
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Eva M Murauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Johann W Bauer
- Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
24
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|
25
|
Xu L, Carrer A, Zonta F, Qu Z, Ma P, Li S, Ceriani F, Buratto D, Crispino G, Zorzi V, Ziraldo G, Bruno F, Nardin C, Peres C, Mazzarda F, Salvatore AM, Raspa M, Scavizzi F, Chu Y, Xie S, Yang X, Liao J, Liu X, Wang W, Wang S, Yang G, Lerner RA, Mammano F. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders. Front Mol Neurosci 2017; 10:298. [PMID: 29018324 PMCID: PMC5615210 DOI: 10.3389/fnmol.2017.00298] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies.
Collapse
Affiliation(s)
- Liang Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Andrea Carrer
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Federico Ceriani
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Damiano Buratto
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Giulia Crispino
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Veronica Zorzi
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Francesca Bruno
- Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Chiara Nardin
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Flavia Mazzarda
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Anna M Salvatore
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | | | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sichun Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Jun Liao
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Xiao Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Shanshan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Richard A Lerner
- Department of Cell and Molecular Biology, The Scripps Research InstituteLa Jolla, CA, United States
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| |
Collapse
|
26
|
Woodley DT, Cogan J, Hou Y, Lyu C, Marinkovich MP, Keene D, Chen M. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients. J Clin Invest 2017; 127:3028-3038. [PMID: 28691931 DOI: 10.1172/jci92707] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. METHODS A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. RESULTS Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti-type VII collagen autoantibodies in patients' blood or skin. CONCLUSION Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. TRIAL REGISTRATION ClinicalTrials.gov NCT02698735. FUNDING Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award.
Collapse
Affiliation(s)
- David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Chao Lyu
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.,Dermatology, Veteran's Affairs Medical Center, Palo Alto, California, USA
| | - Douglas Keene
- Shriners Hospital for Children, Portland, Oregon, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| |
Collapse
|
27
|
The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol 2017; 137:e123-e129. [PMID: 28411843 DOI: 10.1016/j.jid.2016.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023]
Abstract
Stunning technological advances in genomics have led to spectacular breakthroughs in the understanding of the underlying defects, biological pathways and therapeutic targets of skin diseases leading to new therapeutic interventions. Next-generation sequencing has revolutionized the identification of disease-causing genes and has a profound impact in deciphering gene and protein signatures in rare and frequent skin diseases. Gene addition strategies have shown efficacy in junctional EB and in recessive dystrophic EB (RDEB). TALENs and Cripsr/Cas9 have emerged as highly efficient new tools to edit genomic sequences to creat new models and to correct or disrupt mutated genes to treat human diseases. Therapeutic approaches have not been limited to DNA modification and strategies at the mRNA, protein and cellular levels have also emerged, some of which have already proven clinical efficacy in RDEB. Improved understanding of the pathogenesis of skin disorders has led to the development of specific drugs or repurposing of existing medicines as in basal cell nevus syndrome, alopecia areata, melanoma and EB simplex. These discoveries pave the way for improved targeted personalized medicine for rare and frequent diseases. It is likely that a growing number of orphan skin diseases will benefit from combinatory new therapies in a near future.
Collapse
|
28
|
Cutlar L, Gao Y, Aied A, Greiser U, Murauer EM, Zhou D, Wang W. A knot polymer mediated non-viral gene transfection for skin cells. Biomater Sci 2017; 4:92-5. [PMID: 26369723 DOI: 10.1039/c5bm00216h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A knot polymer, poly[bis(2-acryloyl)oxyethyl disulphide-co-2-(dimethylamino) ethyl methacrylate] (DSP), was synthesized, optimized and evaluated as a non-viral vector for gene transfection for skin cells, keratinocytes. With recessive dystrophic epidermolysis bullosa keratinocytes (RDEBK-TA4), the DSP exhibited high transfection efficacy with both Gaussia luciferase marker DNA and the full length COL7A1 transcript encoding the therapeutic type VII collagen protein (C7). The effective restoration of C7 in C7 null-RDEB skin cells indicates that DSP is promising for non-viral gene therapy of recessive dystrophic epidermolysis bullosa (RDEB).
Collapse
Affiliation(s)
- Lara Cutlar
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| | - Yongsheng Gao
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| | - Ahmed Aied
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| | - Udo Greiser
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| | - Eva Maria Murauer
- Division of Molecular Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Dezhong Zhou
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
29
|
Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 2017; 114:1660-1665. [PMID: 28137859 DOI: 10.1073/pnas.1614775114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic CRISPR/Cas9 system has recently emerged as a powerful tool for genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this genome editing machinery and indeed the very feasibility of using these techniques in vivo remain challenging for most tissue types. Here, we show that nonreplicable Cas9/sgRNA ribonucleoproteins can be used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. We developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice. This method results in rapid gene editing in epidermal stem cells. Using this method, we show that Cas9/sgRNA ribonucleoproteins efficiently excise exon80, which covers the point mutation in our RDEB mouse model, and thus restores the correct localization of the collagen VII protein in vivo. The skin blistering phenotype is also significantly ameliorated after treatment. This study provides an in vivo gene correction strategy using ribonucleoproteins as curative treatment for genetic diseases in skin and potentially in other somatic tissues.
Collapse
|
30
|
Bremer J, Bornert O, Nyström A, Gostynski A, Jonkman MF, Aartsma-Rus A, van den Akker PC, Pasmooij AM. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e379. [PMID: 27754488 DOI: 10.1038/mtna.2016.87] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/02/2016] [Indexed: 02/02/2023]
Abstract
The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.
Collapse
Affiliation(s)
- Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Antoni Gostynski
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter C van den Akker
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Mg Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
31
|
Jacków J, Titeux M, Portier S, Charbonnier S, Ganier C, Gaucher S, Hovnanian A. Gene-Corrected Fibroblast Therapy for Recessive Dystrophic Epidermolysis Bullosa using a Self-Inactivating COL7A1 Retroviral Vector. J Invest Dermatol 2016; 136:1346-1354. [DOI: 10.1016/j.jid.2016.02.811] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/12/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
|
32
|
Vanden Oever M, Muldoon D, Mathews W, McElmurry R, Tolar J. miR-29 Regulates Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2016; 136:2013-2021. [PMID: 27328306 DOI: 10.1016/j.jid.2016.05.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a complex inherited skin disorder caused by loss-of-function mutations in the COL7A1 gene. For an effective treatment of this disorder to be realized, both a thorough understanding of the regulation of COL7A1 and an understanding of the underlying nature of the complications of RDEB are needed. Currently, both posttranscriptional regulation of COL7A1 and the underlying causes of fibrosis in RDEB patients are poorly understood. Here, we describe a mechanism of regulation, to our knowledge previously unknown, by which micro RNA-29 (miR-29) regulates COL7A1 in a complex network: both directly through targeting its 3' untranslated region at two distinct seed regions and indirectly through targeting an essential transcription factor required for basal COL7A1 expression, SP1. In turn, miR-29 itself is regulated by SP1 activity and transforming growth factor-β signaling. RDEB mice express high levels of transforming growth factor-β and significantly lower miR-29 compared with wild-type cohorts. The sustained decrease in miR-29 in RDEB skin leads to an increase of miR-29 target genes expressed in the skin, including profibrotic extracellular matrix collagens. Collectively, we identify miR-29 as an important factor in both regulating COL7A1 and inhibiting transforming growth factor-β-mediated fibrosis.
Collapse
Affiliation(s)
- Michael Vanden Oever
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Muldoon
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ron McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
33
|
Progress toward Treatment and Cure of Epidermolysis Bullosa: Summary of the DEBRA International Research Symposium EB2015. J Invest Dermatol 2016; 136:352-358. [PMID: 26802230 PMCID: PMC4724642 DOI: 10.1016/j.jid.2015.10.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB), a group of complex heritable blistering diseases, is the topic of triennial research meetings organized by DEBRA International, the umbrella of patient advocacy organizations. The DEBRA 2015 Research Conference, held in May 2015, brought together investigators and clinicians from around the world working at the forefront of EB research. Discussing the state-of-the-art approaches from a wide range of disciplines, there was a palpable excitement at this conference brought about by the optimism about applying new sequencing techniques, genome editing, protein replacement, autologous and allogeneic stem cell therapy, innovations in cancer biology, revertant mosaicism and iPSC techniques, all of which are aimed at developing new therapies for EB. Many in the field who have participated in EB research for many years were especially enthusiastic and felt that, possibly for the first time, the field seems uniquely poised to bring these new tools to effectively tackle EB using multiple complementary approaches towards improved quality of life and eventually a cure for patients suffering from EB, a currently intractable disease.
Collapse
|
34
|
South AP, Uitto J. Type VII Collagen Replacement Therapy in Recessive Dystrophic Epidermolysis Bullosa-How Much, How Often? J Invest Dermatol 2016; 136:1079-1081. [PMID: 27212645 DOI: 10.1016/j.jid.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
Recessive dystrophic epidermolysis bullosa is a devastating blistering disease caused by mutations in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils. The anchoring fibrils in patients with recessive dystrophic epidermolysis bullosa can be morphologically altered, reduced in number, or absent entirely. There is no specific treatment for this disease, but recent advances in gene, protein replacement, or cell-based therapies, with the purpose of delivering functional type VII collagen to the skin, have shown encouraging results in both preclinical and clinical settings. One critical issue is the stability of type VII collagen in anchoring fibrils, which will ultimately determine the dose and frequency of administration of the missing protein. Kühl et al. attempted to determine the half-life of type VII collagen in the skin, tongue, and esophagus of genetically altered mice that express type VII collagen constitutively, but with its expression abrogated by genetic manipulation. Their results revealed a half-life much shorter than previously anticipated, some 30 days. These findings have implications for strategies to be used for protein replacement therapy, and they also suggest that the basement membrane components at the dermal-epidermal junction are subject to ongoing remodeling and turnover.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
35
|
Georgiadis C, Syed F, Petrova A, Abdul-Wahab A, Lwin SM, Farzaneh F, Chan L, Ghani S, Fleck RA, Glover L, McMillan JR, Chen M, Thrasher AJ, McGrath JA, Di WL, Qasim W. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB. J Invest Dermatol 2016; 136:284-92. [PMID: 26763448 PMCID: PMC4759620 DOI: 10.1038/jid.2015.364] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 01/06/2023]
Abstract
Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgamma(null) recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man.
Collapse
Affiliation(s)
- Christos Georgiadis
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Farhatullah Syed
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Anastasia Petrova
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Alya Abdul-Wahab
- St John's Institute of Dermatology, King's College London (Guy's campus), London, United Kingdom
| | - Su M Lwin
- St John's Institute of Dermatology, King's College London (Guy's campus), London, United Kingdom
| | - Farzin Farzaneh
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Lucas Chan
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Sumera Ghani
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - Leanne Glover
- Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - James R McMillan
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath LLP, St Thomas' Hospital, London, United Kingdom
| | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Adrian J Thrasher
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's campus), London, United Kingdom
| | - Wei-Li Di
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Waseem Qasim
- UCL Institute of Child Health, Molecular and Cellular Immunology Section & Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
36
|
Bornert O, Kühl T, Bremer J, van den Akker PC, Pasmooij AM, Nyström A. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy. Mol Ther 2016; 24:1302-11. [PMID: 27157667 DOI: 10.1038/mt.2016.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter C van den Akker
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Mg Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Pourreyron C, Chen M, McGrath JA, Salas-Alanis JC, South AP, Leigh IM. High levels of type VII collagen expression in recessive dystrophic epidermolysis bullosa cutaneous squamous cell carcinoma keratinocytes increases PI3K and MAPK signalling, cell migration and invasion. Br J Dermatol 2016; 170:1256-65. [PMID: 24641191 DOI: 10.1111/bjd.12715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epidermolysis bullosa is a group of inherited skin fragility diseases varying in severity from mild scarring to infant mortality. Great efforts are being undertaken to develop therapeutic strategies to treat the more pernicious forms of this disease, particularly those associated with recessive, loss-of-function mutations. In such cases significant effort is directed toward delivering recombinant protein at levels sufficient to demonstrate clinical benefit. Recessive dystrophic epidermolysis bullosa (RDEB) predisposes patients to a high incidence of life-threatening cutaneous squamous cell carcinoma (cSCC). Mutations in the gene encoding type VII collagen, COL7A1, are the sole cause of this disease and conflicting reports concerning type VII collagen and COL7A1 in carcinogenesis exist. OBJECTIVES To investigate potential oncogenic effects of expressing recombinant type VII collagen in patient cells. METHODS We used retroviral transduction to introduce type VII collagen into keratinocytes derived from patients with and without RDEB. RESULTS Retroviral expression of type VII collagen in cSCC keratinocytes established from patients with RDEB resulted in increased cell adhesion, migration and invasion coupled with a concurrent increase in PI3K and MAPK signalling. CONCLUSIONS Our data suggest caution when formulating strategies where delivery of type VII collagen is likely to exceed levels seen under normal physiological conditions in a patient group with a higher inherent risk of developing skin cancer.
Collapse
Affiliation(s)
- C Pourreyron
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, U.K
| | | | | | | | | | | |
Collapse
|
38
|
A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e287. [PMID: 26928235 DOI: 10.1038/mtna.2016.3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/07/2016] [Indexed: 01/24/2023]
Abstract
RNA trans-splicing represents an auspicious option for the correction of genetic mutations at RNA level. Mutations within COL7A1 causing strong reduction or absence of type VII collagen are associated with the severe skin blistering disease dystrophic epidermolysis bullosa. The human COL7A1 mRNA constitutes a suitable target for this RNA therapy approach, as only a portion of the almost 9 kb transcript has to be delivered into the target cells. Here, we have proven the feasibility of 5' trans-splicing into the Col7a1 mRNA in vitro and in vivo. We designed a 5' RNA trans-splicing molecule, capable of replacing Col7a1 exons 1-15 and verified it in a fluorescence-based trans-splicing model system. Specific and efficient Col7a1 trans-splicing was confirmed in murine keratinocytes. To analyze trans-splicing in vivo, we used gene gun delivery of a minicircle expressing a FLAG-tagged 5' RNA trans-splicing molecule into the skin of wild-type mice. Histological and immunofluorescence analysis of bombarded skin sections revealed vector delivery and expression within dermis and epidermis. Furthermore, we have detected trans-spliced type VII collagen protein using FLAG-tag antibodies. In conclusion, we describe a novel in vivo nonviral RNA therapy approach to restore type VII collagen expression for causative treatment of dystrophic epidermolysis bullosa.
Collapse
|
39
|
Kühl T, Mezger M, Hausser I, Guey LT, Handgretinger R, Bruckner-Tuderman L, Nyström A. Collagen VII Half-Life at the Dermal-Epidermal Junction Zone: Implications for Mechanisms and Therapy of Genodermatoses. J Invest Dermatol 2016; 136:1116-1123. [PMID: 26899947 DOI: 10.1016/j.jid.2016.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
The tissue half-life of proteins largely determines treatment frequency of non-gene-editing-based therapies targeting the cause of genodermatoses. Surprisingly, such knowledge is missing for a vast number of proteins involved in pathologies. The dermal-epidermal junction zone is believed to be a rather static structure, but to our knowledge no detailed analysis of the stability of proteins within this zone has been performed. Here, we addressed the in vivo half-life of collagen type VII using genetic ablation of its expression and therapeutic introduction of exogenous collagen VII in a preclinical model. A similar in vivo stability of collagen VII was observed in the skin, tongue, and esophagus, with a half-life of about 1 month. Collagen VII expressed by intradermally injected mesenchymal stromal cells also exhibited a similar half-life. Our study provides key information needed for the development of protein replacement or cell-based therapies for dystrophic epidermolysis bullosa caused by genetic deficiency of collagen VII. Moreover, by showing what we define as an intermediate half-life of collagen VII, our study challenges the view of the dermal-epidermal junction zone as a static structure with very slow turnover.
Collapse
Affiliation(s)
- Tobias Kühl
- Department of Dermatology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Markus Mezger
- University Children's Hospital, Department of General Paediatrics, Oncology/Haematology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Ingrid Hausser
- EM lab, Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | | | - Rupert Handgretinger
- University Children's Hospital, Department of General Paediatrics, Oncology/Haematology, Eberhard Karls University, 72076 Tuebingen, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Perdoni C, Osborn MJ, Tolar J. Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa. Transl Res 2016; 168:50-58. [PMID: 26073463 PMCID: PMC4662628 DOI: 10.1016/j.trsl.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by mutations in the COL7A1 gene that result in absent or dysfunctional type VII collagen protein production. Clinically, RDEB manifests as early and severe chronic cutaneous blistering, damage to internal epithelium, an increased risk for squamous cell carcinoma, and an overall reduced life expectancy. Recent localized and systemic treatments have shown promise for lessening the disease severity in RDEB, but the concept of ex vivo therapy would allow a patient's own cells to be engineered to express functional type VII collagen. Here, we review gene delivery and editing platforms and their application toward the development of next-generation treatments designed to correct the causative genetic defects of RDEB.
Collapse
Affiliation(s)
- Christopher Perdoni
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Mark J Osborn
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
41
|
Droz-Georget Lathion S, Rochat A, Knott G, Recchia A, Martinet D, Benmohammed S, Grasset N, Zaffalon A, Besuchet Schmutz N, Savioz-Dayer E, Beckmann JS, Rougemont J, Mavilio F, Barrandon Y. A single epidermal stem cell strategy for safe ex vivo gene therapy. EMBO Mol Med 2015; 7:380-93. [PMID: 25724200 PMCID: PMC4403041 DOI: 10.15252/emmm.201404353] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
Collapse
Affiliation(s)
- Stéphanie Droz-Georget Lathion
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ariane Rochat
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Graham Knott
- Interdisciplinary Center for Electron Microscopy, Faculty of Life Sciences EPFL, Lausanne, Switzerland
| | - Alessandra Recchia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Danielle Martinet
- Service de Génétique Médicale, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sara Benmohammed
- Department of Medical Genetics, Université de Lausanne, Lausanne, Switzerland
| | - Nicolas Grasset
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Zaffalon
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Emmanuelle Savioz-Dayer
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jacques Samuel Beckmann
- Service de Génétique Médicale, Lausanne University Hospital (CHUV), Lausanne, Switzerland Department of Medical Genetics, Université de Lausanne, Lausanne, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, Faculty of Life Sciences EPFL, Lausanne, Switzerland
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy Genethon, Evry, France
| | - Yann Barrandon
- Department of Experimental Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Ryan TD, Lucky AW, King EC, Huang G, Towbin JA, Jefferies JL. Ventricular dysfunction and aortic dilation in patients with recessive dystrophic epidermolysis bullosa. Br J Dermatol 2015; 174:671-3. [PMID: 26370777 DOI: 10.1111/bjd.14168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Affiliation(s)
- T D Ryan
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229-2003, U.S.A.
| | - A W Lucky
- The Epidermolysis Bullosa Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229-2003, U.S.A
| | - E C King
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229-2003, U.S.A
| | - G Huang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229-2003, U.S.A
| | - J A Towbin
- Heart Institute, Le Bonheur Children's Hospital, Memphis, TN, U.S.A
| | - J L Jefferies
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229-2003, U.S.A
| |
Collapse
|
43
|
Watt SA, Dayal JHS, Wright S, Riddle M, Pourreyron C, McMillan JR, Kimble RM, Prisco M, Gartner U, Warbrick E, McLean WHI, Leigh IM, McGrath JA, Salas-Alanis JC, Tolar J, South AP. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS One 2015; 10:e0137639. [PMID: 26380979 PMCID: PMC4575209 DOI: 10.1371/journal.pone.0137639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.
Collapse
Affiliation(s)
- Stephen A. Watt
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | | | - Sheila Wright
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Megan Riddle
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Celine Pourreyron
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - James R. McMillan
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Roy M. Kimble
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Marco Prisco
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ulrike Gartner
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Emma Warbrick
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Irene M. Leigh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, United Kingdom
| | - Julio C. Salas-Alanis
- Basic Sciences Department, Medicine School, University of Monterrey, Monterrey, Mexico
| | - Jakub Tolar
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew P. South
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hou Y, Guey LT, Wu T, Gao R, Cogan J, Wang X, Hong E, Vivian Ning W, Keene D, Liu N, Huang Y, Kaftan C, Tangarone B, Quinones-Garcia I, Uitto J, Francone OL, Woodley DT, Chen M. Intravenously Administered Recombinant Human Type VII Collagen Derived from Chinese Hamster Ovary Cells Reverses the Disease Phenotype in Recessive Dystrophic Epidermolysis Bullosa Mice. J Invest Dermatol 2015. [PMID: 26203639 DOI: 10.1038/jid.2015.291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human C7 (rhC7) purified from human dermal fibroblasts (FB-rhC7), we showed previously that intravenously injected rhC7 distributed to engrafted RDEB skin, incorporated into its dermal-epidermal junction (DEJ), and reversed the RDEB disease phenotype. Human dermal fibroblasts, however, are not used for commercial production of therapeutic proteins. Therefore, we generated rhC7 from Chinese hamster ovary (CHO) cells. The CHO-derived recombinant type VII collagen (CHO-rhC7), similar to FB-rhC7, was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. CHO-rhC7 bound to fibronectin and promoted human keratinocyte migration in vitro. A single dose of CHO-rhC7, administered intravenously into new-born C7-null RDEB mice, incorporated into the DEJ of multiple skin sites, tongue and esophagus, restored anchoring fibrils, improved dermal-epidermal adherence, and increased the animals' life span. Furthermore, no circulating or tissue-bound anti-C7 antibodies were observed in the mice. These data demonstrate the efficacy of CHO-rhC7 in a preclinical murine model of RDEB.
Collapse
Affiliation(s)
- Yingping Hou
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | | | - Timothy Wu
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Robert Gao
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Jon Cogan
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Xinyi Wang
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Hong
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Weihuang Vivian Ning
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Douglas Keene
- Shriners Hospital for Children, Portland, Oregon, USA
| | - Nan Liu
- Shire, Lexington, Massachussetts, USA
| | - Yan Huang
- Shire, Lexington, Massachussetts, USA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | | - David T Woodley
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
45
|
Recessive Dystrophic Epidermolysis Bullosa: Advances in the Laboratory Leading to New Therapies. J Invest Dermatol 2015; 135:1705-1707. [DOI: 10.1038/jid.2015.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Abstract
In the past few years, substantial preclinical and experimental advances have been made in the treatment of the severe monogenic skin blistering disease epidermolysis bullosa (EB). Promising approaches have been developed in the fields of protein and cell therapies, including allogeneic stem cell transplantation; in addition, the application of gene therapy approaches has become reality. The first ex vivo gene therapy for a junctional EB (JEB) patient was performed in Italy more than 8 years ago and was shown to be effective. We have now continued this approach for an Austrian JEB patient. Further, clinical trials for a gene therapy treatment of recessive dystrophic EB are currently under way in the United States and in Europe. In this review, we aim to point out that sustainable correction of autologous keratinocytes by stable genomic integration of a therapeutic gene represents a realistic option for patients with EB.
Collapse
|
47
|
Soro L, Bartus C, Purcell S. Recessive dystrophic epidermolysis bullosa: a review of disease pathogenesis and update on future therapies. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2015; 8:41-46. [PMID: 26029334 PMCID: PMC4445895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Review the pathogenesis of recessive dystrophic epidermolysis bullosa and provide an update on research currently underway that is aimed at treating and potentially curing this severe skin disorder. DESIGN Review article. SETTING Private practice and large teaching hospital. PARTICIPANTS None. MEASUREMENTS N/A. RESULTS Currently, patients with recessive dystrophic epidermolysis bullosa are managed with only supportive care. However, there are several promising new treatment avenues that may help patients in the future. These include gene therapy, cell therapy, and protein-based therapy. Each approach offers distinct advantages and disadvantages. CONCLUSIONS The advances in understanding the molecular basis for epidermolysis bullosa over the last few decades has led to significant progress in devising new treatment options. Though many of these approaches remain several years away from regular implementation, it is an exciting time for research in the field.
Collapse
Affiliation(s)
- Luis Soro
- Department of Dermatology, Lehigh Valley Health Network and Philadelphia College of Osteopathic Medicine, Allentown, Pennsylvania, and Philadelphia, Pennsylvania
| | | | - Stephen Purcell
- Department of Dermatology, Lehigh Valley Health Network and Philadelphia College of Osteopathic Medicine, Allentown, Pennsylvania, and Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Has C, Kiritsi D. Therapies for inherited skin fragility disorders. Exp Dermatol 2015; 24:325-31. [DOI: 10.1111/exd.12666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology; Medical Center - University of Freiburg; Freiburg Germany
| | - Dimitra Kiritsi
- Department of Dermatology; Medical Center - University of Freiburg; Freiburg Germany
| |
Collapse
|
49
|
Barker A. Skin structure. Plast Reconstr Surg 2015. [DOI: 10.1002/9781118655412.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
From marrow to matrix: novel gene and cell therapies for epidermolysis bullosa. Mol Ther 2015; 23:987-992. [PMID: 25803200 DOI: 10.1038/mt.2015.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa encompasses a group of inherited connective tissue disorders that range from mild to lethal. There is no cure, and current treatment is limited to palliative care that is largely ineffective in treating the systemic, life-threatening pathology associated with the most severe forms of the disease. Although allogeneic cell- and protein-based therapies have shown promise, both novel and combinatorial approaches will undoubtedly be required to totally alleviate the disorder. Progress in the development of next-generation therapies that synergize targeted gene-correction and induced pluripotent stem cell technologies offers exciting prospects for personalized, off-the-shelf treatment options that could avoid many of the limitations associated with current allogeneic cell-based therapies. Although no single therapeutic avenue has achieved complete success, each has substantially increased our collective understanding of the complex biology underlying the disease, both providing mechanistic insights and uncovering new hurdles that must be overcome.
Collapse
|