1
|
Batth IS, Li S. Discovery of Cell-Surface Vimentin (CSV) as a Sarcoma Target and Development of CSV-Targeted IL12 Immune Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:169-178. [PMID: 32483739 DOI: 10.1007/978-3-030-43032-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This chapter discusses a novel target of osteosarcoma (OS), cell-surface vimentin (CSV), and a novel generation of interleukin-12 (IL12), CSV-targeted IL12, for treating OS tumor metastasis. Vimentin is a known intracellular structural protein for mesenchymal cells but is also documented in tumor cells. Our recent study definitively revealed that vimentin can be translocated to the surface of very aggressive tumor cells, such as metastatic cells. This CSV property allows investigators to capture circulating tumor cells (CTCs) across any type of tumor, including OS. CTCs are known as the seeds of metastasis; therefore, targeting these cells using CSV is a logical approach for use in a metastatic OS setting. Interestingly, we found that the peptide VNTANST can bind to CSV when fused to the p40 subunit encoding the DNA of IL12. Systemic delivery of this CSV-targeted IL12 immune therapy inhibited OS metastasis and relapse in a mouse tumor model as detailed in this chapter. This CSV-targeted delivery of IL12 also reduced toxicity of IL12. In summary, this chapter details a novel approach for safe IL12 immune therapy via targeting CSV.
Collapse
Affiliation(s)
- Izhar S Batth
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA
| | - Shulin Li
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.
| |
Collapse
|
2
|
Jamhiri I, Zahri S, Mehrabani D, Khodabandeh Z, Dianatpour M, Yaghobi R, Hosseini SY. Enhancing the apoptotic effect of IL-24/mda-7 on the human hepatic stellate cell through RGD peptide modification. Immunol Invest 2018; 47:335-350. [DOI: 10.1080/08820139.2018.1433202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iman Jamhiri
- Department of Biology, Cell and Molecular Laboratory, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Cell and Molecular Laboratory, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, Sun W, Wang H, Sun M, Cai Z, Hua Y. Sarcoma-Targeting Peptide-Decorated Polypeptide Nanogel Intracellularly Delivers Shikonin for Upregulated Osteosarcoma Necroptosis and Diminished Pulmonary Metastasis. Theranostics 2018; 8:1361-1375. [PMID: 29507626 PMCID: PMC5835942 DOI: 10.7150/thno.18299] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Osteosarcoma is the most common primary bone cancer and is notorious for pulmonary metastasis, representing a major threat to pediatric patients. An effective drug targeting osteosarcoma and its lung metastasis is urgently needed. DESIGN In this study, a sarcoma-targeting peptide-decorated disulfide-crosslinked polypeptide nanogel (STP-NG) was exploited for enhanced intracellular delivery of shikonin (SHK), an extract of a medicinal herb, to inhibit osteosarcoma progression with minimal systemic toxicity. RESULTS The targeted, loaded nanogel, STP-NG/SHK, killed osteosarcoma cells by inducing RIP1- and RIP3-dependent necroptosis in vitro. Necroptosis is a novel cell death form that could be well adapted as an efficient antitumor strategy, the main obstacle of which is its high toxicity. After intravenous injection, STP-NG/SHK efficiently suppressed tumor growth and reduced pulmonary metastasis, offering greater tumor necrosis and higher RIP1 and RIP3 upregulation compared to free SHK or untargeted NG/SHK in vivo. Additionally, the treatment with NG/SHK or STP-NG/SHK showed minimal toxicity to normal organs, suggesting low systemic toxicity compared to free SHK. CONCLUSION The STP-guided intracellular drug delivery system using the necroptosis mechanism showed profound anti-osteosarcoma activity, especially eliminated lung metastasis in vivo. This drug formulation may have great potential for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Suoyuan Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
- Department of Orthopedics, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215000, P. R. China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fei Yin
- Shanghai Bone Tumor Institution, Shanghai 201620, P. R. China
| | - Jing Xu
- Shanghai Bone Tumor Institution, Shanghai 201620, P. R. China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution, Shanghai 201620, P. R. China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
- Shanghai Bone Tumor Institution, Shanghai 201620, P. R. China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
- Shanghai Bone Tumor Institution, Shanghai 201620, P. R. China
| |
Collapse
|
4
|
Hosseini E, Hosseini SY, Hashempour T, Fattahi MR, Sadeghizadeh M. Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Mol Med Rep 2016; 15:495-501. [DOI: 10.3892/mmr.2016.6009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
5
|
Bina S, Shenavar F, Khodadad M, Haghshenas MR, Mortazavi M, Fattahi MR, Erfani N, Hosseini SY. Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2016; 16:6073-80. [PMID: 26320498 DOI: 10.7314/apjcp.2015.16.14.6073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. MATERIALS AND METHODS Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. RESULTS AND CONCLUSIONS In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/ IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.
Collapse
Affiliation(s)
- Samaneh Bina
- Gastroenterohepatology Research Center (GEHRC), Shiraz University of Medical Sciences, Shiraz, Iran E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14023. [PMID: 26015966 PMCID: PMC4362348 DOI: 10.1038/mtm.2014.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
Sustained gene delivery of interferon (IFN) γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD) of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDs, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD2 and IFNγ-HBD3 after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD2, but not of IFNγ-HBD3, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD2-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD2, a fusion protein with high cell surface affinity.
Collapse
|
7
|
Cutrera J, Dibra D, Satelli A, Xia X, Li S. Intricacies for posttranslational tumor-targeted cytokine gene therapy. Mediators Inflamm 2013; 2013:378971. [PMID: 24369443 PMCID: PMC3863455 DOI: 10.1155/2013/378971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022] Open
Abstract
The safest and most effective cytokine therapies require the favorable accumulation of the cytokine in the tumor environment. While direct treatment into the neoplasm is ideal, systemic tumor-targeted therapies will be more feasible. Electroporation-mediated transfection of cytokine plasmid DNA including a tumor-targeting peptide-encoding sequence is one method for obtaining a tumor-targeted cytokine produced by the tumor-bearing patient's tissues. Here, the impact on efficacy of the location of targeting peptide, choice of targeting peptide, tumor histotype, and cytokine utilization are studied in multiple syngeneic murine tumor models. Within the same tumor model, the location of the targeting peptide could either improve or reduce the antitumor effect of interleukin (IL)12 gene treatments, yet in other tumor models the tumor-targeted IL12 plasmid DNAs were equally effective regardless of the peptide location. Similarly, the same targeting peptide that enhances IL12 therapies in one model fails to improve the effect of either IL15 or PF4 for inhibiting tumor growth in the same model. These interesting and sometimes contrasting results highlight both the efficacy and personalization of tumor-targeted cytokine gene therapies while exposing important aspects of these same therapies which must be considered before progressing into approved treatment options.
Collapse
Affiliation(s)
- Jeffry Cutrera
- Department of Musculoskeletal Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Pediatrics, UT Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Denada Dibra
- Department of Pediatrics, UT Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Arun Satelli
- Department of Pediatrics, UT Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xuexing Xia
- Department of Pediatrics, UT Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics, UT Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
8
|
Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv 2012; 3:1199-215. [PMID: 23116012 DOI: 10.4155/tde.12.100] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Having first been developed for ultrasound imaging, nowadays, microbubbles are proposed as tools for ultrasound-assisted gene delivery, too. Their behavior during ultrasound exposure causes transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. Sonoporation has been successfully applied to deliver nucleic acids in vitro and in vivo in a variety of therapeutic applications. However, the biological and physical mechanisms of sonoporation are still not fully understood. In this review, we discuss recent data concerning microbubble--cell interactions leading to sonoporation and we report on the progress in ultrasound-assisted therapeutic gene delivery in different organs. In addition, we outline ongoing challenges of this novel delivery method for its clinical use.
Collapse
|
9
|
Cutrera J, Dibra D, Xia X, Hasan A, Reed S, Li S. Discovery of a linear peptide for improving tumor targeting of gene products and treatment of distal tumors by IL-12 gene therapy. Mol Ther 2011; 19:1468-77. [PMID: 21386825 DOI: 10.1038/mt.2011.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Like many effective therapeutics, interleukin-12 (IL-12) therapy often causes side effects. Tumor targeted delivery may improve the efficacy and decrease the toxicity of systemic IL-12 treatments. In this study, a novel targeting approach was investigated. A secreted alkaline phosphatase (SEAP) reporter gene-based screening process was used to identify a mini-peptide which can be produced in vivo to target gene products to tumors. The coding region for the best peptide was inserted into an IL-12 gene to determine the antitumor efficacy. Affinity chromatography, mass spectrometry analysis, and binding studies were used to identify a receptor for this peptide. We discovered that the linear peptide VNTANST increased the tumor accumulation of the reporter gene products in five independent tumor models including one human xenogeneic model. The product from VNTANST-IL-12 fusion gene therapy increased accumulation of IL-12 in the tumor environment, and in three tumor models, VNTANST-IL-12 gene therapy inhibited distal tumor growth. In a spontaneous lung metastasis model, inhibition of metastatic tumor growth was improved compared to wild-type IL-12 gene therapy, and in a squamous cell carcinoma model, toxic liver lesions were reduced. The receptor for VNTANST was identified as vimentin. These results show the promise of using VNTANST to improve IL-12 treatments.
Collapse
Affiliation(s)
- Jeffry Cutrera
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
10
|
Casey G, Cashman JP, Morrissey D, Whelan MC, Larkin JO, Soden DM, Tangney M, O'Sullivan GC. Sonoporation mediated immunogene therapy of solid tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:430-440. [PMID: 20133039 DOI: 10.1016/j.ultrasmedbio.2009.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
Development of gene-based therapies for the treatment of inherited and acquired diseases, including cancer, has seen renewed interest in the use of nonviral vectors coupled to physical delivery modalities. Low-frequency ultrasound (US), with a well-established record in a clinical setting, has the potential to deliver DNA efficiently, accurately and safely. Optimal in vivo parameters for US-mediated delivery of naked plasmid DNA were established using the firefly luciferase reporter gene construct. Optimized parameters were used to administer a therapeutic gene construct, coding for granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7-1 costimulatory molecule, to growing murine fibrosarcoma tumors. Tumor progression and animal survival was monitored throughout the study and the efficacy of the US-mediated gene therapy determined and compared with an electroporation-based approach. Optimal parameters for US-mediated delivery of plasmid DNA to tumors were deduced to be 1.0 W/cm(2) at 20% duty cycle for 5 min (60 J/cm(2)). In vivo US-mediated gene therapy resulted in a 55% cure rate in tumor-bearing animals. The immunological response invoked was cell mediated, conferring resistance against re-challenge and resistance to tumor challenge after transfer of splenocytes to naïve animals. US treatment was noninjurious to treated tissue, whereas therapeutic efficacy was comparable to an electroporation-based approach. US-mediated delivery of an immune-gene construct to growing tumors was therapeutically effective. Sonoporation has the potential to be a major factor in the development of nonviral gene delivery approaches.
Collapse
Affiliation(s)
- Garrett Casey
- Cork Cancer Research Centre, Mercy University Hospital, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Enhancement of reporter gene detection sensitivity by insertion of specific mini-peptide-coding sequences. Cancer Gene Ther 2009; 17:131-40. [PMID: 19713998 DOI: 10.1038/cgt.2009.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two important aspects of gene therapy are to increase the level of gene expression and track the gene delivery site and expression, and a sensitive reporter gene may be one of the options for preclinical studies and possibly for human clinical trials. We report the novel concept of increasing the activity of the gene products. With the insertion of the mini-peptide-coding sequence CWDDWLC into the plasmid DNA of a SEAP reporter gene, we observed vast increases in the enzyme activity in vitro in all murine and human cell lines used. In addition, in vivo injection of this CWDDWLC-SEAP-encoding gene resulted in the same increases in reporter gene activity, but these increases did not correspond to alterations in the level of the gene products in the serum. Minor sequence changes in this mini-peptide negate the activity increase of the reporter gene. We report the novel concept of increasing the activity of gene products as another method to improve the reporting sensitivity of reporter genes. This improved reporter gene could complement any improved vector for maximizing the reporter sensitivity. Moreover, this strategy has the potential to be used to discover peptides that improve the activity of therapeutic genes.
Collapse
|