1
|
De Clerck K, De Smedt S, Remaut K, Peynshaert K. Toward successful retinal drug delivery after intravitreal injection: Current strategies to overcome the inner limiting membrane. J Control Release 2025; 384:113849. [PMID: 40393532 DOI: 10.1016/j.jconrel.2025.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/23/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The global prevalence of retinal disorders leading to vision impairment and blindness is rising to significant numbers and is estimated to continuously increase in the coming years. Although many groundbreaking therapies are available in the expanding field of retinal gene and cell therapy, troublesome delivery after intravitreal (IVT) injection is currently complicating their clinical translation. In this regard, the inner limiting membrane (ILM), the basement membrane located between the vitreous and the retina, is recognized as the main obstacle hindering retinal entry. Overcoming this barrier might hence advance a plethora of potent therapeutics currently available but failing to enter the retina. Aware of the importance to address this drug delivery issue, this review will discuss the current proposed methods to tackle the ILM barrier. First, we will provide an overview of ILM characteristics in health and disease after which we will reflect on the relevance of the ILM barrier role for emerging advanced therapeutic strategies. Seeing the significance of ILM removal for those therapeutics, the current proposed surgical, pharmacological and physical strategies to bypass the ILM will furthermore be highlighted to encourage the entire field of retinal drug delivery after IVT injection forward.
Collapse
Affiliation(s)
- Kaat De Clerck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Campochiaro PA. Sustained Suppression of VEGF for Treatment of Retinal and Choroidal Vascular Diseases. Am J Ophthalmol 2025; 277:1-6. [PMID: 40320193 DOI: 10.1016/j.ajo.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 06/01/2025]
Abstract
Clinical trials have demonstrated remarkable benefits from intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents in patients with retinal or choroidal vascular diseases, but observational studies have shown poor outcomes in the same patient populations treated in clinical practice, and this is associated with less frequent injections. Current treatment strategies in clinical practice are designed to minimize injection frequency, which involves imprecise estimates of when recurrent exudation might occur. An alternative strategy is to use treatments that provide sustained suppression of VEGF, but many retina specialists are concerned that such treatments may damage the macula and cause atrophy, particularly in patients with neovascular age-related macular degeneration (nAMD). Evidence regarding the potential benefits and risks of sustained suppression of VEGF is provided along with an overview of treatments aimed at achieving it, one that is currently available to treat patients with nAMD and diabetic macular edema and others that are in development. The overview of these various treatment strategies is an introduction to other articles in this special issue that provide detailed background and currently available data. We are entering a new era in the treatment of retinal and choroidal vascular diseases and this issue is designed to provide a guidebook of what is here and what is about to come.
Collapse
Affiliation(s)
- Peter A Campochiaro
- From the Departments of Ophthalmology and Neuroscience, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
3
|
Zhang Y, Lin S, Yu L, Lin X, Qu S, Ye Q, Yu M, Chen W, Wu W. Gene therapy shines light on congenital stationary night blindness for future cures. J Transl Med 2025; 23:392. [PMID: 40181393 PMCID: PMC11969737 DOI: 10.1186/s12967-025-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Congenital Stationary Night Blindness (CSNB) is a non-progressive hereditary eye disease that primarily affects the retinal signal processing, resulting in significantly reduced vision under low-light conditions. CSNB encompasses various subtypes, each with distinct genetic patterns and pathogenic genes. Over the past few decades, gene therapy for retinal genetic disorders has made substantial progress; however, effective clinical therapies for CSNB are yet to be discovered. With the continuous advancement of gene-therapy tools, there is potential for these methods to become effective treatments for CSNB. Nonetheless, challenges remain in the treatment of CSNB, including issues related to delivery vectors, therapeutic efficacy, and possible side effects. This article reviews the clinical diagnosis, pathogenesis, and associated mutated genes of CSNB, discusses existing animal models, and explores the application of gene therapy technologies in retinal genetic disorders, as well as the current state of research on gene therapy for CSNB.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Siqi Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shuai Qu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingyang Ye
- Hangzhou Bipolar Biotechnology Co., Ltd., Hangzhou, 311199, China
| | - Mengting Yu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wenjie Wu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China.
| |
Collapse
|
4
|
Li B, Zhao C, Guo S, Li X, Zhang H, Duan Y, Zhang M, Tao Q, Zhou P, Li X, Zhang X. Recombinant adeno-associated virus with anti-tumor necrosis factor-alpha in an experimental autoimmune uveitis model. Exp Eye Res 2025; 253:110273. [PMID: 39922525 DOI: 10.1016/j.exer.2025.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Uveitis treatment is associated with side effects and inconsistent outcomes. Existing treatments often fail to provide targeted and sustained relief; thus, novel therapeutic approaches are needed. Among these, gene therapy using adeno-associated virus (AAV) vectors target specific retinal cells, show low immunogenicity, and demonstrate sustained gene expression, making it a potential advancement in uveitis treatment. Therefore, we utilized a AAV2 system encapsulating encoded anti-tumor necrosis factor-alpha (TNF-α) antibody to assess its efficacy in the treatment of experimental autoimmune uveitis (EAU) in mice. Compared with the AAV2-GFP group, AAV2-ADA-injected mice showed significantly reduced clinical, OCT, and histopathological scores in EAU with lower percentages of Th1 and Th17 cells in the eyes and higher percentages of Treg cells in the draining lymph nodes (LN). This study demonstrated the safety and effects of AAV2-ADA in EAU treatment, providing a promising therapeutic strategy for uveitis.
Collapse
Affiliation(s)
- Baiyi Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | | | - Xueru Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Qingqin Tao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Peiran Zhou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
5
|
Brunet AA, James RE, Swanson P, Carvalho LS. A review of the 661W cell line as a tool to facilitate treatment development for retinal diseases. Cell Biosci 2025; 15:41. [PMID: 40170180 PMCID: PMC11959731 DOI: 10.1186/s13578-025-01381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Retinal diseases encompass a diverse group of disorders that affect the structure and function of the retina, leading to visual impairment and, in some cases, irreversible vision loss. The investigation of retinal diseases is crucial for understanding their underlying mechanisms, identifying potential therapeutic targets, and developing effective treatments. The use of in vitro cell models has become instrumental in advancing our knowledge of these disorders, but given that these conditions usually affect retinal neuronal cell types, access to appropriate cell models can be potentially challenging. Among the available in vitro cell models, the 661W cone-like cell line has emerged as a valuable tool for studying various retinal diseases, ranging from monogenic conditions, such as inherited retinal diseases, to complex conditions such as age-related macular degeneration (AMD), diabetic retinopathy, amongst others. Developed from immortalized murine photoreceptor cells, and freely available for academics from its creator, the 661W cell line has offered visual scientists and clinicians around the world a reliable and well-characterised platform for investigating disease pathogenesis, exploring disease-specific molecular signatures, and evaluating potential therapeutic interventions. This review aims to provide an overview of the 661W cell line and its applications in the study of both inherited and acquired retinal diseases. By examining the applications and limitations of this unique cell line, we may gain valuable insights into its contributions in unravelling the complexities of retinal diseases and its potential impact on the development of novel treatments for these diseases.
Collapse
Affiliation(s)
- Alicia A Brunet
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
| | - Rebekah E James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Petria Swanson
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia.
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Seth PK, Heyers D, Satish B, Mendoza E, Haase K, Borowsky L, Musielak I, Koch KW, Feederle R, Scharff C, Dedek K, Mouritsen H. AAV-mediated transduction of songbird retina. Front Physiol 2025; 16:1549585. [PMID: 40177359 PMCID: PMC11961912 DOI: 10.3389/fphys.2025.1549585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Genetic manipulation of murine retinal tissue through ocular administration of adeno-associated viruses (AAVs) has become a standard technique to investigate a multitude of mechanisms underlying retinal physiology. Resultantly, developments of recombinant viral vectors with improved transduction efficiency and further methodological improvements have mostly focused on murine tissue, whereas AAVs successfully targeting avian retinae have remained scarce. Methodology Using a custom-designed injection setup, we identified a viral serotype with the capability to successfully induce widespread transduction of the bird retina. Results Intravitreal administration of an AAV type 2/9 encoding for enhanced green fluorescent protein (EGFP) in night-migratory European robins (Erithacus rubecula) resulted in transduction coverages of up to 60% within retinal tissue. Subsequent immunohistochemical analyses revealed that the AAV2/9-EGFP serotype almost exclusively targeted photoreceptors: rods, various single cones (UV, blue, green, and red cones), and both (accessory and principal) members of double cones. Discussion The consistently high and photoreceptor-specific transduction efficiency makes the AAV2/9 serotype a powerful tool for carrying out genetic manipulations in avian retinal photoreceptors, thus opening a wealth of opportunities to investigate physiological aspects underlying retinal processing in birds, such as physiological recordings and/or post-transductional behavioural readouts for future vision-related research.
Collapse
Affiliation(s)
- Pranav Kumar Seth
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Dominik Heyers
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Baladev Satish
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ezequiel Mendoza
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Katrin Haase
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lisa Borowsky
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Isabelle Musielak
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Karin Dedek
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Baez HC, LaPorta JM, Walker AD, Fischer WS, Hollar R, Patterson S, DiLoreto DA, Gullapalli V, McGregor JE. Inner limiting Membrane Peel Extends In vivo Calcium Imaging of Retinal Ganglion Cell Activity Beyond the Fovea in Non-Human Primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.02.597041. [PMID: 38854047 PMCID: PMC11160754 DOI: 10.1101/2024.06.02.597041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Purpose Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates (NHP), hindering both therapeutic intervention and physiological study of the retina. To address this, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye. Methods Five eyes from Macaca fascicularis (age 3-10; n=3; 2 males, 1 female) underwent vitrectomy and ILM peel centered on the fovea prior to intravitreal delivery of 7m8:SNCG:GCaMP8s. RGC responses to visual flicker were evaluated using AOSLO calcium imaging 1-6 months post intravitreal injection. Results Calcium activity was observed in RGCs throughout the ILM peeled area in all eyes, representing a mean 8-fold increase in accessible recording area relative to a representative control eye. RGC responses in the ILM peeled and control eyes were comparable and showed no significant decrease over the 6 months following the procedure. In addition, we demonstrated that activity can be recorded directly from the retinal nerve fiber layer. Conclusions Peeling the ILM is a viable strategy to expand viral access to the GCL for gene therapies in NHP. Overall, this approach has potential to advance visual neuroscience, including pre-clinical evaluation of retinal function, detection of vision loss, and assessment of therapeutic interventions.
Collapse
Affiliation(s)
- Hector C Baez
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Center for Visual Science, University of Rochester, Rochester, NY
| | | | - Amber D Walker
- Center for Visual Science, University of Rochester, Rochester, NY
| | | | - Rachel Hollar
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Sara Patterson
- Center for Visual Science, University of Rochester, Rochester, NY
| | - David A DiLoreto
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Vamsi Gullapalli
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
8
|
Rodgers J, Hughes S, Ebrahimi AS, Allen AE, Storchi R, Lindner M, Peirson SN, Badea TC, Hankins MW, Lucas RJ. Enhanced restoration of visual code after targeting ON bipolar cells compared with retinal ganglion cells with optogenetic therapy. Mol Ther 2025; 33:1264-1281. [PMID: 39825567 PMCID: PMC11897768 DOI: 10.1016/j.ymthe.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Optogenetic therapy is a promising vision restoration method where light-sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like preclinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent. We address this deficit by comparing stimulus-response characteristics at single-unit resolution in the retina and dorsal lateral geniculate nucleus of retinally degenerate mice genetically engineered to express the opsin ReaChR in Grm6- or Brn3c-expressing cells (ON BC vs. RGCs, respectively). For both targeting strategies, we find ReaChR-evoked responses have equivalent sensitivity and can encode contrast across different background irradiances. Compared with ON BCs, targeting RGCs decreased response reproducibility and resulted in more stereotyped responses with reduced diversity in response polarity, contrast sensitivity, and temporal frequency tuning. Recording ReaChR-driven responses in visually intact retinas confirmed that RGC-targeted ReaChR expression disrupts visual feature selectivity of individual RGCs. Our data show that, while both approaches restore visual responses with impressive fidelity, ON BC targeting produces a richer visual code closer to that of wild-type mice.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037 Marburg, Germany; Department of Ophthalmology, University Hospitals of Giessen and Marburg, 35043 Marburg, Germany
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Tudor C Badea
- Neurogenetics Laboratory/ICDT, Transilvania University of Brasov, 500484 Brasov, Romania; National Brain Research Centre/ICIA, Romanian Academy, 050711 Bucharest, Romania
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Hinsch VG, Boye SL, Boye SE. A Comprehensive Review of Clinically Applied Adeno-Associated Virus-Based Gene Therapies for Ocular Disease. Hum Gene Ther 2025. [PMID: 39989340 DOI: 10.1089/hum.2024.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
The eye is an ideal target for gene therapy due its accessibility, immune privilege, small size, and compartmentalization. Adeno-associated virus (AAV) is the gold standard vector for gene delivery and can be injected via multiple routes of administration to target different parts of this organ. The approval of Luxturna™, a subretinally delivered gene therapy for RPE65-associated Leber's congenital amaurosis, and the large number of successful proof of concept studies performed in animal models injected great momentum into the pursuit of additional AAV-based gene therapies for the treatment of retinal disease. This review provides a comprehensive summary of all subretinally, intravitreally, and suprachoroidally delivered AAV-based ocular gene therapies that have progressed to clinical stage. Attention is given to primary (safety) and secondary (efficacy) outcomes, or lack thereof. Lessons learned and future directions are addressed, both of which point to optimism that the ocular gene therapy field is poised for continued momentum and additional regulatory approvals.
Collapse
Affiliation(s)
- Valerie G Hinsch
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Oikawa K, Eaton JS, Kiland JA, Torné O, Mathu V, Nickells RW, McLellan GJ. Intravitreal AAV2 gene delivery to feline retinal ganglion cells. Vision Res 2025; 226:108519. [PMID: 39549467 PMCID: PMC11658774 DOI: 10.1016/j.visres.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Effective strategies for the neuroprotection and preservation of retinal ganglion cells (RGCs) remain elusive in the management of glaucoma. A spontaneous genetic model of glaucoma has been identified in cats and extensively characterized as a viable translational model, with eye size and anatomy similar to humans. In this study we sought to establish initial proof of concept for gene delivery to feline RGCs via intravitreal injection of AAV2 in normal cats. Pre-retinal, posterior vitreal injection of AAV2/2-CMV-GFP, was performed overlying the area centralis in 5 adult cats. Immunosuppressive oral prednisolone was administered perioperatively and gradually tapered over 6-10wks post-injection. Ophthalmic examination was performed pre- and post-injection. The GFP reporter expression and morphological effects of viral transduction on the retina were monitored in vivo using confocal scanning laser ophthalmoscopy (cSLO) and optical coherence tomography (OCT), respectively (Spectralis OCT-HRA, Heidelberg), at 1-2wk intervals over 6-10wks. Full-field electroretinograms (ERG) and visual evoked potentials (VEP) were recorded at baseline and post-injection. Retinas were examined by histology and immunolabeling for the RGC marker RBPMS and Müller cell and astrocyte marker SOX9, and GFP expression was examined in the retina, optic nerve (ON), optic tract and lateral geniculate nucleus (LGN). GFP+ retinal cells and RGC axons were visualized by cSLO at 1-2 weeks post-injection. No retinal morphological changes were observed by OCT in vivo but 3/5 eyes exhibited mild retinal inflammation on histology. Retinal and ON function were preserved in injected eyes compared to baseline and untreated eyes. GFP expression was predominantly identified in RBPMS+ RGC cells as well as SOX9+ Müller cells. GFP fluorescence was observed throughout RGC nerve fiber tract in the central visual pathway. Peak transduction in RGCs (up to ∼ 20 %) was observed in the regions with high GFP expression, but < 1 % of RGCs expressed GFP across the whole retina. Our data provide proof of concept that pre-retinal injection of AAV2/2 may represent a feasible platform for gene delivery to feline RGCs in vivo but highlight a need for further refinement to improve RGC transduction efficiency and control low-grade retinal inflammation.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - J Seth Eaton
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Julie A Kiland
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Odalys Torné
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Virginia Mathu
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Robert W Nickells
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Gillian J McLellan
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States.
| |
Collapse
|
11
|
Lim Y, Campochiaro PA, Green JJ. Suprachoroidal Delivery of Viral and Nonviral Vectors for Treatment of Retinal and Choroidal Vascular Diseases. Am J Ophthalmol 2024:S0002-9394(24)00571-3. [PMID: 39716546 DOI: 10.1016/j.ajo.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE Current treatments for retinal and choroidal neovascular diseases suffer from insufficient durability, including anti-vascular endothelial growth factor-A agents. It is, therefore, of interest to explore alternative methods that could allow for robust improvement in visual acuity with fewer injections required. DESIGN Literature review. RESULTS Among various preclinical and clinical studies in the literature, a promising approach is the use of suprachoroidal injection with viral and nonviral gene delivery vectors. Compared with other ocular injection methods, suprachoroidal injection has demonstrated wide biodistribution of injected agents and safety as an outpatient procedure. In terms of viral vectors, suprachoroidal injection of an adeno-associated virus 8 vector expressing an anti-vascular endothelial growth factor-A antibody fragment has shown an excellent safety profile and evidence of biological activity. In terms of nonviral vectors, lipid nanoparticles and polymeric nanoparticles both demonstrate strong promise for ocular gene therapy in large animal models. In particular, biodegradable poly(β-amino ester) nanoparticles show excellent biodistribution, safety, and efficacy for gene therapy via the suprachoroidal route. Nonviral nanoparticle approaches can have notable advantages over viral vectors in terms of carrying capacity, redosability, and manufacturing costs. An advantage of gene therapy is that once a delivery vector has been optimized, genetic cargos can be readily tailored without changing the safety, efficacy, and pharmacokinetic properties of the delivery vector. CONCLUSIONS This review highlights recent progress that has been made and compares viral and nonviral suprachoroidal gene delivery for the treatment of retinal and choroidal vascular diseases. Suprachoroidal gene therapy is an emerging biotechnology that holds substantial potential to make a translational impact in treating these diseases.
Collapse
Affiliation(s)
- Yeongseo Lim
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter A Campochiaro
- Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Neuroscience (P.A.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jordan J Green
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering (J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Neurosurgery and Oncology (J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for Nanobiotechnology, Johns Hopkins University (J.J.G.), Baltimore, Maryland, USA..
| |
Collapse
|
12
|
Shim J, Kim Y, Bak J, Shin S, Lee K, Hwang YH, Kong HY, Han JS. Preclinical evaluation of NG101, a potential AAV gene therapy for wet age-related macular degeneration. Mol Ther Methods Clin Dev 2024; 32:101366. [PMID: 39634790 PMCID: PMC11615598 DOI: 10.1016/j.omtm.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over the age of 55. Approximately 10%-15% of AMD patients develop choroidal neovascularization (CNV), leading to wet AMD (wAMD), which accounts for nearly 90% of AMD-related blindness. Inhibition of vascular endothelial growth factor (VEGF) is the standard treatment for wAMD. However, the frequent administration of the current treatment imposes a significant burden on wAMD patients. Therefore, there is an unmet need for treatments that require less-frequent administration. Here, we present findings on the safety and efficacy of NG101, a recombinant adeno-associated virus (rAAV) vector encoding aflibercept, an anti-VEGF agent, for wAMD therapy. A single subretinal injection of NG101 effectively reduced CNV lesion leakage and size at doses as low as 1 × 106 in mouse and 3 × 109 viral genomes per eye in cynomolgus monkeys. In cynomolgus monkeys, NG101-derived aflibercept expression in ocular tissues persisted for 1 year post-injection, indicating sustained therapeutic potential. Biodistribution analysis revealed that NG101 was primarily localized in ocular tissues. Only mild and transient ocular inflammatory responses were observed. Overall, these findings suggest that NG101, with its efficacy at low doses and sustained expression, is a promising therapeutic candidate for wAMD.
Collapse
Affiliation(s)
- Juwon Shim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Youyoung Kim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Jeongyun Bak
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Sunhwa Shin
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Kyungwon Lee
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | | | | | - Joo Seok Han
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Siontas O, Ahn S. Challenges in AAV-Based Retinal Gene Therapies and the Role of Magnetic Nanoparticle Platforms. J Clin Med 2024; 13:7385. [PMID: 39685843 DOI: 10.3390/jcm13237385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal diseases, leading to various visual impairments and blindness, are on the rise. However, the advancement of retinal gene therapies offers new hope for treatment of such diseases. Among different vector systems for conferring therapeutic genetic load to retinal cells, adeno-associated viruses (AAVs) have been most intensively explored and have already successfully gained multiple clinical approvals. AAV-based retinal gene therapies have shown great promise in treating retinal disorders, but usually rely on the heavily disruptive administration methods such as subretinal injection. This is because the clinically well-established, minimally invasive alternative of intravitreal injection (IVI) necessitates AAVs to traverse the retinal inner limiting membrane (ILM), which is hard to penetrate in higher eye models, like human or porcine eyes. Additionally, AAVs' natural transduction preference, known as tropism, is commonly not specific to cells of only one target retinal layer, which is another ongoing challenge in retinal gene therapy. This review examines strategies to overcome these obstacles with a focus on the potential of magnetic nanoparticles (MNPs) for improved retinal AAV delivery.
Collapse
Affiliation(s)
- Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
| | - Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
14
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Calton MA, Croze RH, Burns C, Beliakoff G, Vazin T, Szymanski P, Schmitt C, Klein A, Leong M, Quezada M, Holt J, Bolender G, Barglow K, Khoday D, Mason T, Delaria K, Hassanipour M, Kotterman M, Khanani AM, Schaffer D, Francis P, Kirn D. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39620832 PMCID: PMC11614000 DOI: 10.1167/iovs.65.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Intravitreal delivery of therapeutic transgenes to the retina via engineered viral vectors can provide sustained local concentrations of therapeutic proteins and thus potentially reduce the treatment burden and improve long-term vision outcomes for patients with neovascular (wet) age-related macular degeneration (AMD), diabetic macular edema (DME), and diabetic retinopathy. Methods We performed directed evolution in nonhuman primates (NHP) to invent an adeno-associated viral (AAV) variant (R100) with the capacity to cross vitreoretinal barriers and transduce all regions and layers of the retina following intravitreal injection. We then engineered 4D-150, an R100-based genetic medicine carrying 2 therapeutic transgenes: a codon-optimized sequence encoding aflibercept, a recombinant protein that inhibits VEGF-A, VEGF-B, and PlGF, and a microRNA sequence that inhibits expression of VEGF-C. Transduction, transgene expression, and biological activity were characterized in human retinal cells in vitro and in NHPs. Results R100 demonstrated superior retinal cell transduction in vitro and in vivo compared to AAV2, a commonly used wild-type AAV serotype in retinal gene therapies. Transduction of human retinal pigment epithelial cells in vitro by 4D-150 resulted in dose-dependent transgene expression and corresponding reductions in VEGF-A and VEGF-C. Intravitreal administration of 4D-150 to NHPs was well tolerated and led to robust retinal expression of both transgenes. In a primate model of laser-induced choroidal neovascularization, 4D-150 completely prevented clinically relevant angiogenic lesions at all tested doses. Conclusions These findings support further development of 4D-150. Clinical trials are underway to establish the safety and efficacy of 4D-150 in individuals with wet AMD and DME.
Collapse
Affiliation(s)
| | - Roxanne H. Croze
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Christian Burns
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Ghezal Beliakoff
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Tandis Vazin
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Paul Szymanski
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Austin Klein
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Meredith Leong
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Melissa Quezada
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Jenny Holt
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Gabe Bolender
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Devi Khoday
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Thomas Mason
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | | | | | - Arshad M. Khanani
- Sierra Eye Associates, Reno, Nevada, United States
- University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - David Schaffer
- University of California, Berkeley, California, United States
| | - Peter Francis
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - David Kirn
- 4D Molecular Therapeutics, Emeryville, California, United States
- University of California, Berkeley, California, United States
| |
Collapse
|
16
|
Ahn S, Siontas O, Koester J, Krol J, Fauser S, Müller DJ. Magnetically Guided Adeno-Associated Virus Delivery for the Spatially Targeted Transduction of Retina in Eyes. Adv Healthc Mater 2024; 13:e2401577. [PMID: 38848510 DOI: 10.1002/adhm.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Adeno-associated viruses (AAVs) are intensively explored for gene therapies in general and have found promising applications for treating retina diseases. However, controlling the specificity (tropism) and delivery of AAVs to selected layers, cell types, and areas of the retina is a major challenge to further develop retinal gene therapies. Magnetic nanoparticles (MNPs) provide effective delivery platforms to magnetically guide therapeutics to target cells. Yet, how MNPs can deliver AAVs to transfect particular retina layers and cells remains elusive. Here, it is demonstrated that MNPs can be used to transport different AAVs through the retina and to modulate the selective transduction of specific retinal layers or photoreceptor cells in ex vivo porcine explants and whole eyes. Thereby, transduction is triggered by bringing the viruses in close proximity to the target cell layer and by controlling their interaction time. It is shown that this magnetically guided approach to transport AAVs to selected areas and layers of the retina does not require the cell-specific optimization of the AAV tropism. It is anticipated that the new approach to control the delivery of AAVs and to selectively transduce cellular systems can be applied to many other tissues or organs to selectively deliver genes of interest.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Janis Koester
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Jacek Krol
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| |
Collapse
|
17
|
Ayalon A, Sahel JA, Chhablani J. A journey through the world of vitreous. Surv Ophthalmol 2024; 69:957-966. [PMID: 38885759 DOI: 10.1016/j.survophthal.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Vitreous, one of the largest components of the human eye, mostly contains water. Despite decades of studying the vitreous structure, numerous unanswered questions still remain, fueling ongoing active research. We attempt to provide a comprehensive overview of the current understanding of the development, morphology, biochemical composition, and function of the vitreous. We emphasize the impact of the vitreous structure and composition on the distribution of drugs. Fast-developing imaging technologies, such as modern optical coherence tomography, unlocked multiple new approaches, offering the potential for in vivo study of the vitreous structure. They allowed to analyze in vivo a range of vitreous structures, such as posterior precortical vitreous pockets, Cloquet canal, channels that interconnect them, perivascular vitreous fissures, and cisterns. We provide an overview of such imaging techniques and their principles and of some challenges in visualizing vitreous structures. Finally, we explores the potential of combining the latest technologies and machine learning to enhance our understanding of vitreous structures.
Collapse
Affiliation(s)
- Anfisa Ayalon
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
19
|
Kumar B, Mishra M, Cashman S, Kumar-Singh R. Retinal Penetrating Adeno-Associated Virus. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39172462 PMCID: PMC11346080 DOI: 10.1167/iovs.65.10.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The most common method of delivery of genes to the outer retina uses recombinant adeno-associated virus (AAV) injected into the subretinal space using a surgical procedure. In contrast, most drugs are delivered to the retina using an intravitreal approach in an office setting. The objective of the current study was to develop AAV vectors that can reach the outer retina via intravitreal injection. Methods Recently, we described a molecular chaperone (Nuc1) that enhanced the penetration of small and large molecules, including AAV, into the retina. The Nuc1 amino acid sequence or a truncated version of Nuc1 (IKV) was genetically incorporated into an exposed loop of AAV2/9 VP1 protein. These novel recombinant AAV vectors expressing green fluorescent protein (GFP) or nuclear factor erythroid 2 p45-related factor 2 (Nrf2) were injected into the vitreous of C57Bl/6J or Nrf2 knockout mice, respectively. The amount of GFP expression or oxidative stress as measured by 8-Hydroxy-2'-deoxyguanosine staining in C57Bl/6J or Nrf2 knockout mice, respectively, was quantified. Results Incorporation of Nuc1 into AAV2/9 did not lead to significant expression of GFP in the murine retina. However, incorporation of IKV into AAV2/9 led to robust expression of GFP in photoreceptors and retinal pigment epithelium (RPE) via the intravitreal and subretinal routes of delivery. Furthermore, expression of Nrf2 using an IKV vector led to a reduction in oxidative stress in the retina of C57Bl/6J and Nrf2 knockout mice. Conclusions We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Manish Mishra
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Siobhan Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Busskamp V, Roska B, Sahel JA. Optogenetic Vision Restoration. Cold Spring Harb Perspect Med 2024; 14:a041660. [PMID: 37734866 PMCID: PMC11293536 DOI: 10.1101/cshperspect.a041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Optogenetics has emerged over the past 20 years as a powerful tool to investigate the various circuits underlying numerous functions, especially in neuroscience. The ability to control by light the activity of neurons has enabled the development of therapeutic strategies aimed at restoring some level of vision in blinding retinal conditions. Promising preclinical and initial clinical data support such expectations. Numerous challenges remain to be tackled (e.g., confirmation of safety, cell and circuit specificity, patterns, intensity and mode of stimulation, rehabilitation programs) on the path toward useful vision restoration.
Collapse
Affiliation(s)
- Volker Busskamp
- Degenerative Retinal Diseases, University Hospital Bonn, 53127 Bonn, Germany
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4001 Basel, Switzerland
| | - Jose-Alain Sahel
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
- Institut Hospitalo-Universitaire FOReSIGHT, Sorbonne Universite, Inserm, Quinze-Vingts Hopital de la Vision, 75012 Paris, France
| |
Collapse
|
21
|
Łajczak PM, Nawrat Z. Sharper vision, steady hands: can robots improve subretinal drug delivery? Systematic review. J Robot Surg 2024; 18:235. [PMID: 38819533 PMCID: PMC11142954 DOI: 10.1007/s11701-024-01991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Subretinal injection (SI) is a novel drug delivery method, directly to retina for treatment of various eye disease. However, manual injection requires surgical experience and precision due to physiological factors. Robots offer solution to this issue, by reducing hand tremor and increased accuracy. This systematic review analyzes current status on robot-assisted SI compared to conventional techniques. Systematic search across 5 databases was conducted to identify studies comparing manual and robot-assisted SI procedures. Extracted data included robotic systems, complications, and success rates. Four studies, including one human trial, two ex vivo porcine eye studies, and one artificial eye model study were included in the synthesis. The findings show early advantages of robot-assisted SI. Compared to traditional interventions, robot procedures result in reduced tremor, what potentially lowers the risk of complications, including retinal tears and reflux. The first in-human randomized trial showed encouraging results, with no significant differences in surgical times or complications between robot-assisted and manual SI. However, major limitation of robot-assisted procedures is longer procedure time. Robot-assisted SI holds promise by offering increased precision and stability, reducing human error and potentially improving clinical outcomes. Challenges include cost, availability, and learning curve. Overall, early stage of robot-assisted SI suggests advantages in precision, complication reduction, and potentially improved drug delivery. Further research in human randomized trials is needed to fully assess its full-scale clinical application.
Collapse
Affiliation(s)
- Paweł Marek Łajczak
- Zbigniew Religa Student Scientific Club at Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 18, 40-043, Zabrze, Poland.
| | - Zbigniew Nawrat
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 18, 40-043, Zabrze, Poland
- Foundation of Cardiac Surgery Development, 41-808, Zabrze, Poland
| |
Collapse
|
22
|
Berkowitz ST, Finn AP. Gene therapy for age-related macular degeneration: potential, feasibility, and pitfalls. Curr Opin Ophthalmol 2024; 35:170-177. [PMID: 38441066 DOI: 10.1097/icu.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW The landscape for age-related macular degeneration (AMD) is rapidly changing with addition of biosimilars and now United States Food and Drug Administration (FDA) approved nonneovascular AMD (nnAMD) treatment options. These developments have inspired a burgeoning pipeline of gene therapy approaches focused on similar antivascular endothelial growth factors (VEGF) and complement related pathways. Historic and more recent setbacks in the gene therapy pipeline, including intraocular inflammatory reactions, have raised important concerns for adverse events related to AMD therapeutics both for gene and nongene approaches. The specific clinical profile of these therapeutics approaching later stage clinical trials are complex and under active investigation; however, these options hold promise to disrupt the current landscape and change management paradigms for one of the leading causes of vision loss worldwide. RECENT FINDINGS This review covers current gene therapy approaches for neovascular AMD (nAMD) and nnAMD. Intravitreal, suprachoroidal, and subretinal delivery routes are discussed with attention to technical procedure, capabilities for transgene delivery to target tissue, immunogenicity, and collateral effects. Suprachoroidal delivery is an emerging approach which may bridge some of the practical drawbacks for intravitreal and subretinal methods, though with less elaborated immunologic profile. In parallel to delivery modification, viral vectors have been cultivated to target specific cells, with promising enhancements in adeno-associated viral (AAV) vectors and persistent interest in alternate viral and nonviral delivery vectors. Ongoing questions such as steroid or immunosuppressive regimen and economic considerations from a payer and societal perspective are discussed. SUMMARY The present review discusses emerging gene therapy options which could foster new, more durable nAMD and nnAMD therapeutics. These options will need refinement with regards to route, vector, and dosage, and specialists must decipher the specific clinical risk benefit profile for individual patients. Ongoing concerns for immunogenicity or dosage related adverse events could stifle progress, while further vector development and refined delivery techniques have the potential to change the safety and efficacy of currently options in the pipeline.
Collapse
Affiliation(s)
- Sean T Berkowitz
- Vanderbilt University Medical Center, Department of Ophthalmology, Nashville, Tennessee, USA
| | | |
Collapse
|
23
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
24
|
Esposito EP, Han IC, Johnson TV. Gene and cell-based therapies for retinal and optic nerve disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:243-262. [PMID: 39341657 DOI: 10.1016/b978-0-323-90120-8.00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Leading causes of blindness worldwide include neurodegenerative diseases of the retina, which cause irreversible loss of retinal pigment epithelium (RPE) and photoreceptors, and optic neuropathies, which result in retinal ganglion cell (RGC) death. Because photoreceptor and RGCs do not spontaneously regenerate in mammals, including humans, vision loss from these conditions is, at present, permanent. Recent advances in gene and cell-based therapies have provided new hope to patients affected by these conditions. This chapter reviews the current state and future of these approaches to treating ocular neurodegenerative disease. Gene therapies for retinal degeneration and optic neuropathies primarily focus on correcting known pathogenic mutations that cause inherited conditions to halt progression. There are multiple retinal and optic neuropathy gene therapies in clinical trials, and one retinal gene therapy is approved in the United States, Canada, Europe, and Australia. Cell-based therapies are mutation agnostic and have the potential to repopulate neurons regardless of the underlying etiology of degeneration. While photoreceptor cell replacement is nearing a human clinical trial, RPE transplantation is currently in phase I/II clinical trials. RGC replacement faces numerous logistical challenges, but preclinical research has laid the foundation for functional repair of optic neuropathies to be feasible.
Collapse
Affiliation(s)
- Edward P Esposito
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Han N, Xu X, Liu Y, Luo G. AAV2-antiVEGFscFv gene therapy for retinal neovascularization. Mol Ther Methods Clin Dev 2023; 31:101145. [PMID: 38027065 PMCID: PMC10679950 DOI: 10.1016/j.omtm.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Retinal neovascularization (NV) may lead to irreversible vision impairment, the main treatment for which is the inhibition of vascular endothelial growth factor (VEGF). Existing drugs show limited clinical benefits because of their high prices and short half-lives, which increase the financial burden and medical risks to patients. Gene therapy on the basis of adeno-associated viruses is a promising approach to overcome these limitations because of the nonintegrative nature, low immunogenicity, and potential long-term gene expression of adeno-associated viruses. In this study, we constructed a novel recombinant adeno-associated virus with the single-chain fragment variable (scFv) fragment of the anti-VEGF antibody, AAV2-antiVEGFscFv, consisting of the VH and VL structural domains of IgG. AAV2-antiVEGFscFv effectively inhibited NV, retinal leakage, and retinal detachment in oxygen-induced retinopathy (OIR) mice, Tet/opsin/VEGF double-transgenic mice, and VEGF-induced rabbit NV models. AAV2-antiVEGFscFv also significantly suppressed VEGF-induced inflammation. Furthermore, we showed that AAV2-antiVEGFscFv could be sustainably expressed for a prolonged period and exhibited low immunotoxicity in vivo. This study indicates that AAV2-antiVEGFscFv could be a potential approach for NV treatment and provides strong support for preclinical research.
Collapse
Affiliation(s)
- Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Ltd., Nanjing 210061, China
| |
Collapse
|
26
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
27
|
Hu HF, Tsang SH. Bypassing pre-existing antibodies extends the applicability of AAV-based retinal therapies. Mol Ther 2023; 31:3363. [PMID: 38000369 PMCID: PMC10727989 DOI: 10.1016/j.ymthe.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Affiliation(s)
- Hannah F Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Jonas Children's Vision Care (JCVC), Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA; Departments of Ophthalmology, Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care (JCVC), Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA; Departments of Ophthalmology, Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY, USA.
| |
Collapse
|
28
|
Maierhofer NA, Jablonka AM, Roodaki H, Nasseri MA, Eslami A, Klaas J, Lohmann CP, Maier M, Zapp D. iOCT-guided simulated subretinal injections: a comparison between manual and robot-assisted techniques in an ex-vivo porcine model. J Robot Surg 2023; 17:2735-2742. [PMID: 37670151 PMCID: PMC10678791 DOI: 10.1007/s11701-023-01699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/07/2023] [Indexed: 09/07/2023]
Abstract
The purpose of this study is to compare robot-assisted and manual subretinal injections in terms of successful subretinal blistering, reflux incidences and damage of the retinal pigment epithelium (RPE). Subretinal injection was simulated on 84 ex-vivo porcine eyes with half of the interventions being carried out manually and the other half by controlling a custom-built robot in a master-slave fashion. After pars plana vitrectomy (PPV), the retinal target spot was determined under a LUMERA 700 microscope with microscope-integrated intraoperative optical coherence tomography (iOCT) RESCAN 700 (Carl Zeiss Meditec, Germany). For injection, a 1 ml syringe filled with perfluorocarbon liquid (PFCL) was tipped with a 40-gauge metal cannula (Incyto Co., Ltd., South Korea). In one set of trials, the needle was attached to the robot's end joint and maneuvered robotically to the retinal target site. In another set of trials, approaching the retina was performed manually. Intraretinal cannula-tip depth was monitored continuously via iOCT. At sufficient depth, PFCL was injected into the subretinal space. iOCT images and fundus video recordings were used to evaluate the surgical outcome. Robotic injections showed more often successful subretinal blistering (73.7% vs. 61.8%, p > 0.05) and a significantly lower incidence of reflux (23.7% vs. 58.8%, p < 0.01). Although larger tip depths were achieved in successful manual trials, RPE penetration occurred in 10.5% of robotic but in 26.5% of manual cases (p > 0.05). In conclusion, significantly less reflux incidences were achieved with the use of a robot. Furthermore, RPE penetrations occurred less and successful blistering more frequently when performing robotic surgery.
Collapse
Affiliation(s)
- Niklas A Maierhofer
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Anne-Marie Jablonka
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hessam Roodaki
- Translational Research Lab, Carl Zeiss Meditec AG, Munich, Germany
| | - M Ali Nasseri
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Abouzar Eslami
- Translational Research Lab, Carl Zeiss Meditec AG, Munich, Germany
| | - Julian Klaas
- Klinik und Poliklinik für Augenheilkunde, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chris P Lohmann
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mathias Maier
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Zapp
- Klinik und Poliklinik für Augenheilkunde, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Do JL, Pedroarena-Leal N, Louie M, Avila Garcia P, Alnihmy A, Patel A, Weinreb RN, Wahlin KJ, La Torre Vila A, Welsbie DS. Mechanical Disruption of the Inner Limiting Membrane In Vivo Enhances Targeting to the Inner Retina. Invest Ophthalmol Vis Sci 2023; 64:25. [PMID: 38117244 PMCID: PMC10741092 DOI: 10.1167/iovs.64.15.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Purpose To evaluate the effects of mechanical disruption of the inner limiting membrane (ILM) on the ability to target interventions to the inner neurosensory retina in a rodent model. Our study used an animal model to gain insight into the normal physiology of the ILM and advances our understanding of the effects of mechanical ILM removal on the viral transduction of retinal ganglion cells and retinal ganglion cell transplantation. Methods The ILM in the in vivo rat eye was disrupted using mechanical forces applied to the vitreoretinal interface. Immunohistology and electron microscopy were used to verify the removal of the ILM in retina flatmounts and sections. To assess the degree to which ILM disruption enhanced transvitreal access to the retina, in vivo studies involving intravitreal injections of adeno-associated virus (AAV) to transduce retinal ganglion cells (RGCs) and ex vivo studies involving co-culture of human stem cell-derived RGCs (hRGCs) on retinal explants were performed. RGC transduction efficiency and transplanted hRGC integration with retinal explants were evaluated by immunohistology of the retinas. Results Mechanical disruption of the ILM in the rodent eye was sufficient to remove the ILM from targeted retinal areas while preserving the underlying retinal nerve fiber layer and RGCs. Removal of the ILM enhanced the transduction efficiency of intravitreally delivered AAV threefold (1380.0 ± 290.1 vs. 442.0 ± 249.3 cells/mm2; N = 6; P = 0.034). Removal of the ILM was also sufficient to promote integration of transplanted RGCs within the inner retina. Conclusions The ILM is a barrier to transvitreally delivered agents including viral vectors and cells. Mechanical removal of the ILM is sufficient to enhance access to the inner retina, improve viral transduction efficiencies of RGCs, and enhance cellular integration of transplanted RGCs with the retina.
Collapse
Affiliation(s)
- Jiun L. Do
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Nicole Pedroarena-Leal
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California Davis, California, United States
| | - Paula Avila Garcia
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Adam Alnihmy
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Amit Patel
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Robert N. Weinreb
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Karl J. Wahlin
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Anna La Torre Vila
- Department of Cell Biology and Human Anatomy, University of California Davis, California, United States
| | - Derek S. Welsbie
- Gleiberman Center for Glaucoma Research, Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
30
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, Mittas DM, Karguth N, Otify DY, Böhm S, Weber VJ, Bartoschek MD, Splith V, Brümmer M, Ferreira R, Boon N, Wögenstein GM, Grimm C, Wijnholds J, Mehlfeld V, Michalakis S, Fenske S, Biel M, Becirovic E. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun 2023; 14:6578. [PMID: 37852949 PMCID: PMC10584818 DOI: 10.1038/s41467-023-42386-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.
Collapse
Affiliation(s)
- Lisa Maria Riedmayr
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | | | - David Manuel Mittas
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Nina Karguth
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Dina Yehia Otify
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | - Valentin Johannes Weber
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | | | | | - Manuela Brümmer
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Raphael Ferreira
- Genetics Department, Harvard Medical School, Boston, MA, 02115, USA
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
| | - Gabriele Maria Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, Netherlands
| | - Verena Mehlfeld
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Stefanie Fenske
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, 81377, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland.
| |
Collapse
|
32
|
Kramer RH. Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders. Annu Rev Vis Sci 2023; 9:131-153. [PMID: 37713276 DOI: 10.1146/annurev-vision-112122-020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, USA;
| |
Collapse
|
33
|
Iqball S, Beck DK, Devarajan G, Khoo CP, O’Connor DM, Ellis S, Guzman E, Mitrophanous KA, Lad Y. Lentiviral delivered aflibercept OXB-203 for treatment of neovascular AMD. Mol Ther Methods Clin Dev 2023; 30:350-366. [PMID: 37637380 PMCID: PMC10448334 DOI: 10.1016/j.omtm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness in the aging population, with vascular endothelial growth factor (VEGF) playing a key role. Treatment with recombinant anti-VEGFs is the current standard of care; however, it is only effective for 1-2 months at a time and requires re-administration. Gene therapy could pave the way for stable, long-term expression of therapeutic anti-VEGF with a single dose, reducing the frequency of treatment and potentially improving clinical outcomes. As such, we have developed OXB-203, a lentiviral-based gene therapy encoding the anti-VEGF protein aflibercept. Aflibercept derived from OXB-203 exhibited comparable in vitro binding characteristics to VEGF as recombinant aflibercept. Furthermore, its biological potency was demonstrated by the equivalent inhibition of VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and tubule formation as recombinant aflibercept. In a rat choroidal neovascularization (CNV) model of nAMD, a single subretinal administration of OXB-203 reduced laser-induced CNV lesion areas analogous to an intravitreal bolus of recombinant aflibercept. Finally, in a head-to-head comparative study, aflibercept derived from OXB-203 was shown to be expressed at significantly higher levels in ocular tissues than from an AAV8-aflibercept vector following a single subretinal delivery to rats. These findings support the therapeutic potential of OXB-203 for the management of nAMD.
Collapse
Affiliation(s)
- Sharifah Iqball
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Daniel K. Beck
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Gayathri Devarajan
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Cheen P. Khoo
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Deirdre M. O’Connor
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Scott Ellis
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | - Efrain Guzman
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| | | | - Yatish Lad
- Oxford Biomedica (UK) Ltd., Windrush Court, Transport Way, OX4 6LT Oxford, UK
| |
Collapse
|
34
|
Schwartz MK, Likhite S, Vetter TA, Baird MC, McGovern V, Sierra Delgado A, Mendel T, Burghes A, Meyer KC. In-depth comparison of Anc80L65 and AAV9 retinal targeting and characterization of cross-reactivity to multiple AAV serotypes in humans. Mol Ther Methods Clin Dev 2023; 30:16-29. [PMID: 37746244 PMCID: PMC10512013 DOI: 10.1016/j.omtm.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/12/2023] [Indexed: 09/26/2023]
Abstract
Anc80L65 is a synthetic, ancestral adeno-associated virus that has high tropism toward retinal photoreceptors after subretinal injection in mice and non-human primates. We characterized, for the first time, the post-intravitreal cell-specific transduction profile of Anc80L65 compared with AAV9. Here we use Anc80L65 and AAV9 to intravitreally deliver a copy of the gene encoding GFP into WT C57Bl/6J mice. GFP expression was driven by one of two clinically relevant promoters, chicken β actin (CB) or truncated MECP2 (P546). After qualitative assessment of relative GFP expression, we found Anc80L65 and AAV9 to have similar transduction profiles. Through the development of a novel method for quantifying GFP-positive retinal cells, we found Anc80L65 to have higher tropism in Müller glia and AAV9 to have higher tropism in horizontal cells. In addition, we found P546 to promote GFP expression at a more moderate level compared with the high levels seen under the CB promoter. Finally, for the first time, we characterized Anc80L65 cross-reactivity in human sera; 83% of patients with AAV2 pre-existing antibodies were found to be seropositive for Anc80L65. This study demonstrates the expanded therapeutic applications of Anc80L65 to treat retinal disease and provides the first insights to Anc80L65 pre-existing immunity in humans.
Collapse
Affiliation(s)
- Maura K. Schwartz
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Biomedical Sciences Graduate Program, the Ohio State University, Columbus, OH, USA
| | - Shibi Likhite
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Megan C. Baird
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Biomedical Sciences Graduate Program, the Ohio State University, Columbus, OH, USA
| | - Vicki McGovern
- Department of Neurology, the Ohio State University, Columbus, OH, USA
| | | | - Tom Mendel
- Department of Ophthalmology, the Ohio State University, Columbus, OH, USA
| | - Arthur Burghes
- Department of Neurology, the Ohio State University, Columbus, OH, USA
| | - Kathrin C. Meyer
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Biomedical Sciences Graduate Program, the Ohio State University, Columbus, OH, USA
- Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Wu KY, Fujioka JK, Gholamian T, Zaharia M, Tran SD. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals (Basel) 2023; 16:1241. [PMID: 37765048 PMCID: PMC10535603 DOI: 10.3390/ph16091241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Treating posterior segment and retinal diseases poses challenges due to the complex structures in the eye that act as robust barriers, limiting medication delivery and bioavailability. This necessitates frequent dosing, typically via eye drops or intravitreal injections, to manage diseases, often leading to side effects with long-term use. Suprachoroidal injection is a novel approach for targeted drug delivery to the posterior segment. The suprachoroidal space is the region between the sclera and the choroid and provides a potential route for minimally invasive medication delivery. Through a more targeted delivery to the posterior segment, this method offers advantages over other routes of administration, such as higher drug concentrations, increased bioavailability, and prolonged duration of action. Additionally, this approach minimizes the risk of corticosteroid-related adverse events such as cataracts and intraocular pressure elevation via compartmentalization. This review focuses on preclinical and clinical studies published between 2019 and 2023, highlighting the potential of suprachoroidal injection in treating a variety of posterior segment diseases. However, to fully harness its potential, more research is needed to address current challenges and limitations, such as the need for technological advancements, refinement of injection techniques, and consideration of cost and accessibility factors. Future studies exploring its use in conjunction with biotech products, gene therapies, and cell-based therapies can lead to personalized treatments that can revolutionize the field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Jamie K. Fujioka
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tara Gholamian
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marian Zaharia
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
36
|
Zengel J, Wang YX, Seo JW, Ning K, Hamilton JN, Wu B, Raie M, Holbrook C, Su S, Clements DR, Pillay S, Puschnik AS, Winslow MM, Idoyaga J, Nagamine CM, Sun Y, Mahajan VB, Ferrara KW, Blau HM, Carette JE. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat Methods 2023; 20:1070-1081. [PMID: 37291262 PMCID: PMC10333121 DOI: 10.1038/s41592-023-01896-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.
Collapse
Affiliation(s)
- James Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jai Woong Seo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - James N Hamilton
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Raie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiqi Su
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Katherine W Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
38
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
39
|
Starr C, Chen B. Adeno-associated virus mediated gene therapy for neuroprotection of retinal ganglion cells in glaucoma. Vision Res 2023; 206:108196. [PMID: 36812679 PMCID: PMC10085843 DOI: 10.1016/j.visres.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Glaucoma is a group of diseases typically characterized by the degeneration of the optic nerve and is one of the world's leading causes of blindness. Although there is no cure for glaucoma, reducing intraocular pressure is an approved treatment to delay optic nerve degeneration and retinal ganglion cell (RGC) death in most patients. Recent clinical trials have evaluated the safety and efficacy of gene therapy vectors for the treatment of inherited retinal degenerations (IRDs), and the results are promising, generating enthusiasm for the treatment of other retinal diseases. While there have been no reports on successful clinical trials for gene therapy-based neuroprotective treatment of glaucoma, and only a few studies assessing the efficacy of gene therapy vectors for the treatment of Leber hereditary optic neuropathy (LHON), the potential for neuroprotective treatment of glaucoma and other diseases affecting RGCs is still widely recognized. Here, we review recent progress and cover current limitations pertaining to targeting RGCs with adeno-associated virus-based gene therapy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Christopher Starr
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Optometry and Vision Science, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
40
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
41
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
42
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
43
|
You S, Zhou H, Yang S, Wu S, Chen X, Zhang R, Chen W, Wang H, Mo X. Pulsed Ultrasound-Mediated Enhancement on Transscleral and Transconjunctival Fluorescein Sodium Delivery to Rabbit Eye In Vivo. J Ocul Pharmacol Ther 2023; 39:175-184. [PMID: 36930765 DOI: 10.1089/jop.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Purpose: To investigate the efficacy and safety of pulsed ultrasound (PUS) in enhancing fluorescein sodium (NaF) transport to the rabbit eye through the transscleral and transconjunctival routes in vivo. Methods: PUS and NaF were applied onto the supratemporal sclera/conjunctiva of healthy rabbit eyes. PUS (1 MHz, 2.37 W/cm2, 30% duty cycle, 5-min application time) was performed 3 times with a 5-min interval. In the same process, NaF was administered to the eye without PUS in the control. NaF concentrations in the vitreous and retina-choroid were determined by fluorescence measurement. The safety of PUS application was assessed based on temperature and intraocular pressure measurements, clinical observations, electroretinography, histology, and Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling assay. Results: In comparison to the control, higher NaF concentrations were found in the retina-choroid following transscleral (2.45-fold) and transconjunctival (2.97-fold) PUS applications (P < 0.05). NaF concentrations in the vitreous were 3.15 and 5.86 times greater in transscleral and transconjunctival PUS applications, respectively, compared with those obtained without PUS application (P < 0.05), and NaF level in the vitreous after transconjunctival PUS application was 2.61 times that of transscleral PUS application (P < 0.05). Ocular findings were transient and mild conjunctival injection, with no other structural and functional changes in PUS-treated eyes. Conclusions: PUS treatment can improve transscleral and transconjunctival delivery of NaF efficiently and safely. Transscleral and transconjunctival PUS applications offer potential clinical benefit in increasing drug penetration to the posterior segments of the eye for the noninvasive treatment of ocular diseases.
Collapse
Affiliation(s)
- Shuqi You
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hongsheng Zhou
- Shanghai Acoustics Laboratory, Chinese Academy of Science, Shanghai, China
| | - Shicheng Yang
- Shanghai Acoustics Laboratory, Chinese Academy of Science, Shanghai, China
| | - Suqian Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangwu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wei Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Huan Wang
- Shanghai Acoustics Laboratory, Chinese Academy of Science, Shanghai, China
| | - Xiaofen Mo
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
44
|
Hu X, Zhang B, Li X, Li M, Wang Y, Dan H, Zhou J, Wei Y, Ge K, Li P, Song Z. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye (Lond) 2023; 37:607-617. [PMID: 35915232 PMCID: PMC9998618 DOI: 10.1038/s41433-022-02169-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is an adaptive immune defence system that has gradually evolved in bacteria and archaea to combat invading viruses and exogenous DNA. Advances in technology have enabled researchers to enhance their understanding of the immune process in vivo and its potential for use in genome editing. Thus far, applications of CRISPR/Cas9 genome editing technology in ophthalmology have included gene therapy for corneal dystrophy, glaucoma, congenital cataract, Leber's congenital amaurosis, retinitis pigmentosa, Usher syndrome, fundus neovascular disease, proliferative vitreoretinopathy, retinoblastoma and other eye diseases. Additionally, the combination of CRISPR/Cas9 genome editing technology with adeno-associated virus vector and inducible pluripotent stem cells provides further therapeutic avenues for the treatment of eye diseases. Nonetheless, many challenges remain in the development of clinically feasible retinal genome editing therapy. This review discusses the development, as well as mechanism of CRISPR/Cas9 and its applications and challenges in gene therapy for eye diseases.
Collapse
Affiliation(s)
- Xumeng Hu
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Beibei Zhang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaoli Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Miao Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yange Wang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Handong Dan
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiamu Zhou
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanmeng Wei
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Keke Ge
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Pan Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
45
|
Christopher M, Hoseini P, Walker E, Proudfoot JA, Bowd C, Fazio MA, Girkin CA, De Moraes CG, Liebmann JM, Weinreb RN, Schwartzman A, Zangwill LM, Welsbie DS. A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design. Ophthalmol Glaucoma 2023; 6:147-159. [PMID: 36038107 DOI: 10.1016/j.ogla.2022.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical trials. DESIGN Cross-sectional study. PARTICIPANTS Glaucoma patients with good quality macula and ONH scans enrolled in 2 longitudinal studies, the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study. METHODS Spectralis macula posterior pole scans and ONH circle scans on 3327 pairs of GCIPL/RNFL scans from 1096 eyes (550 patients) were included. Participants were randomly distributed into a training and validation dataset (90%) and a test dataset (10%) by participant. Networks had access to GCIPL and RNFL data from one hemiretina of the probe eye and all data of the fellow eye. The models were then trained to predict the GCIPL or RNFL thickness of the remaining probe eye hemiretina. MAIN OUTCOME MEASURES Mean absolute error (MAE) and squared Pearson correlation coefficient (r2) were used to evaluate model performance. RESULTS The deep learning model was able to predict superior and inferior GCIPL thicknesses with a global r2 value of 0.90 and 0.86, r2 of mean of 0.90 and 0.86, and mean MAE of 3.72 μm and 4.2 μm, respectively. For superior and inferior RNFL thickness predictions, model performance was slightly lower, with a global r2 of 0.75 and 0.84, r2 of mean of 0.81 and 0.82, and MAE of 9.31 μm and 8.57 μm, respectively. There was only a modest decrease in model performance when predicting GCIPL and RNFL in more severe disease. Using individualized hemiretinal predictions to account for variability across patients, we estimate that a clinical trial can detect a difference equivalent to a 25% treatment effect over 24 months with an 11-fold reduction in the number of patients compared to a conventional trial. CONCLUSIONS Our deep learning models were able to accurately estimate both macula GCIPL and ONH RNFL hemiretinal thickness. Using an internal control based on these model predictions may help reduce clinical trial sample size requirements and facilitate investigation of new glaucoma neuroprotection therapies. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Mark Christopher
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Pourya Hoseini
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Evan Walker
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - James A Proudfoot
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Christopher Bowd
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Massimo A Fazio
- Callahan Eye Hospital, Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama
| | - Christopher A Girkin
- Callahan Eye Hospital, Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama
| | - Carlos Gustavo De Moraes
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey M Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Armin Schwartzman
- Division of Biostatistics, Herbert Wertheim School of Public Health, University of California, San Diego, California; Halıcıoğlu Data Science Institute, University of California, San Diego, California
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California
| | - Derek S Welsbie
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California.
| |
Collapse
|
46
|
Wang X, Yang C, Wang X, Miao J, Chen W, Zhou Y, Xu Y, An Y, Cheng A, Ye W, Chen M, Song D, Yuan X, Wang J, Qian P, Ruohao Wu A, Zhang ZY, Liu K. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron 2023; 111:236-255.e7. [PMID: 36370710 PMCID: PMC9851977 DOI: 10.1016/j.neuron.2022.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
The coordination mechanism of neural innate immune responses for axon regeneration is not well understood. Here, we showed that neuronal deletion of protein tyrosine phosphatase non-receptor type 2 sustains the IFNγ-STAT1 activity in retinal ganglion cells (RGCs) to promote axon regeneration after injury, independent of mTOR or STAT3. DNA-damage-induced cGAMP synthase (cGAS)-stimulator of interferon genes (STINGs) activation is the functional downstream signaling. Directly activating neuronal STING by cGAMP promotes axon regeneration. In contrast to the central axons, IFNγ is locally translated in the injured peripheral axons and upregulates cGAS expression in Schwann cells and infiltrating blood cells to produce cGAMP, which promotes spontaneous axon regeneration as an immunotransmitter. Our study demonstrates that injured peripheral nervous system (PNS) axons can direct the environmental innate immune response for self-repair and that the neural antiviral mechanism can be harnessed to promote axon regeneration in the central nervous system (CNS).
Collapse
Affiliation(s)
- Xu Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China,These authors contributed equally
| | - Chao Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China,These authors contributed equally
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Weitao Chen
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongyan An
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mengxian Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Song
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xue Yuan
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jiguang Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Angela Ruohao Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China,Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China.
| |
Collapse
|
47
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
48
|
Kick GR, Whiting REH, Ota-Kuroki J, Castaner LJ, Morgan-Jack B, Sabol JC, Meiman EJ, Ortiz F, Katz ML. Intravitreal gene therapy preserves retinal function in a canine model of CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2023; 226:109344. [PMID: 36509165 PMCID: PMC9839638 DOI: 10.1016/j.exer.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare hereditary neurodegenerative disorder characterized by deleterious sequence variants in TPP1 that result in reduced or abolished function of the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Children with this disorder experience progressive neurological decline and vision loss starting around 2-4 years of age. Ocular disease is characterized by progressive retinal degeneration and impaired retinal function culminating in total loss of vision. Similar retinal pathology occurs in a canine model of CLN2 disease with a null variant in TPP1. A study using the dog model was performed to evaluate the efficacy of ocular gene therapy to provide a continuous, long-term source of human TPP1 (hTPP1) to the retina, inhibit retinal degeneration and preserve retinal function. TPP1-/- dogs received an intravitreal injection of 1 x 1012 viral genomes of AAV2.CAG.hTPP1 in one eye and AAV2.CAG.GFP in the contralateral eye at 4 months of age. Ophthalmic exams, in vivo ocular imaging and electroretinography were repeated monthly to assess retinal structure and function. Retinal morphology, hTPP1 and GFP expression in the retina, optic nerve and lateral geniculate nucleus, and hTPP1 concentrations in the vitreous were evaluated after the dogs were euthanized at end stage neurological disease at approximately 10 months of age. Intravitreal administration of AAV2.CAG.hTPP1 resulted in stable, widespread expression of hTPP1 throughout the inner retina, prevented disease-related declines in retinal function and inhibited disease-related cell loss and storage body accumulation in the retina for at least 6 months. Uveitis occurred in eyes treated with the hTPP1 vector, but this did not prevent therapeutic efficacy. The severity of the uveitis was ameliorated with anti-inflammatory treatments. These results indicate that a single intravitreal injection of AAV2.CAG.hTPP1 is an effective treatment to inhibit ocular disease progression in canine CLN2 disease.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Brandie Morgan-Jack
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francheska Ortiz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
49
|
Ebner LJA, Grimm C. AAV Serotypes and Their Suitability for Retinal Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:131-134. [PMID: 37440025 DOI: 10.1007/978-3-031-27681-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Throughout the last 25 years, exceptional progress in retinal gene therapy was achieved. The major breakthrough was realized in 2017 when the FDA approved the adeno-associated virus (AAV)-based gene therapy for treatment of the monogenetic disorder Leber congenital amaurosis type 2 (LCA2). Since then, many therapies for inherited retinal diseases (IRD) reached phase I/II clinical trials, targeting diseases like achromatopsia, choroideremia, retinitis pigmentosa, Stargardt disease, and many more (reviewed in (Trapani and Auricchio, Trends Mol Med 24:669-681, 2018)). Advanced vector and capsid design technologies as well as improved gene transfer and gene editing methods may lead to refined therapies for various eye diseases. Many research departments worldwide focus on optimizing transgene expression by designing novel AAV serotypes. Besides serotype tropism, the method of injection (intravitreal, subretinal, or suprachoroidal) (Han et al., Hum Gene Ther 31:1288-1299, 2020) defines the efficiency outcome along with the use of tissue-specific promotors which play a critical role for cell targeting.
Collapse
Affiliation(s)
- Lynn J A Ebner
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
50
|
Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Nat Commun 2022; 13:7695. [PMID: 36509783 PMCID: PMC9744804 DOI: 10.1038/s41467-022-35361-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa, an untreatable form of blindness. Gene therapy is a promising treatment for PRPF31-retinitis pigmentosa, however, there are currently no suitable animal models in which to develop AAV-mediated gene augmentation. Here we establish Prpf31 mutant mouse models using AAV-mediated CRISPR/Cas9 knockout, and characterize the resulting retinal degeneration phenotype. Mouse models with early-onset morphological and functional impairments like those in patients were established, providing new platforms in which to investigate pathogenetic mechanisms and develop therapeutic methods. AAV-mediated PRPF31 gene augmentation restored the retinal structure and function in a rapidly degenerating mouse model, demonstrating the first in vivo proof-of-concept for AAV-mediated gene therapy to treat PRPF31-retinitis pigmentosa. AAV-CRISPR/Cas9-PRPF31 knockout constructs also mediated efficient PRPF31 knockout in human and non-human primate retinal explants, laying a foundation for establishing non-human primate models using the method developed here.
Collapse
|