1
|
Bengtsson NE, Tasfaout H, Chamberlain JS. The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy. Mol Ther 2025; 33:2035-2051. [PMID: 40181545 DOI: 10.1016/j.ymthe.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Forty years after the dystrophin gene was cloned, significant progress has been made in developing gene therapy approaches for Duchenne muscular dystrophy (DMD). The disorder has presented numerous challenges, including the enormous size of the gene (2.2 MB), the need to target muscles body wide, and immunogenic issues against both vectors and dystrophin. Among human genetic disorders, DMD is relatively common, and the genetics are complicated since one-third of all cases arise from a spontaneous new mutation, resulting in thousands of independent lesions throughout the locus. Many approaches have been pursued in the goal of finding an effective therapy, including exon skipping, nonsense codon suppression, upregulation of surrogate genes, gene replacement, and gene editing. Here, we focus specifically on methods using AAV vectors, as these approaches have been tested in numerous clinical trials and are able to target muscles systemically. We discuss early advances to understand the structure of dystrophin, which are crucial for the design of effective DMD gene therapies. Included is a summary of efforts to deliver micro-, mini-, and full-length dystrophins to muscles. Finally, we review current approaches to adapt gene editing to the enormous DMD gene with prospects for improved therapies using all these methods.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Palmieri L, Ferrand M, Vu Hong A, Richard I, Albini S. In Silico Structural Prediction for the Generation of Novel Performant Midi-Dystrophins Based on Intein-Mediated Dual AAV Approach. Int J Mol Sci 2024; 25:10444. [PMID: 39408775 PMCID: PMC11476470 DOI: 10.3390/ijms251910444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a pediatric disorder characterized by progressive muscle degeneration and premature death, and has no current cure. The current, most promising therapeutic avenue is based on gene replacement mediated by adeno-associated viruses (AAVs) using a shortened, but still functional, version of dystrophin, known as micro-dystrophin (µDys), to fit AAV capacity. The limited improvements observed in clinical trials suggest a sub-optimal performance of µDys in the human context that could be due to the lack of key domains in the protein. Therefore, expressing larger dystrophin proteins may be necessary for a more complete correction of the disease phenotype. In this study, we developed three novel midi-dystrophin constructs using a dual-AAV approach, leveraging split-intein-based protein trans-splicing. The midi-dystrophins include additional domains compared to µDys, such as the central cytoskeleton-binding domain, nNOS and Par1b interacting domains, and a complete C-terminal region. Given the limited capacity of each AAV vector, we strategically partially reduced hinge regions while ensuring that the structural stability of the protein remains intact. We predicted the interactions between the two halves of the split midi-Dys proteins thanks to the deep learning algorithm AphaFold3. We observed strong associations between the N- and C-termini in midi-Dys 1 and 2, while a weaker interaction in midi-Dys 3 was revealed. Our subsequent experiments confirmed the efficient protein trans-splicing both in vitro and in vivo in DBA2/mdx mice of the midi-Dys 1 and 2 and not in midi-Dys 3 as expected from the structural prediction. Additionally, we demonstrated that midi-Dys 1 and 2 exhibit significant therapeutic efficacy in DBA2/mdx mice, highlighting their potential as therapeutic agents for DMD. Overall, these findings highlight the potential of deep learning-based structural modeling for the generation of intein-based dystrophin versions and pose the basis for further investigation of these new midi-dystrophins versions for clinical studies.
Collapse
Affiliation(s)
- Laura Palmieri
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Maxime Ferrand
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Ai Vu Hong
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
- Atamyo Therapeutics, 1, Bis Rue de l’Internationale, 91000 Evry, France
| | - Sonia Albini
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| |
Collapse
|
3
|
Tasfaout H, Halbert CL, McMillen TS, Allen JM, Reyes TR, Flint GV, Grimm D, Hauschka SD, Regnier M, Chamberlain JS. Split intein-mediated protein trans-splicing to express large dystrophins. Nature 2024; 632:192-200. [PMID: 39020181 PMCID: PMC11335042 DOI: 10.1038/s41586-024-07710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Gene replacement using adeno-associated virus (AAV) vectors is a promising therapeutic approach for many diseases1,2. However, this therapeutic modality is challenged by the packaging capacity of AAVs (approximately 4.7 kilobases)3, limiting its application for disorders involving large coding sequences, such as Duchenne muscular dystrophy, with a 14 kilobase messenger RNA. Here we developed a new method for expressing large dystrophins by utilizing the protein trans-splicing mechanism mediated by split inteins. We identified several split intein pairs that efficiently join two or three fragments to generate a large midi-dystrophin or the full-length protein. We show that delivery of two or three AAVs into dystrophic mice results in robust expression of large dystrophins and significant physiological improvements compared with micro-dystrophins. Moreover, using the potent myotropic AAVMYO4, we demonstrate that low total doses (2 × 1013 viral genomes per kg) are sufficient to express large dystrophins in striated muscles body-wide with significant physiological corrections in dystrophic mice. Our data show a clear functional superiority of large dystrophins over micro-dystrophins that are being tested in clinical trials. This method could benefit many patients with Duchenne or Becker muscular dystrophy, regardless of genotype, and could be adapted to numerous other disorders caused by mutations in large genes that exceed the AAV capacity.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA.
| | - Christine L Halbert
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Timothy S McMillen
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - James M Allen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Theodore R Reyes
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Galina V Flint
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Stephen D Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Regnier
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Zhou Y, Zhang C, Xiao W, Herzog RW, Han R. Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice. Nat Commun 2024; 15:6141. [PMID: 39034316 PMCID: PMC11271493 DOI: 10.1038/s41467-024-50569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chen Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Hart CC, Lee YI, Xie J, Gao G, Lin BL, Hammers DW, Sweeney HL. Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy. JCI Insight 2024; 9:e165869. [PMID: 38713520 PMCID: PMC11382885 DOI: 10.1172/jci.insight.165869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (microdystrophins) are underway for Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with 4 microdystrophin constructs (3 in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using AAV doses comparable with those in clinical trials. We achieved high levels of microdystrophin expression in striated muscles with cardiac expression approximately 10-fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease occurred with 2 of the microdystrophins. The detrimental cardiac effect appears to be caused by variable competition (dependent on microdystrophin design and expression level) between microdystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-microdystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, these findings suggest that microdystrophin treatments need to avoid excessively high levels of expression in the heart and that cardiac function should be carefully monitored in these patients.
Collapse
Affiliation(s)
- Cora C Hart
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Young Il Lee
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worchester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worchester, Massachusetts, USA
| | - Brian L Lin
- Department of Cell Biology, Neurobiology, and Anatomy & Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David W Hammers
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
7
|
Han R, Zhou Y, Zhang C, Xiao W, Herzog R. Systemic Delivery of Full-Length Dystrophin in DMD Mice. RESEARCH SQUARE 2024:rs.3.rs-3867299. [PMID: 38746161 PMCID: PMC11092816 DOI: 10.21203/rs.3.rs-3867299/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver miniaturized dystrophin (micro-dystrophin or µDys), which does not provide full protection for striated muscles as it lacks many important functional domains within full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We rationally split FL-dystrophin into three fragments (N, M, and C) linked to two orthogonal pairs of split intein, allowing efficient, unidirectional assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx 4cv mice. Dystrophin-glycoprotein complex components are also restored in the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective ERK signaling in heart. The FL-dystrophin gene therapy therefore promises to offer superior protection for DMD.
Collapse
|
8
|
Chuecos MA, Lagor WR. Liver directed adeno-associated viral vectors to treat metabolic disease. J Inherit Metab Dis 2024; 47:22-40. [PMID: 37254440 PMCID: PMC10687323 DOI: 10.1002/jimd.12637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
The liver is the metabolic center of the body and an ideal target for gene therapy of inherited metabolic disorders (IMDs). Adeno-associated viral (AAV) vectors can deliver transgenes to the liver with high efficiency and specificity and a favorable safety profile. Recombinant AAV vectors contain only the transgene cassette, and their payload is converted to non-integrating circular double-stranded DNA episomes, which can provide stable expression from months to years. Insights from cellular studies and preclinical animal models have provided valuable information about AAV capsid serotypes with a high liver tropism. These vectors have been applied successfully in the clinic, particularly in trials for hemophilia, resulting in the first approved liver-directed gene therapy. Lessons from ongoing clinical trials have identified key factors affecting efficacy and safety that were not readily apparent in animal models. Circumventing pre-existing neutralizing antibodies to the AAV capsid, and mitigating adaptive immune responses to transduced cells are critical to achieving therapeutic benefit. Combining the high efficiency of AAV delivery with genome editing is a promising path to achieve more precise control of gene expression. The primary safety concern for liver gene therapy with AAV continues to be the small risk of tumorigenesis from rare vector integrations. Hepatotoxicity is a key consideration in the safety of neuromuscular gene therapies which are applied at substantially higher doses. The current knowledge base and toolkit for AAV is well developed, and poised to correct some of the most severe IMDs with liver-directed gene therapy.
Collapse
Affiliation(s)
- Marcel A. Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
9
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
10
|
Padmaswari MH, Agrawal S, Jia MS, Ivy A, Maxenberger DA, Burcham LA, Nelson CE. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. BIOPHYSICS REVIEWS 2023; 4:011307. [PMID: 36864908 PMCID: PMC9969352 DOI: 10.1063/5.0131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Duchene muscular dystrophy (DMD) is an X-linked neuromuscular disorder that affects about one in every 5000 live male births. DMD is caused by mutations in the gene that codes for dystrophin, which is required for muscle membrane stabilization. The loss of functional dystrophin causes muscle degradation that leads to weakness, loss of ambulation, cardiac and respiratory complications, and eventually, premature death. Therapies to treat DMD have advanced in the past decade, with treatments in clinical trials and four exon-skipping drugs receiving conditional Food and Drug Administration approval. However, to date, no treatment has provided long-term correction. Gene editing has emerged as a promising approach to treating DMD. There is a wide range of tools, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and, most notably, RNA-guided enzymes from the bacterial adaptive immune system clustered regularly interspaced short palindromic repeats (CRISPR). Although challenges in using CRISPR for gene therapy in humans still abound, including safety and efficiency of delivery, the future for CRISPR gene editing for DMD is promising. This review will summarize the progress in CRISPR gene editing for DMD including key summaries of current approaches, delivery methodologies, and the challenges that gene editing still faces as well as prospective solutions.
Collapse
Affiliation(s)
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mary S. Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Daniel A. Maxenberger
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Landon A. Burcham
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
11
|
Ghauri MS, Ou L. AAV Engineering for Improving Tropism to the Central Nervous System. BIOLOGY 2023; 12:186. [PMID: 36829465 PMCID: PMC9953251 DOI: 10.3390/biology12020186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Adeno-associated virus (AAV) is a non-pathogenic virus that mainly infects primates with the help of adenoviruses. AAV is being widely used as a delivery vector for in vivo gene therapy, as evidenced by five currently approved drugs and more than 255 clinical trials across the world. Due to its relatively low immunogenicity and toxicity, sustained efficacy, and broad tropism, AAV holds great promise for treating many indications, including central nervous system (CNS), ocular, muscular, and liver diseases. However, low delivery efficiency, especially for the CNS due to the blood-brain barrier (BBB), remains a significant challenge for more clinical application of AAV gene therapy. Thus, there is an urgent need for utilizing AAV engineering to discover next-generation capsids with improved properties, e.g., enhanced BBB penetrance, lower immunogenicity, and higher packaging efficiency. AAV engineering methods, including directed evolution, rational design, and in silico design, have been developed, resulting in the discovery of novel capsids (e.g., PhP.B, B10, PAL1A/B/C). In this review, we discuss key studies that identified engineered CNS capsids and/or established methodological improvements. Further, we also discussed important issues that need to be addressed, including cross-species translatability, cell specificity, and modular engineering to improve multiple properties simultaneously.
Collapse
Affiliation(s)
- Muhammad S. Ghauri
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Li Ou
- Genemagic Biosciences, Media, PA 19086, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
12
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
13
|
Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther 2022; 22:1163-1176. [PMID: 34904932 DOI: 10.1080/14712598.2022.2012148] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gene therapy provides the exciting opportunity of a curative single treatment for devastating diseases, eradicating the need for chronic medication. Adeno-associated viruses (AAVs) are among the most attractive vector carriers for gene replacement in vivo. Yet, despite the success of recent AAV-based clinical trials, the clinical use of these vectors has been limited. For instance, the AAV packaging capacity is restricted to ~4.7 kb, making it a substantial challenge to deliver large gene products. AREAS COVERED In this review, we explore established and emerging strategies that circumvent the packaging limit of AAVs to make them effective vehicles for gene replacement therapy of monogenic disorders, with a particular focus on diseases affecting the nervous system. We report historical references, design remarks, as well as strengths and weaknesses of these approaches. We additionally discuss examples of neurological disorders for which such strategies have been attempted. EXPERT OPINION The field of AAV-gene therapy has experienced enormous advancements in the last decade. However, there is still ample space for improvement aimed at overcoming existing challenges that are slowing down the progressive trajectory of this field.
Collapse
Affiliation(s)
- Lara Marrone
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Tao R, Wang Y, Hu Y, Jiao Y, Zhou L, Jiang L, Li L, He X, Li M, Yu Y, Chen Q, Yao S. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct Target Ther 2022; 7:108. [PMID: 35440051 PMCID: PMC9018734 DOI: 10.1038/s41392-022-00936-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Large scale genomic aberrations including duplication, deletion, translocation, and other structural changes are the cause of a subtype of hereditary genetic disorders and contribute to onset or progress of cancer. The current prime editor, PE2, consisting of Cas9-nickase and reverse transcriptase enables efficient editing of genomic deletion and insertion, however, at small scale. Here, we designed a novel prime editor by fusing reverse transcriptase (RT) to nuclease wild-type Cas9 (WT-PE) to edit large genomic fragment. WT-PE system simultaneously introduced a double strand break (DSB) and a single 3' extended flap in the target site. Coupled with paired prime editing guide RNAs (pegRNAs) that have complementary sequences in their 3' terminus while target different genomic regions, WT-PE produced bi-directional prime editing, which enabled efficient and versatile large-scale genome editing, including large fragment deletion up to 16.8 megabase (Mb) pairs and chromosomal translocation. Therefore, our WT-PE system has great potential to model or treat diseases related to large-fragment aberrations.
Collapse
Affiliation(s)
- Rui Tao
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yanhong Wang
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yun Hu
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yaoge Jiao
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Lifang Zhou
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Lurong Jiang
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Li Li
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Xingyu He
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Min Li
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Yamei Yu
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Qiang Chen
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Shaohua Yao
- From laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Bonillo M, Pfromm J, Fischer MD. Challenges to Gene Editing Approaches in the Retina. Klin Monbl Augenheilkd 2022; 239:275-283. [PMID: 35316854 DOI: 10.1055/a-1757-9810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retinal gene therapy has recently been at the cutting edge of clinical development in the diverse field of genetic therapies. The retina is an attractive target for genetic therapies such as gene editing due to the distinctive anatomical and immunological features of the eye, known as immune privilege, so that inherited retinal diseases (IRDs) have been studied in several clinical studies. Thus, rapid strides are being made toward developing targeted treatments for IRDs. Gene editing in the retina faces a group of heterogenous challenges, including editing efficiencies, off-target effects, the anatomy of the target organ, immune responses, inactivation, and identifying optimal application methods. As clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) based technologies are at the forefront of current gene editing advances, their specific editing efficiency challenges and potential off-target effects were assessed. The immune privilege of the eye reduces the likelihood of systemic immune responses following retinal gene therapy, but possible immune responses must not be discounted. Immune responses to gene editing in the retina may be humoral or cell mediated, with immunologically active cells, including microglia, implicated in facilitating possible immune responses to gene editing. Immunogenicity of gene therapeutics may also lead to the inactivation of edited cells, reducing potential therapeutic benefits. This review outlines the broad spectrum of potential challenges currently facing retinal gene editing, with the goal of facilitating further advances in the safety and efficacy of gene editing therapies.
Collapse
Affiliation(s)
- Mario Bonillo
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Julia Pfromm
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany.,Oxford University NHS Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
16
|
Banks GB, Chamberlain JS, Odom GL. Microutrophin expression in dystrophic mice displays myofiber type differences in therapeutic effects. PLoS Genet 2020; 16:e1009179. [PMID: 33175853 PMCID: PMC7682874 DOI: 10.1371/journal.pgen.1009179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
Gene therapy approaches for DMD using recombinant adeno-associated viral (rAAV) vectors to deliver miniaturized (or micro) dystrophin genes to striated muscles have shown significant progress. However, concerns remain about the potential for immune responses against dystrophin in some patients. Utrophin, a developmental paralogue of dystrophin, may provide a viable treatment option. Here we examine the functional capacity of an rAAV-mediated microutrophin (μUtrn) therapy in the mdx4cv mouse model of DMD. We found that rAAV-μUtrn led to improvement in dystrophic histopathology & mostly restored the architecture of the neuromuscular and myotendinous junctions. Physiological studies of tibialis anterior muscles indicated peak force maintenance, with partial improvement of specific force. A fundamental question for μUtrn therapeutics is not only can it replace critical functions of dystrophin, but whether full-length utrophin impacts the therapeutic efficacy of the smaller, highly expressed μUtrn. As such, we found that μUtrn significantly reduced the spacing of the costameric lattice relative to full-length utrophin. Further, immunostaining suggested the improvement in dystrophic pathophysiology was largely influenced by favored correction of fast 2b fibers. However, unlike μUtrn, μdystrophin (μDys) expression did not show this fiber type preference. Interestingly, μUtrn was better able to protect 2a and 2d fibers in mdx:utrn-/- mice than in mdx4cv mice where the endogenous full-length utrophin was most prevalent. Altogether, these data are consistent with the role of steric hindrance between full-length utrophin & μUtrn within the sarcolemma. Understanding the stoichiometry of this effect may be important for predicting clinical efficacy.
Collapse
MESH Headings
- Animals
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Gene Transfer Techniques
- Genetic Therapy/methods
- Genetic Vectors/genetics
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred mdx
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Neuromuscular Junction/pathology
- Neuromuscular Junction/ultrastructure
- Sarcolemma/pathology
- Sarcolemma/ultrastructure
- Utrophin/genetics
- Utrophin/therapeutic use
Collapse
Affiliation(s)
- Glen B. Banks
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
- Department of BioChemistry, University of Washington, Seattle, Washington, United States of America
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Gene therapy using virus vectors to treat hereditary diseases has made remarkable progress in the past decade. There are FDA-approved products for ex-vivo gene therapy for diseases such as immunodeficiencies (e.g., SCID), and in vivo gene therapy for a rare blindness and neuro-muscular disease. Gene therapy for hereditary hearing loss has picked up pace in the past five years due to progress in understanding disease gene function as well as the development of better technologies such as adeno-associated virus (AAV) vectors, to deliver nucleic acid to target cells in the inner ear. This review has two major goals. One is to review the state of the art for investigators already working in preclinical cochlear gene therapy. The other is to present the language of vectorology and important considerations for designing and using AAV vectors to inner ear neurobiologists who might use AAV vectors in the cochlea for either therapeutic or basic biological applications.
Collapse
Affiliation(s)
- Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, 149 13th Street, Charlestown, MA, 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Zhang R, Lv L, Ban W, Dang X, Zhang C. Identification of Hub Genes in Duchenne Muscular Dystrophy: Evidence from Bioinformatic Analysis. J Comput Biol 2020; 27:1-8. [PMID: 31390219 DOI: 10.1089/cmb.2019.0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hub genes and signaling pathways associated with Duchenne muscular dystrophy (DMD) were predicted by bioinformatic methods to improve the therapeutic effect and quality of life of patients. Microarray data sets GSE465, GSE1004, and GSE1007 were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by GEO2R, and function enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) network was constructed and the module analysis was performed using STRING and Cytoscape. A total of 195 DEGs were identified. The enriched functions and pathways of the DEGs include extracellular exosome, focal adhesion, extracellular matrix (ECM), focal adhesion, PI3K-Akt signaling pathway, calcium signaling pathway, and ECM-receptor interaction. Fifteen hub genes were identified. DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the pathogenesis and progression of DMD, and provide candidate targets for treatment of DMD.
Collapse
Affiliation(s)
- Rupeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Leifeng Lv
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenrui Ban
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Tornabene P, Trapani I. Can Adeno-Associated Viral Vectors Deliver Effectively Large Genes? Hum Gene Ther 2020; 31:47-56. [DOI: 10.1089/hum.2019.220] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| |
Collapse
|
20
|
Staunton CA, Owen ED, Pollock N, Vasilaki A, Barrett-Jolley R, McArdle A, Jackson MJ. HyPer2 imaging reveals temporal and heterogeneous hydrogen peroxide changes in denervated and aged skeletal muscle fibers in vivo. Sci Rep 2019; 9:14461. [PMID: 31595023 PMCID: PMC6783413 DOI: 10.1038/s41598-019-51035-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 02/02/2023] Open
Abstract
To determine the role of denervation and motor unit turnover in the age-related increase in skeletal muscle oxidative stress, the hydrogen peroxide (H2O2) specific, genetically-encoded, fluorescent cyto-HyPer2 probe was expressed in mouse anterior tibialis (AT) muscle and compared with ex vivo measurements of mitochondrial oxidant generation. Crush of the peroneal nerve induced increased mitochondrial peroxide generation, measured in permeabilised AT fibers ex vivo and intra vital confocal microscopy of cyto-HyPer2 fluorescence showed increased cytosolic H2O2 in a sub-set (~24%) of individual fibers associated with onset of fiber atrophy. In comparison, mitochondrial peroxide generation was also increased in resting muscle from old (26 month) mice compared with adult (6-8 month) mice, but no age effect on fiber cytosolic H2O2 in vivo was seen. Thus ageing is associated with an increased ability of muscle fibers to maintain cytosolic redox homeostasis in the presence of denervation-induced increase in mitochondrial peroxide generation.
Collapse
Affiliation(s)
- C A Staunton
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - E D Owen
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - N Pollock
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - A Vasilaki
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - R Barrett-Jolley
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - A McArdle
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - M J Jackson
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
21
|
He X, Xie H, Liu X, Gu F. Basic and Clinical Application of Adeno-Associated Virus-Mediated Genome Editing. Hum Gene Ther 2019; 30:673-681. [PMID: 30588843 DOI: 10.1089/hum.2018.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional gene therapy (gene replacement) has made a breakthrough in treating inherited diseases. Adeno-associated virus (AAV) has emerged as a highly promising vector with innate ability, boosting the development of gene replacement and gene targeting. With the recent advance of engineered nucleases that work efficiently in human cells, AAV mediated-genome editing with nucleases has raised hopes for in situ gene therapy of inherited and non-inherited diseases. Here, the applications of AAV-mediated genome editing are highlighted, and the prospect of AAV and nucleases that will render extension of such success in clinical gene therapy is discussed.
Collapse
Affiliation(s)
- Xiubin He
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Haihua Xie
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Xiexie Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, P.R. China
| |
Collapse
|
22
|
Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS. Development of Novel Micro-dystrophins with Enhanced Functionality. Mol Ther 2019; 27:623-635. [PMID: 30718090 PMCID: PMC6403485 DOI: 10.1016/j.ymthe.2019.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/24/2023] Open
Abstract
Gene therapies using adeno-associated viral (AAV) vectors have advanced into clinical trials for several diseases, including Duchenne muscular dystrophy (DMD). A limitation of AAV is the carrying capacity (∼5 kb) available for genes and regulatory cassettes (RCs). These size constraints are problematic for the 2.2-Mb dystrophin gene. We previously designed a variety of miniaturized micro-dystrophins (μDys) that displayed significant, albeit incomplete, function in striated muscles. To develop μDys proteins with improved performance, we explored structural modifications of the dystrophin central rod domain. Eight μDys variants were studied that carried unique combinations of between four and six of the 24 spectrin-like repeats present in the full-length protein, as well as various hinge domains. Expression of μDys was regulated by a strong but compact muscle-restricted RC (CK8e) or by the ubiquitously active cytomegalovirus (CMV) RC. Vectors were evaluated by intramuscular injection and systemic delivery to dystrophic mdx4cv mice, followed by analysis of skeletal muscle pathophysiology. Two μDys designs were identified that led to increased force generation compared with previous μDys while also localizing neuronal nitric oxide synthase to the sarcolemma. An AAV vector expressing the smaller of these (μDys5) from the CK8e RC is currently being evaluated in a DMD clinical trial.
Collapse
Affiliation(s)
- Julian N Ramos
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Katrin Hollinger
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - James M Allen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Stephen D Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jeffrey S Chamberlain
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Abstract
Adeno-associated virus (AAV)-mediated gene therapy has evolved from bench to bedside, and now is the therapy of choice for certain inherited diseases. However, the small packaging capacity of AAV vectors prevents this technique from treating genetic diseases with mutations of large genes. Multiple strategies, including split AAV gene delivery and oversized AAV gene delivery, have been explored to deliver large gene expression cassettes. These strategies have gained some success in animal experiments. In this chapter, we review the progress of AAV-mediated delivery of large expression cassettes. We also review using AAV to deliver multiple transgenes.
Collapse
Affiliation(s)
- Aman Patel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
24
|
McClements ME, MacLaren RE. Adeno-associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:611-623. [PMID: 29259525 PMCID: PMC5733846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of adeno-associated viral (AAV) vectors for gene therapy treatments of inherited disorders has accelerated over the past decade with multiple clinical trials ongoing in varying tissue types and new ones initiating every year. These vectors are exhibiting low-immunogenicity across the clinical trials in addition to showing evidence of efficacy, making it clear they are the current standard vector for any potential gene therapy treatment. However, AAV vectors do have a limitation in their packaging capacity, being capable of holding no more than ~5kb of DNA and in a therapeutic transgene scenario, this length of DNA would need to include genetic control elements in addition to the gene coding sequence (CDS) of interest. Given that numerous diseases are caused by mutations in genes with a CDS exceeding 3.5kb, this makes packaging into a single AAV capsid not possible for larger genes. Due to this problem, yet with the desire to use AAV vectors, research groups have adapted the standard AAV gene therapy approach to enable delivery of such large genes to target cells using dual AAV vector systems. Here we review the AAV dual vector strategies currently employed and highlight the virtues and drawbacks of each method plus the likelihood of success with such approaches.
Collapse
Affiliation(s)
- Michelle E. McClements
- University of Oxford, Nuffield Department of Clinical Neurosciences (Ophthalmology), Oxford, UK
| | - Robert E. MacLaren
- University of Oxford, Nuffield Department of Clinical Neurosciences (Ophthalmology), Oxford, UK,Oxford Eye Hospital, Oxford, UK,To whom all correspondence should be addressed:
Robert E. MacLaren, Nuffield Department of Clinical Neurosciences (Ophthalmology), University of Oxford, Level 6 West Wing, The John Radcliffe Hospital, Headley Way, Oxford, UK, Tel: +44 1865 223380, Fax: +44 1865 231534; .
| |
Collapse
|
25
|
Abstract
Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology.
Collapse
Affiliation(s)
- Ddw Cornelison
- University of Missouri, Columbia, MO, United States; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
26
|
Yurchenco PD, McKee KK, Reinhard JR, Rüegg MA. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol 2017; 71-72:174-187. [PMID: 29191403 DOI: 10.1016/j.matbio.2017.11.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
Laminins are large heterotrimers composed of the α, β and γ subunits with distinct tissue-specific and developmentally regulated expression patterns. The laminin-α2 subunit, encoded by the LAMA2 gene, is expressed in skeletal muscle, Schwann cells of the peripheral nerve and astrocytes and pericytes of the capillaries in the brain. Mutations in LAMA2 cause the most common type of congenital muscular dystrophies, called LAMA2 MD or MDC1A. The disorder manifests mostly as a muscular dystrophy but slowing of nerve conduction contributes to the disease. There are severe, non-ambulatory or milder, ambulatory variants, the latter resulting from reduced laminin-α2 expression and/or deficient laminin-α2 function. Lm-211 (α2β1γ1) is responsible for initiating basement membrane assembly. This is primarily accomplished by anchorage of Lm-211 to dystroglycan and α7β1 integrin receptors, polymerization, and binding to nidogen and other structural components. In LAMA2 MD, Lm-411 replaces Lm-211; however, Lm-411 lacks the ability to polymerize and bind to receptors. This results in a weakened basement membrane leading to the disease. The possibility of introducing structural repair proteins that correct the underlying abnormality is an attractive therapeutic goal. Recent studies in mouse models for LAMA2 MD reveal that introduction of laminin-binding linker proteins that restore lost functional activities can substantially ameliorate the disease. This review discusses the underlying mechanism of this repair and compares this approach to other developing therapies employing pharmacological treatments.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Dept. Pathology & Laboratory Medicine, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Karen K McKee
- Dept. Pathology & Laboratory Medicine, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | - Markus A Rüegg
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
27
|
Kyrychenko V, Kyrychenko S, Tiburcy M, Shelton JM, Long C, Schneider JW, Zimmermann WH, Bassel-Duby R, Olson EN. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2017; 2:95918. [PMID: 28931764 DOI: 10.1172/jci.insight.95918] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2-8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3-9, 6-9, or 7-11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3-9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1.
Collapse
Affiliation(s)
- Viktoriia Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sergii Kyrychenko
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengzu Long
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jay W Schneider
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, Shin JH, Yang NN, Duan D. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model. Hum Gene Ther 2017; 29:299-311. [PMID: 28793798 DOI: 10.1089/hum.2017.095] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 1013 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.
Collapse
Affiliation(s)
- Kasun Kodippili
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Chady H Hakim
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,2 National Center for Advancing Translational Sciences , Bethesda, Maryland
| | - Xiufang Pan
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Hsiao T Yang
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,3 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| | - Yongping Yue
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Yadong Zhang
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - Jin-Hong Shin
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri
| | - N Nora Yang
- 2 National Center for Advancing Translational Sciences , Bethesda, Maryland
| | - Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri , Columbia, Missouri.,3 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri.,4 Department of Neurology, School of Medicine, The University of Missouri , Columbia, Missouri.,5 Department of Bioengineering, The University of Missouri , Columbia, Missouri
| |
Collapse
|
29
|
Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, Yao G, Haffner B, Duan SX, Ramos J, Schneider JS, Yang NN, Chamberlain JS, Duan D. A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:216-230. [PMID: 28932757 PMCID: PMC5596503 DOI: 10.1016/j.omtm.2017.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/24/2017] [Indexed: 02/07/2023]
Abstract
Micro-dystrophins are highly promising candidates for treating Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. Here, we report robust disease rescue in the severe DBA/2J-mdx model with a neuronal nitric oxide synthase (nNOS)-binding micro-dystrophin vector. 2 × 1013 vector genome particles/mouse of the vector were delivered intravenously to 10-week-old mice and were evaluated at 6 months of age. Saturated micro-dystrophin expression was detected in all skeletal muscles and the heart and restored the dystrophin-associated glycoprotein complex and nNOS. In skeletal muscle, therapy substantially reduced fibrosis and calcification and significantly attenuated inflammation. Centronucleation was significantly decreased in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles but not in the quadriceps. Muscle function was normalized in the TA and significantly improved in the EDL muscle. Heart histology and function were also evaluated. Consistent with the literature, DBA/2J-mdx mice showed myocardial calcification and fibrosis and cardiac hemodynamics was compromised. Surprisingly, similar myocardial pathology and hemodynamic defects were detected in control DBA/2J mice. As a result, interpretation of the cardiac data proved difficult due to the confounding phenotype in control DBA/2J mice. Our results support further development of this microgene vector for clinical translation. Further, DBA/2J-mdx mice are not good models for Duchenne cardiomyopathy.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- National Center for Advancing Translational Sciences (NCATS), Bethesda, MD 20892, USA
| | - Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Gang Yao
- Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA
| | - Brittney Haffner
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean X. Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Julian Ramos
- Department of Neurology, Wellstone Muscular Dystrophy Research Center, University of Washington, Seattle, WA 98105, USA
| | | | - N. Nora Yang
- National Center for Advancing Translational Sciences (NCATS), Bethesda, MD 20892, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Research Center, University of Washington, Seattle, WA 98105, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Corresponding author: Dongsheng Duan, PhD, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, One Hospital Dr., Columbia, MO 65212, USA.
| |
Collapse
|
30
|
Bennett A, Mietzsch M, Agbandje-McKenna M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol 2017; 12:283-297. [PMID: 36776482 PMCID: PMC9910337 DOI: 10.2217/fvl-2017-0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 01/18/2023]
Abstract
Adeno-associated viruses (AAVs) are promising therapeutic viral vectors. Their capsid is assembled from viral proteins VP1, VP2 and VP3, aided by an assembly-activating protein, followed by replication protein mediated packaging of their 4.7-kb genome with inverted terminal repeats as packaging signals. To aid improvement of AAV vectors, knowledge of viral determinants of successful capsid assembly and genome packaging is important. We review the current knowledge of these two processes and efforts to overcome limited DNA packaging capacity and limit the packaging of unwanted foreign DNA in vector development. Residues involved in essential capsid assembly and genome packaging interactions cannot be manipulated in vector engineering. This information thus aids strategies to improve vector production and to increase AAV packaging capacity toward improved efficacy of this vector system.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| |
Collapse
|
31
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
32
|
SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2017; 25:1395-1407. [PMID: 28391962 DOI: 10.1016/j.ymthe.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.
Collapse
|
33
|
Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017; 8:14454. [PMID: 28195574 PMCID: PMC5316861 DOI: 10.1038/ncomms14454] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022] Open
Abstract
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders.
Collapse
Affiliation(s)
- Niclas E. Bengtsson
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
| | - Michael P. Phelps
- Department of Pathology, University of Washington, Seattle, Washington 98195-7720, USA
| | - Colin R. Andrus
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - R. David Hawkins
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Stephen D. Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| | - Joel R. Chamberlain
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7720, USA
| |
Collapse
|
34
|
Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy. EBioMedicine 2017; 16:150-161. [PMID: 28089792 PMCID: PMC5474428 DOI: 10.1016/j.ebiom.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Research in context Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a “cure” for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ), an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Immune-cell intrinsic PKCθ activity might play a hitherto unrecognized role of in the development of DMD. Mdx dystrophic mice were treated with the PKCθ inhibitor C20. C20 treatment prevents damage and inflammation in dystrophic muscle, while improving muscle regeneration. C20 treatment prevents drop in force and ameliorates fatigue resistance in dystrophic mice.
Collapse
|
35
|
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21:16-25. [PMID: 27459604 PMCID: PMC5138077 DOI: 10.1016/j.coviro.2016.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
For diseases like muscular dystrophy, an effective gene therapy requires bodywide correction. Systemic viral vector delivery has been attempted since early 1990s. Yet a true success was not achieved until mid-2000 when adeno-associated virus (AAV) serotype-6, 8 and 9 were found to result in global muscle transduction in rodents following intravenous injection. The simplicity of the technique immediately attracts attention. Marvelous whole body amelioration has been achieved in rodent models of many diseases. Scale-up in large mammals also shows promising results. Importantly, the first systemic AAV-9 therapy was initiated in patients in April 2014. Recent studies have now begun to reveal molecular underpinnings of systemic AAV delivery and to engineer new AAV capsids with superior properties for systemic gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
36
|
Chamberlain K, Riyad JM, Weber T. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum Gene Ther Methods 2016; 27:1-12. [PMID: 26757051 DOI: 10.1089/hgtb.2015.140] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction.
Collapse
Affiliation(s)
- Kyle Chamberlain
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Jalish Mahmud Riyad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
37
|
Trendelenburg-Like Gait, Instability and Altered Step Patterns in a Mouse Model for Limb Girdle Muscular Dystrophy 2i. PLoS One 2016; 11:e0161984. [PMID: 27627455 PMCID: PMC5023177 DOI: 10.1371/journal.pone.0161984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/13/2016] [Indexed: 11/29/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2i (LGMD2i) affects thousands of lives with shortened life expectancy mainly due to cardiac and respiratory problems and difficulty with ambulation significantly compromising quality of life. Limited studies have noted impaired gait in patients and animal models of different muscular dystrophies, but not in animal models of LGMD2i. Our goal, therefore, was to quantify gait metrics in the fukutin-related protein P448L mutant (P448L) mouse, a recently developed model for LGMD2i. The Noldus CatWalk XT motion capture system was used to identify multiple gait impairments. An average galloping body speed of 35 cm/s for both P448L and C57BL/6 wild-type mice was maintained to ensure differences in gait were due only to strain physiology. Compared to wild-type mice, P448L mice reach maximum contact 10% faster and have 40% more paw surface area during stance. Additionally, force intensity at the time of maximum paw contact is roughly 2-fold higher in P448L mice. Paw swing time is reduced in P448L mice without changes in stride length as a faster swing speed compensates. Gait instability in P448L mice is indicated by 50% higher instances of 3 and 4 paw stance support and conversely, 2-fold fewer instances of single paw stance support and no instance of zero paw support. This leads to lower variation of normal step patterns used and a higher use of uncommon step patterns. Similar anomalies have also been noted in muscular dystrophy patients due to weakness in the hip abductor muscles, producing a Trendelenburg gait characterized by “waddling” and more pronounced shifts to the stance leg. Thus, gait of P448L mice replicates anomalies commonly seen in LGMD2i patients, which is not only potentially valuable for assessing drug efficacy in restoring movement biomechanics, but also for better understanding them.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Gene therapy as a treatment for neuromuscular disease has significantly advanced over the past decade. In the present review, the progress of adeno-associated viruses (AAV) vector-mediated gene therapy for Duchenne muscular dystrophy (DMD) during the past year is highlighted. RECENT FINDINGS Modulating the immune response to AAV vector capsid or the transgene has helped to increase stable transduction efficiency. Full-length dystrophin expression via gene editing with targeted nucleases may ultimately be an ideal treatment option. Also genes with homologues function may ameliorate many aspects of the DMD pathophysiology. SUMMARY The work during the past year has increased our understanding of AAV vector-mediated therapy and has also validated new approaches to treat DMD. The results will aid in the design of both preclinical and clinical trials.
Collapse
|
39
|
Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther 2016; 26:193-200. [PMID: 25762209 DOI: 10.1089/hum.2015.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also generated new questions and posed challenges that need to be addressed to further expand the applicability of gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ivana Trapani
- 1 Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples 80078, Italy
| | | | | | | | | |
Collapse
|
40
|
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2015; 4:169-183. [PMID: 27340611 DOI: 10.1517/21678707.2016.1124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. AREAS COVERED Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. EXPERT OPINION Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri
| | | | - Stacey B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri
| | - Timothy L Domeier
- Department of Medical Physiology and Pharmacology, School of Medicine, University of Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri; Department of Neurology, School of Medicine, University of Missouri
| |
Collapse
|
41
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
42
|
Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 2015; 25:R9-17. [PMID: 26450518 DOI: 10.1093/hmg/ddv420] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.
Collapse
Affiliation(s)
| | | | | | - Jeffrey S Chamberlain
- Department of Neurology and Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
43
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. AREAS COVERED Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. EXPERT OPINION Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response.
Collapse
Affiliation(s)
- Julian Ramos
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| | - Jeffrey S Chamberlain
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| |
Collapse
|
44
|
Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Mol Ther 2015; 24:240-250. [PMID: 26388461 DOI: 10.1038/mt.2015.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
45
|
Chen H. Adeno-associated virus vectors for human gene therapy. World J Med Genet 2015; 5:28-45. [DOI: 10.5496/wjmg.v5.i3.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) is a small, non-enveloped virus that contains a single-stranded DNA genome. It was the first gene therapy drug approved in the Western world in November 2012 to treat patients with lipoprotein lipase deficiency. AAV made history and put human gene therapy in the forefront again. More than four decades of research on AAV vector biology and human gene therapy has generated a huge amount of valuable information. Over 100 AAV serotypes and variants have been isolated and at least partially characterized. A number of them have been used for preclinical studies in a variety of animal models. Several AAV vector production platforms, especially the baculovirus-based system have been established for commercial-scale AAV vector production. AAV purification technologies such as density gradient centrifugation, column chromatography, or a combination, have been well developed. More than 117 clinical trials have been conducted with AAV vectors. Although there are still challenges down the road, such as cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients, the gene therapy community is forging ahead with cautious optimism. In this review I will focus on the properties and applications of commonly used AAV serotypes and variants, and the technologies for AAV vector production and purification. I will also discuss the advancement of several promising gene therapy clinical trials.
Collapse
|
46
|
Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch ML, Richard I. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15009. [PMID: 26029720 PMCID: PMC4445010 DOI: 10.1038/mtm.2015.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is currently the best vector for gene delivery into the skeletal muscle. However, the 5-kb packaging size of this virus is a major obstacle for large gene transfer. This past decade, many different strategies were developed to circumvent this issue (concatemerization-splicing, overlapping vectors, hybrid dual or fragmented AAV). Loss of function mutations in the DYSF gene whose coding sequence is 6.2kb lead to progressive muscular dystrophies (LGMD2B: OMIM_253601; MM: OMIM_254130; DMAT: OMIM_606768). In this study, we compared large gene transfer techniques to deliver the DYSF gene into the skeletal muscle. After rAAV8s intramuscular injection into dysferlin deficient mice, we showed that the overlap strategy is the most effective approach to reconstitute a full-length messenger. After systemic administration, the level of dysferlin obtained on different muscles corresponded to 0.5- to 2-fold compared to the normal level. We further demonstrated that the overlapping vector set was efficient to correct the histopathology, resistance to eccentric contractions and whole body force in the dysferlin deficient mice. Altogether, these data indicate that using overlapping vectors could be a promising approach for a potential clinical treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Marina Pryadkina
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - William Lostal
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Nathalie Bourg
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Karine Charton
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Carinne Roudaut
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA ; Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Isabelle Richard
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| |
Collapse
|
47
|
Duan D. Duchenne muscular dystrophy gene therapy in the canine model. HUM GENE THER CL DEV 2015; 26:57-69. [PMID: 25710459 PMCID: PMC4442571 DOI: 10.1089/humc.2015.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, Department of Neurology School of Medicine, University of Missouri , Columbia, MO 65212
| |
Collapse
|
48
|
de Silva SR, McClements ME, Hankins MW, MacLaren RE. Adeno-Associated Viral Gene Therapy for Retinal Disorders. NEUROMETHODS 2015. [DOI: 10.1007/978-1-4939-2306-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Berry SE. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med 2015; 4:91-8. [PMID: 25391645 PMCID: PMC4275006 DOI: 10.5966/sctm.2014-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and mesoangioblasts (MABs) are multipotent cells that differentiate into specialized cells of mesodermal origin, including skeletal muscle cells. Because of their potential to differentiate into the skeletal muscle lineage, these multipotent cells have been tested for their capacity to participate in regeneration of damaged skeletal muscle in animal models of muscular dystrophy. MSCs and MABs infiltrate dystrophic muscle from the circulation, engraft into host fibers, and bring with them proteins that replace the functions of those missing or truncated. The potential for systemic delivery of these cells increases the feasibility of stem cell therapy for the large numbers of affected skeletal muscles in patients with muscular dystrophy. The present review focused on the results of preclinical studies with MSCs and MABs in animal models of muscular dystrophy. The goals of the present report were to (a) summarize recent results, (b) compare the efficacy of MSCs and MABs derived from different tissues in restoration of protein expression and/or improvement in muscle function, and (c) discuss future directions for translating these discoveries to the clinic. In addition, although systemic delivery of MABs and MSCs is of great importance for reaching dystrophic muscles, the potential concerns related to this method of stem cell transplantation are discussed.
Collapse
Affiliation(s)
- Suzanne E Berry
- Department of Comparative Biosciences, Institute for Genomic Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
50
|
Gintjee TJJ, Magh ASH, Bertoni C. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics. BIOLOGY 2014; 3:752-80. [PMID: 25405319 PMCID: PMC4280510 DOI: 10.3390/biology3040752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Abstract
Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.
Collapse
Affiliation(s)
- Thomas J J Gintjee
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Alvin S H Magh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|