1
|
Synthesis, Characterization, and In Vivo Distribution of 99mTc Radiolabelled Docetaxel Loaded Folic Acid-Thiolated Chitosan Enveloped Liposomes. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
|
3
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
4
|
Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine (Lond) 2021; 16:2539-2536. [PMID: 34814704 DOI: 10.2217/nnm-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand how nanoparticles (NPs) interact with biological barriers and to ensure they maintain their integrity over time, it is crucial to study their in vivo pharmacokinetic (PK) profiles. Many methods of tracking have been used to describe the in vivo fate of NPs and to evaluate their PKs and structural integrity. However, they do not deliver the same level of information and this may cause misinterpretations. Here, the authors review and discuss the different methods for in vivo tracking of organic NPs. Among them, Förster resonance energy transfer (FRET) presents great potential to track NPs' integrity. However, FRET still requires validated methods to extract and quantify NPs in biological fluids and tissues.
Collapse
Affiliation(s)
- Samuel Bonnet
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France
| | - Rana Elfatairi
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Florence Franconi
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France.,Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Emilie Roger
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Samuel Legeay
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
5
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
6
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
8
|
Abstract
Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.
Collapse
|
9
|
Image-Guided Drug Delivery. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13:5561-5576. [PMID: 30271147 PMCID: PMC6154717 DOI: 10.2147/ijn.s149022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The preeminent treatments for neurodegenerative disease are often unavailable due to the poor accessibility of therapeutic drugs. Moreover, the blood–brain barrier (BBB) effectively blocks the transfer of cells, particles and large molecules, ie, drugs, across the brain. The most important challenge in the treatment of neurodegenerative diseases is the development of targeted drug delivery system. Theranostic strategies are known to combine therapeutic and diagnostic capabilities together. The aim of this review was to record the response to treatment and thereby improve drug safety. Nanotechnology offers a platform for designing and developing theranostic agents that can be used as an efficient nano-carrier system. This is achieved by the manipulation of some of the properties of nanoparticles (NPs), thereby enabling the attachment of suitable drugs onto their surface. The results provide revolutionary treatments by stimulation and thus interaction with targeted sites to promote physiological response with minimum side effects. This review is a brief discussion of the administration of drugs across the brain and the advantages of using NPs as an effective theranostic platform in the treatment of Alzheimer’s, Parkinson’s, epilepsy and Huntington’s disease.
Collapse
Affiliation(s)
- Sahana Ramanathan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Govindaraju Archunan
- Department of Animal Science, Centre for Pheromone Technology (CPT), Bharathidasan University, Tiruchirappalli, India
| | - Muthusamy Sivakumar
- Nanoscience and Technology, Anna University - BIT Campus, Tiruchirappalli, India
| | | | - A Lenin Fred
- Mar Ephraem College of Engineering and Technology, Kanyakumari, India
| | - Sundramurthy Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, ,
| | | |
Collapse
|
11
|
Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, Sorribas V, Lou G, Veintemillas S, Ramos-Cabrer P, Llop J, Millán A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. NANOSCALE 2018; 10:14153-14164. [PMID: 29999506 DOI: 10.1039/c8nr03084g] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro experiments have shown the great potential of magnetic nanocarriers for multimodal imaging diagnosis and non-invasive therapies. However, their extensive clinical application is still jeopardized by a fast retention in the reticuloendothelial system (RES). The other issue that restrains their potential performance is slow degradation and excretion, which increases their risks of toxicity. We report a promising case in which multicore iron oxide nanoparticles coated with a poly(4-vinylpyridine) polyethylene glycol copolymer show low RES retention and high urinary excretion, as confirmed by single photon emission computerized tomography (SPECT), gamma counting, magnetic resonance imaging (MRI) and electron microscopy (EM) biodistribution studies. These iron oxide-copolymer nanoparticles have a high PEG density in their coating which may be responsible for this effect. Moreover, they show a clear negative contrast in the MR imaging of the kidneys. These nanoparticles with an average hydrodynamic diameter of approximately 20 nm were nevertheless able to cross the glomerulus wall which has an effective pore size of approximately 6 nm. A transmission electron microscopy inspection of kidney tissue revealed the presence of iron containing nanoparticle clusters in proximal tubule cells. This therefore makes them exceptionally useful as magnetic nanocarriers and as new MRI contrast agents for the kidneys.
Collapse
Affiliation(s)
- Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 Donostia-San Sebastián, Spain.
| | - María Puigivila
- Magnetic Resonance Imaging Department, Molecular Imaging Unit, CIC biomaGUNE, 20014, Donostia-San Sebastián, Spain.
| | - Sandra Plaza-García
- Magnetic Resonance Imaging Department, Molecular Imaging Unit, CIC biomaGUNE, 20014, Donostia-San Sebastián, Spain.
| | - Boguslaw Szczupak
- Department of Telecommunications and Teleinformatics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Rafael Piñol
- ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain.
| | - José L Murillo
- ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain.
| | - Victor Sorribas
- Departamento de Toxicología, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Gustavo Lou
- ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain.
| | | | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Department, Molecular Imaging Unit, CIC biomaGUNE, 20014, Donostia-San Sebastián, Spain. and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 Donostia-San Sebastián, Spain.
| | - Angel Millán
- ICMA, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain.
| |
Collapse
|
12
|
Feng Q, Li Y, Yang X, Zhang W, Hao Y, Zhang H, Hou L, Zhang Z. Hypoxia-specific therapeutic agents delivery nanotheranostics: A sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer. J Control Release 2018; 275:192-200. [DOI: 10.1016/j.jconrel.2018.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
13
|
Feng Q, Zhang W, Yang X, Li Y, Hao Y, Zhang H, Hou L, Zhang Z. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy. Adv Healthc Mater 2018; 7. [PMID: 29141114 DOI: 10.1002/adhm.201700957] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Indexed: 12/27/2022]
Abstract
Herein, a pH/ultrasound dual-responsive gas generator is reported, which is based on mesoporous calcium carbonate (MCC) nanoparticles by loading sonosensitizer (hematoporphyrin monomethyl ether (HMME)) and modifying surface hyaluronic acid (HA). After pinpointing tumor regions with prominent targeting efficiency, HMME/MCC-HA decomposes instantaneously under the cotriggering of tumoral inherent acidic condition and ultrasound (US) irradiation, concurrently accompanying with CO2 generation and HMME release with spatial/temporal resolution. Afterward, the CO2 bubbling and bursting effect under US stimulus results in cavitation-mediated irreversible cell necrosis, as well as the blood vessel destruction to further occlude the blood supply, providing a "bystander effect." Meanwhile, reactive oxygen species generated from HMME can target the apoptotic pathways for effective sonodynamic therapy. Thus, the combination of apoptosis/necrosis with multimechanisms consequently results in a remarkable antitumor therapeutic efficacy, simultaneously minimizing the side effects on major organs. Moreover, the echogenic property of CO2 make the nanoplatform as a powerful ultrasound contrast agent to identify cancerous lesions. Based on the above findings, such all-in-one drug delivery platform of HMME/MCC-HA is utilized to provide the US imaging guidance for therapeutic inertial cavitation and sonodynamic therapy simultaneously, which highlights possibilities of advancing cancer theranostics in biomedical fields.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province Zhengzhou 450001 P. R. China
| | - Wanxia Zhang
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Xuemei Yang
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Yuzhen Li
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
| | - Yongwei Hao
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province Zhengzhou 450001 P. R. China
| | - Hongling Zhang
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province Zhengzhou 450001 P. R. China
| | - Lin Hou
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases; Henan Province Zhengzhou 450001 P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences; Zhengzhou University; 100 Kexue Avenue Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases; Henan Province Zhengzhou 450001 P. R. China
| |
Collapse
|
14
|
|
15
|
Chen XQ, Liu M, Wang RF, Yan P, Zhang CL, Ma C, Zhao Q, Yin L, Zhao GY, Guo FQ. Noninvasive imaging of c(RGD) 2 -9R as a potential delivery carrier for transfection of siRNA in malignant tumors. J Labelled Comp Radiopharm 2017; 60:385-393. [PMID: 28423195 DOI: 10.1002/jlcr.3514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
The purpose of our study was to develop and evaluate a novel integrin αv β3 -specific delivery carrier for transfection of siRNA in malignant tumors. We adopted arginine-glycine-aspartate (RGD) motif as a tissue target for specific recognition of integrin αν β3 . A chimaeric peptide was synthesized by adding nonamer arginine residues (9-arginine [9R]) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2 -9R, to enable small interfering RNA (siRNA) binding. To test the applicability of the delivery carrier in vivo, c(RGD)2 -9R was labeled with radionuclide of technetium-99m. Biodistribution and γ-camera imaging studies were performed in HepG2 xenograft-bearing nude mice. As results, an optimal 10:1 molar ratio of 99m Tc-c(RGD)2 -9R to siRNA was indicated by the electrophoresis on agarose gels. 99m Tc-c(RGD)2 -9R/siRNA remained stable under a set of conditions in vitro. For in vivo study, tumor radioactivity uptake of 99m Tc-c(RGD)2 -9R/siRNA in nude mice bearing HepG2 xenografts was significantly higher than that of control probe (P < .05). The xenografts were clearly visualized at 4 hours till 6 hours noninvasively after intravenous injection of 99m Tc-c(RGD)2 -9R/siRNA, while the xenografts were not visualized at any time after injection of control probe. It was concluded that c(RGD)2 -9R could be an effective siRNA delivery carrier. Technetium-99m radiolabeled-delivery carrier represents a potential imaging strategy for RNAi-based therapy.
Collapse
Affiliation(s)
- Xue Qi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rong Fu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chun Li Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Qian Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Guang Yu Zhao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Feng Qin Guo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Feng Q, Zhang Y, Zhang W, Hao Y, Wang Y, Zhang H, Hou L, Zhang Z. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Acta Biomater 2017; 49:402-413. [PMID: 27890732 DOI: 10.1016/j.actbio.2016.11.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
In this study, an intelligent drug delivery system was developed by capping doxorubicin (DOX)-loaded hollow mesoporous CuS nanoparticles (HMCuS NPs) with superparamagnetic iron oxide nanoparticles (IONPs). Under near infrared (NIR) light irradiation, the versatile HMCuS NPs could exploit the merits of both photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously. Herein, the multifunctional IONPs as gatekeeper with the enhanced capping efficiency were supposed to realize "zero premature release" and minimize the adverse side effects during the drug delivery in vivo. More importantly, the hybrid metal nanoplatform (HMCuS/DOX@IONP-PEG) allowed several emerging exceptional characteristics. Our studies have substantiated the hybrid nanoparticles possessed an enhanced PTT effect due to coupled plasmonic resonances with an elevated heat-generating capacity. Notably, an effective removal of IONP-caps occurred after NIR-induced photo-hyperthermia via weakening of the coordination interactions between HMCuS-NH2 and IONPs, which suggested the feasibility of sophisticated controlled on-demand drug release upon exposing to NIR stimulus with spatial/temporal resolution. Benefiting from the favorable magnetic tumor targeting efficacy, the in vitro and in vivo experiments indicated a remarkable anti-tumor therapeutic efficacy under NIR irradiation, resulting from the synergistic combination of chemo-phototherapy. In addition, T2-weighted magnetic resonance imaging (MRI) contrast performance of IONPs provided the identification of cancerous lesions. Based on these findings, the well-designed drug delivery system via integration of programmed functions will provide knowledge for advancing multimodality theranostic strategy. STATEMENT OF SIGNIFICANCE As we all know, a series of shortcomings of conventional chemotherapy such as limited stability, rapid clearing and non-specific tumor targeting ability remain a significant challenge to achieve successful clinical therapeutic efficiency in cancer treatments. Fortunately, developing drug delivery system under the assistance of multifunctional nanocarries might be a great idea. For the first time, we proposed an intelligent drug delivery system by capping DOX-loaded hollow mesoporous CuS nanoparticles (HMCuS NPs) with multifunctional IONPs to integrate programmed functions including enhanced PTT effect, sophisticated controlled drug release, magnetic targeting property and MR imaging. The results showed HMCuS/DOX@IONP-PEG could significantly enhance anti-tumor therapeutic efficacy due to the synergistic combination of chemo-phototherapy. By this delicate design, we believe such smart and extreme versatile all-in-one drug delivery platform could arouse broad interests in the fields of biomaterials, nanotechnology, and drug delivery system.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Yuanyuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Wanxia Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yongwei Hao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Yongchao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Yan Y, Zhang J, Ren L, Tang C. Metal-containing and related polymers for biomedical applications. Chem Soc Rev 2016; 45:5232-63. [PMID: 26910408 PMCID: PMC4996776 DOI: 10.1039/c6cs00026f] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical, University, Xi’an, Shannxi, 710129, China
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lixia Ren
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
18
|
Arranja A, Ivashchenko O, Denkova AG, Morawska K, van Vlierberghe S, Dubruel P, Waton G, Beekman FJ, Schosseler F, Mendes E. SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State. Mol Pharm 2016; 13:1158-65. [PMID: 26883169 DOI: 10.1021/acs.molpharmaceut.5b00958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of (111)In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.
Collapse
Affiliation(s)
- Alexandra Arranja
- Institut Charles Sadron (CNRS), Strasbourg, France.,Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands
| | - Oleksandra Ivashchenko
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands.,MILabs B.V., 3584 CX Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center , 3584 CG Utrecht, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands
| | - Karolina Morawska
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Sandra van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Gilles Waton
- Institut Charles Sadron (CNRS), Strasbourg, France
| | - Freek J Beekman
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands.,MILabs B.V., 3584 CX Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center , 3584 CG Utrecht, The Netherlands
| | | | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology , 2628 BL Delft, The Netherlands
| |
Collapse
|
19
|
Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, Denkova AG. Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method. EJNMMI Res 2016; 6:12. [PMID: 26860294 PMCID: PMC4747947 DOI: 10.1186/s13550-016-0167-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/21/2016] [Indexed: 01/10/2023] Open
Abstract
Background Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the conjugation of a chelating agent to the constituting polymer, which could actually affect their biodistribution. In this paper, we report a new facile method for radiolabeling polystyrene-b-poly(ethylene oxide) diblock copolymer micelles without the necessity of any chemical modification. Instead, we entrap the radiolabel (i.e., 111In) in the micellar core during the formation of the micelles by using tropolone as lipophilic ligand. Methods Micelles were prepared by emulsifying a polymer solution in chloroform with a buffer containing 111In and lipophilic ligand tropolone, by stirring for about 2 h. The produced micelles were physically characterized by means of dynamic light scattering and transmission electron microscopy. The biological properties of the radiolabeled micelles were determined by means of in vivo and ex vivo evaluation. SPECT analysis was done on Balb/c-nu mice, after administration of 1 mg micelles containing 22 MBq of 111In. SPECT images were obtained over 24 h. Biodistribution of the micelles was assessed also ex vivo. Results The radiolabeling method is robust and reproducible with constant radiolabeling efficiency (~30 %) even at indium concentrations that are much higher than the necessary for in vivo studies, and the radiolabel retention is more than 80 % in mouse serum at 48 h. Radiolabeled micelles having hydrodynamic radius of 97 ± 13 nm have been successfully evaluated in vivo and ex vivo in non-tumor-bearing mice, revealing significant blood circulation up to at least 24 h post injection, with low accumulation in most organs except for the liver and spleen, which are the natural organs for clearance of nanoparticles. Conclusions An easy and robust radiolabeling method has been developed, and its applicability is demonstrated in animal studies, showing its value for future investigation of polymeric micelles as nanocarriers in tumor-bearing mice. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0167-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrianus C Laan
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands.
| | - Costanza Santini
- Department of Radiology, Erasmus Medical Center, Dr. Molewaterplein 50-60, 3015 GE, Rotterdam, The Netherlands
| | - Laurence Jennings
- Institut Charles Sadron (UPR22-CNRS), 23 Rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Marion de Jong
- Department of Radiology, Erasmus Medical Center, Dr. Molewaterplein 50-60, 3015 GE, Rotterdam, The Netherlands
| | - Monique R Bernsen
- Department of Radiology, Erasmus Medical Center, Dr. Molewaterplein 50-60, 3015 GE, Rotterdam, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands
| |
Collapse
|
20
|
Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, Shi J, Zhang H, Zhang Z, Zhang Y. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2015; 23:832-46. [PMID: 25856302 DOI: 10.3109/1061186x.2015.1025077] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is very challenging to treat brain cancer because of the blood-brain barrier (BBB) restricting therapeutic drug or gene to access the brain. In this research project, angiopep-2 (ANG) was used as a brain-targeted peptide for preparing multifunctional ANG-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which encapsulated both doxorubicin (DOX) and epidermal growth factor receptor (EGFR) siRNA, designated as ANG/PLGA/DOX/siRNA. This system could efficiently deliver DOX and siRNA into U87MG cells leading to significant cell inhibition, apoptosis and EGFR silencing in vitro. It demonstrated that this drug system was capable of penetrating the BBB in vivo, resulting in more drugs accumulation in the brain. The animal study using the brain orthotopic U87MG glioma xenograft model indicated that the ANG-targeted co-delivery of DOX and EGFR siRNA resulted in not only the prolongation of the life span of the glioma-bearing mice but also an obvious cell apoptosis in glioma tissue.
Collapse
Affiliation(s)
- Lei Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yongwei Hao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Haixia Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yalin Zhao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dehui Meng
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dong Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Jinjin Shi
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Hongling Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Zhenzhong Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yun Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| |
Collapse
|
21
|
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:691-707. [PMID: 25683687 DOI: 10.1002/wnan.1332] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 01/01/2023]
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
22
|
Fuchs AV, Gemmell AC, Thurecht KJ. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem 2015. [DOI: 10.1039/c4py01311e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes how the highly tuneable size, shape and chemical functionality of polymeric molecular imaging agents provides a means to intimately probe the various mechanisms behind disease formation and behaviour.
Collapse
Affiliation(s)
- Adrian V. Fuchs
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Anna C. Gemmell
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Bio-Nano Science and Technology
| |
Collapse
|
23
|
Su YC, Cheng TC, Leu YL, Roffler SR, Wang JY, Chuang CH, Kao CH, Chen KC, Wang HE, Cheng TL. PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy. Mol Cancer Ther 2014; 13:2852-2863. [PMID: 25277385 DOI: 10.1158/1535-7163.mct-14-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity-based trapping probe for positron emission tomography (PET). We generated a (124)I-tyramine-conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form (124)I-TrapG that could be selectively activated by βG for subsequent attachment of (124)I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of (124)I-TrapG. βG targeting of (124)I-TrapG in vivo was examined by micro-PET. The biodistribution of (131)I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. (124)I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that (124)I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. (124)I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy.
Collapse
Affiliation(s)
- Yu-Cheng Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ta-Chun Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ling Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Han Kao
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Tian-Lu Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Dhal PK, Polomoscanik SC, Gianolio DA, Starremans PG, Busch M, Alving K, Chen B, Miller RJ. Well-Defined Aminooxy Terminated N-(2-Hydroxypropyl) Methacrylamide Macromers for Site Specific Bioconjugation of Glycoproteins. Bioconjug Chem 2013; 24:865-77. [DOI: 10.1021/bc300472e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pradeep K. Dhal
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Steven C. Polomoscanik
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Diego A. Gianolio
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Patrick G. Starremans
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Michelle Busch
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Kim Alving
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Bo Chen
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Robert J. Miller
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Gao L, Xie L, Long X, Wang Z, He CY, Chen ZY, Zhang L, Nan X, Lei H, Liu X, Liu G, Lu J, Qiu B. Efficacy of MRI visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion. Biomaterials 2013; 34:3688-96. [DOI: 10.1016/j.biomaterials.2013.01.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 11/15/2022]
|
26
|
Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 2012; 64:1046-59. [PMID: 22329941 DOI: 10.1016/j.addr.2012.01.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022]
Abstract
Multiple extra- and intracellular obstacles, including low stability in blood, poor cellular uptake, and inefficient endosomal escape and disassembly in the cytoplasm, have to be overcome in order to deliver nucleic acids for gene therapy. This review introduces the recent advances in tackling the key challenges in achieving efficient, targeted, and safe nonviral gene delivery using various nucleic acid-containing nanomaterials that are designed to respond to various extra- and intracellular biological stimuli (e.g., pH, redox potential, and enzyme) as well as external artificial triggers (e.g., light and ultrasound). Gene delivery in combination with molecular imaging and targeting enables diagnostic assessment, treatment monitoring and quantification of efficiency, and confirmation of cure, thus fulfilling the great promise of efficient and personalized medicine. Nanomaterials platform for combined imaging and gene therapy, nanotheragnostics, using stimuli-responsive materials is also highlighted in this review. It is clear that developing novel multifunctional nonviral vectors, which transform their physico-chemical properties in response to various stimuli in a timely and spatially controlled manner, is highly desired to translate the promise of gene therapy for the clinical success.
Collapse
|
27
|
de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012; 2:39. [PMID: 22809406 PMCID: PMC3441881 DOI: 10.1186/2191-219x-2-39] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes.
Collapse
|
28
|
Development of a pH sensitive nanocarrier using calcium phosphate coated gold nanoparticles as a platform for a potential theranostic material. Macromol Res 2012. [DOI: 10.1007/s13233-012-0061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
|