1
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Tolksdorf B, Heinze J, Niemeyer D, Röhrs V, Berg J, Drosten C, Kurreck J. Development of a highly stable, active small interfering RNA with broad activity against SARS-CoV viruses. Antiviral Res 2024; 226:105879. [PMID: 38599550 DOI: 10.1016/j.antiviral.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Treatment options for COVID-19 remain limited. Here, we report the optimization of an siRNA targeting the highly conserved leader region of SARS-CoV-2. The siRNA was rendered nuclease resistant by the introduction of modified nucleotides without loss of activity. Importantly, the siRNA also retained its inhibitory activity against the emerged omicron sublineage variant BA.2, which occurred after the siRNA was designed and is resistant to other antiviral agents such as antibodies. In addition, we show that a second highly active siRNA designed against the viral 5'-UTR can be applied as a rescue molecule, to minimize the spread of escape mutations. We therefore consider our siRNA-based molecules to be promising broadly active candidates for the treatment of current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Beatrice Tolksdorf
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Julian Heinze
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Daniela Niemeyer
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Viola Röhrs
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Johanna Berg
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Christian Drosten
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Jens Kurreck
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany.
| |
Collapse
|
3
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
4
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
5
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
6
|
Hussein M, Andrade dos Ramos Z, Berkhout B, Herrera-Carrillo E. In Silico Prediction and Selection of Target Sequences in the SARS-CoV-2 RNA Genome for an Antiviral Attack. Viruses 2022; 14:v14020385. [PMID: 35215977 PMCID: PMC8880226 DOI: 10.3390/v14020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The SARS-CoV-2 pandemic has urged the development of protective vaccines and the search for specific antiviral drugs. The modern molecular biology tools provides alternative methods, such as CRISPR-Cas and RNA interference, that can be adapted as antiviral approaches, and contribute to this search. The unique CRISPR-Cas13d system, with the small crRNA guide molecule, mediates a sequence-specific attack on RNA, and can be developed as an anti-coronavirus strategy. We analyzed the SARS-CoV-2 genome to localize the hypothetically best crRNA-annealing sites of 23 nucleotides based on our extensive expertise with sequence-specific antiviral strategies. We considered target sites of which the sequence is well-conserved among SARS-CoV-2 isolates. As we should prepare for a potential future outbreak of related viruses, we screened for targets that are conserved between SARS-CoV-2 and SARS-CoV. To further broaden the search, we screened for targets that are conserved between SARS-CoV-2 and the more distantly related MERS-CoV, as well as the four other human coronaviruses (OC43, 229E, NL63, HKU1). Finally, we performed a search for pan-corona target sequences that are conserved among all these coronaviruses, including the new Omicron variant, that are able to replicate in humans. This survey may contribute to the design of effective, safe, and escape-proof antiviral strategies to prepare for future pandemics.
Collapse
Affiliation(s)
| | | | - Ben Berkhout
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| | - Elena Herrera-Carrillo
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| |
Collapse
|
7
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells. Methods Protoc 2022; 5:mps5010018. [PMID: 35200534 PMCID: PMC8879667 DOI: 10.3390/mps5010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/01/2022] Open
Abstract
Exogenous RNA polymerase III (pol III) promoters are commonly used to express short hairpin RNA (shRNA). Previous studies have indicated that expression of shRNAs using standard pol III promoters can cause toxicity in vivo due to saturation of the native miRNA pathway. A potential way of mitigating shRNA-associated toxicity is by utilising native miRNA processing enzymes to attain tolerable shRNA expression levels. Here, we examined parallel processing of exogenous shRNAs by harnessing the natural miRNA processing enzymes and positioning a shRNA adjacent to microRNA107 (miR107), located in the intron 5 of the Pantothenate Kinase 1 (PANK1) gene. We developed a vector encoding the PANK1 intron containing miR107 and examined the expression of a single shRNA or multiple shRNAs. Using qRT-PCR analysis and luciferase assay-based knockdown assay, we confirmed that miR30-structured shRNAs have resulted in the highest expression and subsequent transcript knockdown. Next, we injected Hamburger and Hamilton stage 14–15 chicken embryos with a vector encoding multiple shRNAs and confirmed that the parallel processing was not toxic. Taken together, this data provides a novel strategy to harness the native miRNA processing pathways for shRNA expression. This enables new opportunities for RNAi based applications in animal species such as chickens.
Collapse
|
9
|
Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021; 13:2053. [PMID: 34959335 PMCID: PMC8708541 DOI: 10.3390/pharmaceutics13122053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| |
Collapse
|
10
|
Tolksdorf B, Nie C, Niemeyer D, Röhrs V, Berg J, Lauster D, Adler JM, Haag R, Trimpert J, Kaufer B, Drosten C, Kurreck J. Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses 2021; 13:v13102030. [PMID: 34696460 PMCID: PMC8539227 DOI: 10.3390/v13102030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5′-untranslated region (5′-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.
Collapse
Affiliation(s)
- Beatrice Tolksdorf
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Daniela Niemeyer
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Johanna Berg
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Julia M. Adler
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Jakob Trimpert
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Benedikt Kaufer
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Christian Drosten
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
- Correspondence: ; Tel.:+ 49-30-314-27581
| |
Collapse
|
11
|
Huber HF, Jaberi-Douraki M, DeVader S, Aparicio-Lopez C, Nava-Chavez J, Xu X, Millagaha Gedara NI, Gaudreault NN, Delong RK. Targeting SARS-CoV-2 Variants with Nucleic Acid Therapeutic Nanoparticle Conjugates. Pharmaceuticals (Basel) 2021; 14:1012. [PMID: 34681236 PMCID: PMC8539335 DOI: 10.3390/ph14101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
The emergence of SARS-CoV-2 variants is cause for concern, because these may become resistant to current vaccines and antiviral drugs in development. Current drugs target viral proteins, resulting in a critical need for RNA-targeted nanomedicines. To address this, a comparative analysis of SARS-CoV-2 variants was performed. Several highly conserved sites were identified, of which the most noteworthy is a partial homopurine palindrome site with >99% conservation within the coding region. This sequence was compared among recently emerged, highly infectious SARS-CoV-2 variants. Conservation of the site was maintained among these emerging variants, further contributing to its potential as a regulatory target site for SARS-CoV-2. RNAfold was used to predict the structures of the highly conserved sites, with some resulting structures being common among coronaviridae. An RNA-level regulatory map of the conserved regions of SARS-CoV-2 was produced based on the predicted structures, with each representing potential target sites for antisense oligonucleotides, triplex-forming oligomers, and aptamers. Additionally, homopurine/homopyrimidine sequences within the viral genome were identified. These sequences also demonstrate appropriate target sites for antisense oligonucleotides and triplex-forming oligonucleotides. An experimental strategy to investigate these is summarized along with potential nanoparticle types for delivery, and the advantages and disadvantages of each are discussed.
Collapse
Affiliation(s)
- Hanah F. Huber
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Majid Jaberi-Douraki
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Sarah DeVader
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Cesar Aparicio-Lopez
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Juliet Nava-Chavez
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Xuan Xu
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Nuwan Indika Millagaha Gedara
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert K. Delong
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| |
Collapse
|
12
|
Pandey AK, Verma S. An in silico analysis of effective siRNAs against COVID-19 by targeting the leader sequence of SARS-CoV-2. ACTA ACUST UNITED AC 2021; 4:e107. [PMID: 33786418 PMCID: PMC7995175 DOI: 10.1002/acg2.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a retrovirus having genome size of around 30 kb. Its genome contains a highly conserved leader sequence at its 5' end, which is added to all subgenomic mRNAs at their 5' terminus by a discontinuous transcription mechanism and regulates their translation. Targeting the leader sequence by RNA interference can be an effective approach to inhibit the viral replication. In the present study an in-silico prediction of highly effective siRNAs was performed to target the leader sequence using the online software siDirect version 2.0. Low seed-duplex stability, exact complementarity with target, at least three mismatches with any off-target and least number of off-targets, were considered as effective criteria for highly specific siRNA. Further validation of siRNA affinity for the target was accomplished by molecular docking by HNADOCK online server. Our results revealed four potential siRNAs, of which siRNA having guide strand sequence 5'GUUUAGAGAACAGAUCUACAA3' met almost all specificity criteria with no off-targets for guide strand. Molecular docking of all predicted siRNAs (guide strand) with the target leader sequence depicted highest binding score of -327.45 for above-mentioned siRNA. Furthermore, molecular docking of the passenger strand of the best candidate with off-target sequences gave significantly low binding scores. Hence, 5'GUUUAGAGAACAGAUCUACAA3' siRNA possess great potential to silence the leader sequence of SARS-CoV-2 with least off-target effect. Present study provides great scope for development of gene therapy against the prevailing COVID-19 disease, thus further research in this concern is urgently demanded.
Collapse
Affiliation(s)
- Anand Kumar Pandey
- Department of Biotechnology Engineering Institute of Engineering and Technology Bundelkhand University Jhansi India
| | - Shalja Verma
- Department of Biotechnology Engineering Institute of Engineering and Technology Bundelkhand University Jhansi India.,Department of Biochemical Engineering and Biotechnology Indian Institute of Technology New Delhi India.,NIMR-ICMR New Delhi India
| |
Collapse
|
13
|
Ashraf MU, Salman HM, Khalid MF, Khan MHF, Anwar S, Afzal S, Idrees M, Chaudhary SU. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother 2021; 136:111239. [PMID: 33454599 DOI: 10.1016/j.biopha.2021.111239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C is an inflammatory liver disease caused by the single-stranded RNA (ssRNA) hepatitis C virus (HCV). The genetic diversity of the virus and quasispecies produced during replication have resulted in viral resistance to direct-acting antivirals (DAAs) as well as impediments in vaccine development. The recent adaptation of CRISPR-Cas as an alternative antiviral approach has demonstrated degradation of viral nucleic acids in eukaryotes. In particular, the CRISPR-effector Cas13 enzyme has been shown to target ssRNA viruses effectively. In this work, we have employed Cas13a to knockdown HCV in mammalian cells. Using a computational screen, we identified several potential Cas13a target sites within highly conserved regions of the HCV internal ribosomal entry site (IRES). Our results demonstrate significant inhibition of HCV replication as well as translation in huh-7.5 cells with minimal effects on cell viability. These findings were validated using a multi-modality approach involving qRT-PCR, luciferase assay, and MTT cell viability assay. In conclusion, the CRISPR-Cas13a system efficiently targets HCV in vitro, suggesting its potential as a programmable therapeutic antiviral strategy.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan; Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Samia Afzal
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
14
|
Elbadawy HM, Mohammed Abdul MI, Aljuhani N, Vitiello A, Ciccarese F, Shaker MA, Eltahir HM, Palù G, Di Antonio V, Ghassabian H, Del Vecchio C, Salata C, Franchin E, Ponterio E, Bahashwan S, Thabet K, Abouzied MM, Shehata AM, Parolin C, Calistri A, Alvisi G. Generation of Combinatorial Lentiviral Vectors Expressing Multiple Anti-Hepatitis C Virus shRNAs and Their Validation on a Novel HCV Replicon Double Reporter Cell Line. Viruses 2020; 12:v12091044. [PMID: 32962117 PMCID: PMC7551853 DOI: 10.3390/v12091044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the introduction of directly acting antivirals (DAAs), for the treatment of hepatitis C virus (HCV) infection, their cost, patient compliance, and viral resistance are still important issues to be considered. Here, we describe the generation of a novel JFH1-based HCV subgenomic replicon double reporter cell line suitable for testing different antiviral drugs and therapeutic interventions. This cells line allowed a rapid and accurate quantification of cell growth/viability and HCV RNA replication, thus discriminating specific from unspecific antiviral effects caused by DAAs or cytotoxic compounds, respectively. By correlating cell number and virus replication, we could confirm the inhibitory effect on the latter of cell over confluency and characterize an array of lentiviral vectors expressing single, double, or triple cassettes containing different combinations of short hairpin (sh)RNAs, targeting both highly conserved viral genome sequences and cellular factors crucial for HCV replication. While all vectors were effective in reducing HCV replication, the ones targeting viral sequences displayed a stronger antiviral effect, without significant cytopathic effects. Such combinatorial platforms as well as the developed double reporter cell line might find application both in setting-up anti-HCV gene therapy approaches and in studies aimed at further dissecting the viral biology/pathogenesis of infection.
Collapse
Affiliation(s)
- Hossein M. Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Mohi I. Mohammed Abdul
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| | - Naif Aljuhani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Francesco Ciccarese
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Mohamed A. Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia;
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Heba M. Eltahir
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Veronica Di Antonio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Hanieh Ghassabian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Eleonora Ponterio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Fondazione Policlinico Universitario "A. Gemelli"—I.R.C.C.S., 00168 Rome, Italy
| | - Saleh Bahashwan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
| | - Khaled Thabet
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Almadinah Almunawwarah 41477, Saudi Arabia; (H.M.E.); (N.A.); (H.M.E.); (S.B.); (M.M.A.); (A.M.S.)
- Department of Pharmacology and toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (F.C.); (G.P.); (V.D.A.); (H.G.); (C.D.V.); (C.S.); (E.F.); (E.P.); (C.P.)
- Correspondence: (M.I.M.A.); (A.C.); (G.A.)
| |
Collapse
|
15
|
Cao S, Lin C, Liang S, Tan CH, Er Saw P, Xu X. Enhancing Chemotherapy by RNA Interference. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Small interfering RNA (siRNA) has shown tremendous potential for treating human diseases in the past decades. siRNA can selectively silence a pathological pathway through the targeting and degradation of a specific mRNA, significantly reducing the off-target side
effects of anticancer drugs. However, the poor pharmacokinetics of RNA significantly restricted the clinical use of RNAi technology. In this review, we examine in-depth the siRNA therapeutics currently in preclinical and clinical trials, multiple challenges faced in siRNA therapy, feasibility
of siRNA treatment with anticancer drugs in combined with siRNA in nanoparticles or modified to be parental drugs, sequential therapy of siRNA treatment prior to drug treatment with siRNA and drugs loaded in nanoparticles. We focused on the combinatorial activation of apoptosis by different
pathways, namely Bcl-2, survivin, and Pgp protein. Taken together, this review would serve to establish the pathway of effective and efficient combination therapy of siRNA and drugs as a new strategy.
Collapse
Affiliation(s)
- Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunung Liang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Chee Hwee Tan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Moradi M, Mozafari F, Hosseini S, Rafiee R, Ghasemi F. A concise review on impacts of microRNAs in biology and medicine of hepatitis C virus. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Chandra S, Michael Nguyen H, Wiltz K, Hall N, Chaudhry S, Olverson G, Mandal T, Dash S, Kundu A. Aptamer-functionalized Hybrid Nanoparticles to Enhance the Delivery of Doxorubicin into Breast Cancer Cells by Silencing P-glycoprotein. JOURNAL OF CANCER TREATMENT & DIAGNOSIS 2020; 4:1-13. [PMID: 32395707 PMCID: PMC7213597 DOI: 10.29245/2578-2967/2020/1.1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The MDR of metastatic breast cancer cells is accompanied by the overexpression of P-gp transporter. This study has been focused to determine whether silencing the expression of P-gp by aptamer-labeled siRNA nanoparticles could enhance the delivery of doxorubicin into breast cancer cells in culture. METHODOLOGY The nanoparticle F-31 was prepared using DOTAP, cholesterol, and PLGA, and then incorporating Mal-PEG to facilitate aptamer-binding. The nanoparticles were surface-functionalized with aptamer A6, which targets Her-2 receptors overexpressed on the surface of breast cancer cells. RESULTS This study has shown that the uptake of Dox by Dox-resistant 4T1-R is significantly less than Dox-sensitive 4T1-S which is partly attributed to the higher expression of drug-efflux pump P-gp on the surface of the resistant cells. The targeted knockdown of P-gp has been enhanced when the particles carrying P-gp siRNA was labeled with aptamer. Concurrently, the uptake of Dox into the Dox-resistant 4T1-R breast cancer cells has increased significantly when the P-gp was silenced by P-gp siRNA-encapsulated aptamer-labeled nanoparticles. CONCLUSIONS This preliminary study concludes that downregulating P-gp expression by targeted delivery of P-gp siRNA using aptamer-labeled lipid-based hybrid nanoparticles could effectively increase the intracellular trafficking of doxorubicin in Dox-resistant mouse breast cancer cells.
Collapse
Affiliation(s)
- Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | | | - Kylar Wiltz
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Nicholas Hall
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Shanzay Chaudhry
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - George Olverson
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Tarun Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| |
Collapse
|
18
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
20
|
Effect of cationic lipid type in cationic liposomes for siRNA delivery into the liver by sequential injection of chondroitin sulfate and cationic lipoplex. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Momtazi AA, Banach M, Pirro M, Stein EA, Sahebkar A. MicroRNAs: New Therapeutic Targets for Familial Hypercholesterolemia? Clin Rev Allergy Immunol 2018; 54:224-233. [PMID: 28534160 PMCID: PMC5874276 DOI: 10.1007/s12016-017-8611-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial hypercholesterolemia (FH) is the most common inherited form of dyslipidemia and a major cause of premature cardiovascular disease. Management of FH mainly relies on the efficiency of treatments that reduce plasma low-density lipoprotein (LDL) cholesterol (LDL-C) concentrations. MicroRNAs (miRs) have been suggested as emerging regulators of plasma LDL-C concentrations. Notably, there is evidence showing that miRs can regulate the post-transcriptional expression of genes involved in the pathogenesis of FH, including LDLR, APOB, PCSK9, and LDLRAP1. In addition, many miRs are located in genomic loci associated with abnormal levels of circulating lipids and lipoproteins in human plasma. The strong regulatory effects of miRs on the expression of FH-associated genes support of the notion that manipulation of miRs might serve as a potential novel therapeutic approach. The present review describes miRs-targeting FH-associated genes that could be used as potential therapeutic targets in patients with FH or other severe dyslipidemias.
Collapse
Affiliation(s)
- Amir Abbas Momtazi
- Nanotechnology Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz (MUL), Zeromskiego 113, 90-549, Lodz, Poland. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evan A Stein
- Metabolic and Atherosclerosis Research Center, Cincinnati, OH, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,School of Medicine, University of Western Australia, Perth, Australia. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
22
|
Zamani P, Matbou Riahi M, Momtazi-Borojeni AA, Jamialahmadi K. Gankyrin: a novel promising therapeutic target for hepatocellular carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1301-1313. [PMID: 29025272 DOI: 10.1080/21691401.2017.1388250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as fifth common malignancies and third common cause of cancer-related death worldwide. The identification of various mechanisms which are involved in hepatocarcinogenesis contributes in finding a variety of cellular and molecular targets for HCC diagnosis, prevention and therapy. Among various identified targets in HCC pathogenesis, Gankyrin is a crucial oncoprotein that is up-regulated in HCC and plays a pivotal role in the initiation and progression of the HCC. Oncogenic role of Gankyrin has been found to stem from inhibition of two ubiquitous tumour suppressor proteins, retinoblastoma protein (pRb) and P53, and also modulation of several vital cellular signalling pathways including Wnt/β-Catenin, NF-κB, STAT3/Akt, IL-1β/IRAK-1 and RhoA/ROCK. As a result, Gankyrin can be considered as a potential candidate for diagnosis and treatment of HCC. In this review, we summarized the physiological function and the significant role of Gankyrin as an important therapeutic target in HCC.
Collapse
Affiliation(s)
- Parvin Zamani
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Matbou Riahi
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Abbas Momtazi-Borojeni
- b Nanotechnology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,c Department of Medical Biotechnology , Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khadijeh Jamialahmadi
- a Department of Medical Biotechnology , Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,d Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
23
|
Kundu AK, Iyer SV, Chandra S, Adhikari AS, Iwakuma T, Mandal TK. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma. PLoS One 2017. [PMID: 28636657 PMCID: PMC5479560 DOI: 10.1371/journal.pone.0179168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318–1, a murine osteosarcoma cell line. Methods The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Key findings Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. Conclusions This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Anup K. Kundu
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana, United States of America
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Swathi V. Iyer
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Amit S. Adhikari
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tomoo Iwakuma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tarun K. Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana, United States of America
| |
Collapse
|
24
|
Powell D, Chandra S, Dodson K, Shaheen F, Wiltz K, Ireland S, Syed M, Dash S, Wiese T, Mandal T, Kundu A. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm 2017; 114:108-118. [PMID: 28131717 DOI: 10.1016/j.ejpb.2017.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE Resistance to chemotherapeutic agents such as doxorubicin is a major reason for cancer treatment failure. At present the treatment option for metastatic breast cancer is very poor. Therefore, development of an effective therapeutic strategy to circumvent MDR of metastatic breast cancer is highly anticipated. The MDR of metastatic breast cancer cells was accompanied with the overexpression of P-gp transporter. Even though the overexpression of P-gp could be minimized by silencing with siRNA, the question is how they can be selectively targeted to the cancer cells. We propose that aptamer surface labeling of the nanoparticles could enhance the selectively delivery of p-gp siRNA into the metastatic breast cancer cells. Our hypothesis is that conjugating nanoparticles with a cancer cell specific aptamer should allow selective delivery of therapeutic drugs to tumor cells leading to enhanced cellular toxicity and antitumor effect as compared to unconjugated nanoparticles. The primary objective of this study is to develop a targeted nanocarrier delivery system for siRNA into breast cancer cells. DESIGN METHODS For targeted delivery, Aptamer A6 has been used which can bind to Her-2 receptors on breast cancer cells. For aptamer binding to particle surface, maleimide-terminated PEG-DSPE (Mal-PEG) was incorporated into the nanoparticles. Initially, three blank hybrid nanoparticles (i.e. F21, F31, and F40) out of nine different formulations prepared by high pressure homogenization (HPH) using different amount of DOTAP, cholesterol, PLGA or PLGA-PEG and Mal-PEG were chosen. Then protamine sulfate-condensed GAPDH siRNA (TRITC conjugated; red) or P-gp siRNA was encapsulated into those nanoparticles. Finally, the particles were incubated with aptamer A6 (FITC conjugated; green) for surface labeling. RESULTS Aptamer labeled-nanoparticles having PLGA are smaller in size than those having PLGA-PEG. Surface charge was reduced when the particles were labeled with aptamer. Cell transfection was increased significantly in Her-2 (+) SKBR-3 and 4T1-R cells but not in Her-2 poorly expressed MDA MB-231 and MCF-7 cells. The knockdown of P-gp was increased significantly when the particles were labeled with aptamer. No significant cellular toxicity was observed for any of these formulations. CONCLUSION This preliminary study concludes that aptamer-functionalized hybrid nanoparticles could be used to deliver P-gp targeted siRNA into the breast cancer cells to overcome chemoresistance.
Collapse
Affiliation(s)
- David Powell
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Kyra Dodson
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Farhana Shaheen
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Kylar Wiltz
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Shubha Ireland
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Muniruzzaman Syed
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, United States
| | - Thomas Wiese
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, LA 70125, United States
| | - Tarun Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, LA 70125, United States
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, United States.
| |
Collapse
|
25
|
Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Rahal P. Inhibition of hepatitis C virus using siRNA targeted to the virus and Hsp90. Cell Stress Chaperones 2017; 22:113-122. [PMID: 27858224 PMCID: PMC5225065 DOI: 10.1007/s12192-016-0747-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 01/19/2023] Open
Abstract
Hepatitis C (HCV) is a viral disease affecting millions of people worldwide, and persistent HCV infection can lead to progressive liver disease with the development of liver cirrhosis and hepatocellular carcinoma. During treatment for hepatitis C, the occurrence of viral resistance is common. To reduce the occurrence of resistance, new viral treatments should target both viral and cellular factors. Many interactions occur between viral and host proteins during the HCV replication cycle and might be used for the development of new therapies against hepatitis C. Heat shock protein 90 (Hsp90) plays a role in the folding of cellular and viral proteins and also interacts with HCV proteins. In the present study, we knocked down the expression of the Hsp90 gene and inhibited viral replication using siRNA molecules. Reducing the expression of Hsp90 successfully decreased HCV replication. All siRNA molecules specific to the viral genome showed the efficient inhibition of viral replication, particularly siRNA targeted to the 5'UTR region. The combination of siRNAs targeting the viral genome and Hsp90 mRNA also successfully reduced HCV replication and reduced the occurrence of viral resistance. Moreover, these results suggest that an approach based on the combination of cellular and viral siRNAs can be used as an effective alternative for hepatitis C viral suppression.
Collapse
Affiliation(s)
- Ana Claudia Silva Braga
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Bruno Moreira Carneiro
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
- Institute of Exact and Natural Sciences, Mato Grosso Federal University, Rondonópolis, Brazil
| | - Mariana Nogueira Batista
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Mônica Mayumi Akinaga
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil.
| |
Collapse
|
26
|
Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. ANTIMICROBIAL NANOARCHITECTONICS 2017. [PMCID: PMC7173505 DOI: 10.1016/b978-0-323-52733-0.00014-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to general unavailability of specific antiviral therapeutics for a variety of viral diseases, usage of most antiviral drugs is linked to their limited solubility in aqueous media, short half-life time, and inadequate penetration to specified anatomic compartments. Accordingly, there is continuous effort to improve physicochemical characteristics of existing antiviral drugs. Since nanomaterials display remarkable physical and chemical properties, high surface area to volume ratio, and increased reactivity, new approaches for antiviral therapies include combinations of nanomaterials and current antiviral agents. Multivalent nanostructures, polymers, dendrimers, and liposomes can establish multivalent binding interactions with many biological systems and thus can target pathogenic interactions. There are reports about anitiviral activities of different metal nanoparticles, especially silver nanoparticles and their potential for treatment, prophylaxis, and control of viral infections. Integration of classic antiviral drugs, in the form of multiple ligands, onto nanostructures provides the advantages by creating a high local concentration of active molecules. This article will summarize the antiviral activity of different nanoparticle-based approaches currently available for the treatment of viral infections, and it will discuss metal nanoparticles as possible future antiviral drugs.
Collapse
|
27
|
Crouchet E, Saad R, Affolter-Zbaraszczuk C, Ogier J, Baumert TF, Schuster C, Meyer F. Composite vector formulation for multiple siRNA delivery as a host targeting antiviral in a cell culture model of hepatitis C virus (HCV) infection. J Mater Chem B 2017; 5:858-865. [PMID: 32263854 PMCID: PMC7613424 DOI: 10.1039/c6tb01718e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and cancer worldwide. RNA interference (RNAi)-based gene therapies have emerged recently as a promising tool to treat chronic viral infections. Indeed, small interfering RNAs (siRNAs) provide an opportunity to target host factors required for the viral life cycle. In this study, we evaluated a novel nanovector-based approach for siRNA delivery in a model of chronically infected hepatic cells. We designed original composite nanoparticles by coating the calcium phosphate core with siRNAs targeting HCV host-factors and pyridylthiourea-grafted polyethyleneimine (πPEI). Using combinations of different siRNAs, we observed an efficient and prolonged decrease of HCV replication. Moreover, we showed that the layer-by-layer technique of coating applied to our nanoparticles triggers a sequential release of siRNAs acting on different steps of the HCV life cycle. Together, our results demonstrate the efficacy of these nanoparticles for siRNA delivery and open new perspectives for antiviral therapies.
Collapse
Affiliation(s)
- E. Crouchet
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - R. Saad
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | | | - J. Ogier
- Université de Strasbourg
- 67000 Strasbourg
- France
- Inserm
- U1121
| | - T. F. Baumert
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - C. Schuster
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - F. Meyer
- Université de Strasbourg
- 67000 Strasbourg
- France
- Inserm
- U1121
| |
Collapse
|
28
|
Torrecilla J, Del Pozo-Rodríguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, Berzal-Herranz A, Rodríguez-Gascón A. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces 2016; 146:808-817. [PMID: 27451369 DOI: 10.1016/j.colsurfb.2016.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
Gene silencing mediated by RNAi has gained increasing interest as an alternative for the treatment of infectious diseases such as refractory hepatitis C virus (HCV) infection. In this work we have designed and evaluated a non-viral vector based on solid lipid nanoparticles (SLN) bearing hyaluronic acid, protamine and a short hairpin RNA (shRNA74) targeted to the Internal Ribosome Entry Site (IRES) of the HCV. The vector was able to inhibit the expression of the HCV IRES in Huh-7 cells, with the inhibition level dependent on the shRNA74 to SLN ratio and on the shRNA74 dose added to the culture cells. The nanocarrier was also able to inhibit the replication in human hepatoma cells supporting a subgenomic HCV replicon (Huh-7 NS3-3'). The vector was quickly and efficiently internalized by the cells, and endocytosis was the most productive uptake mechanism for silencing. Clathrin-mediated endocytosis and to a lesser extent caveolae/lipid raft-mediated endocytosis were identified as endocytic mechanisms involved in the cell uptake. Internalization via the CD44 receptor was also involved, although this entry route seems to be less productive for silencing than endocytosis. The vector did not induce either hemolysis or agglutination of red cells in vitro, which was indicative of good biocompatibility. In summary, we have shown for the first time the ability of a non-viral SLN-based vector to silence a HCV replicon.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Paola S Apaolaza
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
30
|
ElHefnawi M, Kim T, Kamar MA, Min S, Hassan NM, El-Ahwany E, Kim H, Zada S, Amer M, Windisch MP. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes. PLoS One 2016; 11:e0159211. [PMID: 27441640 PMCID: PMC4956106 DOI: 10.1371/journal.pone.0159211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs) targeting highly conserved regions of the hepatitis C virus (HCV) genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258) were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h); they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic oligonucleotide interventions.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
- Centre for Informatics, Nile University, Shiekh Zayed City, Egypt
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
- * E-mail: (MEH); (MPW)
| | - TaeKyu Kim
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mona A. Kamar
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
| | - Saehong Min
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nafisa M. Hassan
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
| | - Eman El-Ahwany
- Biology Department, American University in Cairo, New Cairo, Egypt
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Heeyoung Kim
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Suher Zada
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Marwa Amer
- Biology Department, American University in Cairo, New Cairo, Egypt
- Faculty of Biotechnology, Misr University for Science and Technology, 6 of October City, Egypt
| | - Marc P. Windisch
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- * E-mail: (MEH); (MPW)
| |
Collapse
|
31
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
32
|
Mandal A, Ganta KK, Chaubey B. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication. HEPATITIS RESEARCH AND TREATMENT 2016; 2016:9671031. [PMID: 27446609 PMCID: PMC4942654 DOI: 10.1155/2016/9671031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target.
Collapse
Affiliation(s)
- Anirban Mandal
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Krishna Kumar Ganta
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Binay Chaubey
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, UG and MUG, Abrahama 58 Street, 80-307 Gdańsk, Poland
| |
Collapse
|
33
|
Moon JS, Lee SH, Han SH, Kim EJ, Cho H, Lee W, Kim MK, Kim TE, Park HJ, Rhee JK, Kim SJ, Cho SW, Han SH, Oh JW. Inhibition of hepatitis C virus in mouse models by lipidoid nanoparticle-mediated systemic delivery of siRNA against PRK2. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1489-98. [PMID: 27013134 DOI: 10.1016/j.nano.2016.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022]
Abstract
Host-targeting antivirals have an advantage over direct-acting antivirals in that they have a high genetic barrier to resistance. Here, we describe in vivo anti-hepatitis C virus (HCV) efficacy of a potent siRNA targeting the protein kinase C-related kinase 2 (PRK2), which phosphorylates HCV NS5B RNA-dependent RNA polymerase and promotes HCV replication. PRK2-silencing reduced the phosphorylated NS5B level and resulted in inhibition of NS5B RdRp activity to decrease HCV genome abundance. Systemic administration of lipidoid nanoparticle-formulated PRK2 siRNA (once every three days for a total of three injections at a dose of 3mgkg(-1)) resulted in a 3.72 and 1.96 log10 reduction in serum HCV RNA titer, in mouse subcutaneous and orthotopic xenograft models for HCV replication, respectively. Our results verify the essential role of PRK2 in HCV replication and offer a host-targeting anti-HCV siRNA therapy that might be beneficial for non-responders to current treatment regimens.
Collapse
Affiliation(s)
- Jae-Su Moon
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Song-Hee Han
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Eun-Jung Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Mi-Kyung Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Tae-Eun Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Hyun-Ji Park
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Jin-Kyu Rhee
- Western Seoul Center of Korea Basic Science Institute, Seoul, Korea
| | - Seong-Jun Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
34
|
Moon JS, Lee SH, Kim EJ, Cho H, Lee W, Kim GW, Park HJ, Cho SW, Lee C, Oh JW. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot. PLoS One 2016; 11:e0146710. [PMID: 26751678 PMCID: PMC4713436 DOI: 10.1371/journal.pone.0146710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) internal ribosome entry site (IRES) that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA)-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts) 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343) where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.
Collapse
Affiliation(s)
- Jae-Su Moon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Eun-Jung Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Wooseong Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Geon-Woo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Hyun-Ji Park
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 410–820, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Korea
| |
Collapse
|
35
|
Roh YH, Deng JZ, Dreaden EC, Park JH, Yun DS, Shopsowitz KE, Hammond PT. A Multi-RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Young Hoon Roh
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
| | - Jason Z. Deng
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
| | - Erik C. Dreaden
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
| | - Jae Hyon Park
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
| | - Dong Soo Yun
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
| | - Kevin E. Shopsowitz
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
| | - Paula T. Hammond
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research at MIT; Cambridge MA 02139 USA
| |
Collapse
|
36
|
Roh YH, Deng JZ, Dreaden EC, Park JH, Yun DS, Shopsowitz KE, Hammond PT. A Multi-RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs. Angew Chem Int Ed Engl 2015; 55:3347-51. [PMID: 26695874 PMCID: PMC4768639 DOI: 10.1002/anie.201508978] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Packaging multiple small interfering RNA (siRNA) molecules into nanostructures at precisely defined ratios is a powerful delivery strategy for effective RNA interference (RNAi) therapy. We present a novel RNA nanotechnology based approach to produce multiple components of polymerized siRNA molecules that are simultaneously self-assembled and densely packaged into composite sponge-like porous microstructures (Multi-RNAi-MSs) by rolling circle transcription. The Multi-RNAi-MSs were designed to contain a combination of multiple polymeric siRNA molecules with precisely controlled stoichiometry within a singular microstructure by manipulating the types and ratios of the circular DNA templates. The Multi-RNAi-MSs were converted into nanosized complexes by polyelectrolyte condensation to manipulate their physicochemical properties (size, shape, and surface charge) for favorable delivery, while maintaining the multifunctional properties of the siRNAs for combined therapeutic effects. These Multi-RNAi-MS systems have great potential in RNAi-mediated biomedical applications, for example, for the treatment of cancer, genetic disorders, and viral infections.
Collapse
Affiliation(s)
- Young Hoon Roh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.,Department of Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jason Z Deng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Erik C Dreaden
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Jae Hyon Park
- Department of Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Dong Soo Yun
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Kevin E Shopsowitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Lakshminarayanan A, Reddy BU, Raghav N, Ravi VK, Kumar A, Maiti PK, Sood AK, Jayaraman N, Das S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. NANOSCALE 2015; 7:16921-16931. [PMID: 26411288 DOI: 10.1039/c5nr02898a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Collapse
|
38
|
Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice. Sci Rep 2015; 5:15259. [PMID: 26482836 PMCID: PMC4612501 DOI: 10.1038/srep15259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients.
Collapse
|
39
|
siRNA Versus miRNA as Therapeutics for Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e252. [PMID: 26372022 PMCID: PMC4877448 DOI: 10.1038/mtna.2015.23] [Citation(s) in RCA: 711] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023]
Abstract
Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.
Collapse
|
40
|
|
41
|
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20:14051-81. [PMID: 26247927 PMCID: PMC6332336 DOI: 10.3390/molecules200814051] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023] Open
Abstract
Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Alexandre Barras
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Manakamana Khanal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| |
Collapse
|
42
|
Chen ZY, Ma F, Huang H, He CY. Synthetic immunity to break down the bottleneck of cancer immunotherapy. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0794-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int J Pharm 2014; 479:181-8. [PMID: 25542984 DOI: 10.1016/j.ijpharm.2014.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/02/2023]
Abstract
RNA interference (RNAi) is a promising strategy to treat the chronic infection by hepatitis C virus (HCV). The objective of this work was to develop a non-viral vector based on solid lipid nanoparticles (SLN) and RNAi to inhibit the internal ribosome entry site (IRES) mechanism of the HCV. The vectors were prepared with SLN, protamine, hylauronic acid (HA) or dextran (DX), and a short-hairpin RNA expression plasmid targeted to the stem loop II of the 5' UTR (shRNA74). The particle size, surface charge, and capacity to bind, release and protect the shRNA74 against nucleases were evaluated. Cell uptake, silencing capacity and cell viability were evaluated in HepG2 cells. All the vectors presented particle size in the range of nanometers and positive surface charge, and they were able to protect the shRNA74 against DNase. An effective and rapid uptake into the cells was observed. Silencing capacity ranged from 3% to 67% depending on the presence of DX or HA in the vector, the shRNA74 to SLN ratio, and the shRNA74 dose. Vectors prepared with HA showed to be twice more effective than those prepared with DX. Differences in the intracellular trafficking may justify the higher efficacy of the HA-prepared vectors.
Collapse
|
44
|
Chandra PK, Gunduz F, Hazari S, Kurt R, Panigrahi R, Poat B, Bruce D, Cohen AJ, Behorquez HE, Carmody I, Loss G, Balart LA, Wu T, Dash S. Impaired expression of type I and type II interferon receptors in HCV-associated chronic liver disease and liver cirrhosis. PLoS One 2014; 9:e108616. [PMID: 25265476 PMCID: PMC4180933 DOI: 10.1371/journal.pone.0108616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Chronic Hepatitis C Virus (HCV)-infected patients with liver cirrhosis (LC) respond poorly to interferon-alpha (IFN-α) and ribavirin (RBV) combination therapy, but the reason for this is unclear. We previously reported that HCV-infection induces endoplasmic reticulum (ER) stress and autophagy response that selectively down regulates the type I IFN-α receptor-1 (IFNAR1) and RBV transporters (CNT1 and ENT1), leading to IFN-α/RBV resistance. The goal of this study is to verify whether an increase in ER stress and autophagy response is also associated with the reduced expression of IFNAR1 and RBV transporters in chronic HCV-infected patients. METHODS Primary human hepatocytes (PHH) were infected with cell culture grown HCV particles (JFH-ΔV3-Rluc). HCV replication was confirmed by the detection of viral RNA by RT-qPCR and HCV-core protein by Western blotting. The ER stress and autophagy response and expression of IFN receptors and RBV transporters in HCV infected PHH and liver tissues derived from patients were measured by Western blotting. RESULT HCV infection of PHH showed impaired expression of IFNAR1, IFNγR1 (Type II IFN receptor) and RBV transporters but not IL10Rβ (Type III IFN-λ receptor). ER stress markers (BiP, IRE1α and peIF2α) and autophagy response (LC3II, Beclin 1 and ATG5) were induced in HCV infected chronic liver disease (CLD) and LC patients. Liver biopsies (CLD) show a 50% reduced expression of IFNAR1 and RBV transporters. Furthermore, the expression of IFNAR1 and RBV transporters was impaired in almost all LC patients. CONCLUSION HCV infection induces ER stress and autophagy response in infected PHH and chronically infected liver tissues. The expression of IFNAR1, IFNγR1 and RBV transporters were significantly impaired in CLD and cirrhotic livers. Our study provides a potential explanation for the reduced response rate of IFN-α and RBV combination therapy in HCV infected patients with liver cirrhosis.
Collapse
Affiliation(s)
- Partha K. Chandra
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Feyza Gunduz
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sidhartha Hazari
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ramazan Kurt
- Department of Medicine, Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Rajesh Panigrahi
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Bret Poat
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - David Bruce
- Transplant Surgery Section, Ochsner Medical Center, New Orleans, Louisiana, United States of America
| | - Ari J. Cohen
- Transplant Surgery Section, Ochsner Medical Center, New Orleans, Louisiana, United States of America
| | - Humberto E. Behorquez
- Transplant Surgery Section, Ochsner Medical Center, New Orleans, Louisiana, United States of America
| | - Ian Carmody
- Transplant Surgery Section, Ochsner Medical Center, New Orleans, Louisiana, United States of America
| | - George Loss
- Transplant Surgery Section, Ochsner Medical Center, New Orleans, Louisiana, United States of America
| | - Luis A. Balart
- Department of Medicine, Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tong Wu
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Srikanta Dash
- Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
45
|
Anis EA, Wilkes RP, Kania SA, Legendre AM, Kennedy MA. Effect of small interfering RNAs on in vitro replication and gene expression of feline coronavirus. Am J Vet Res 2014; 75:828-34. [DOI: 10.2460/ajvr.75.9.828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161794. [PMID: 25184135 PMCID: PMC4145386 DOI: 10.1155/2014/161794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Collapse
|
47
|
Establishment of animal models with orthotopic hepatocellular carcinoma. Nucl Med Mol Imaging 2014; 48:173-9. [PMID: 25177373 DOI: 10.1007/s13139-014-0288-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most serious health problems worldwide. Many researchers have investigated HCC at the level of genes, ribonucleic acid, proteins, cells, and animals. The resultant development of animal models and monitoring methods has improved the effectiveness of guidelines provided to researchers working with preclinical HCC models. HCC in animal models and clinical patients is monitored by various current imaging modalities such as ultrasound (US) imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET) and bioluminescence imaging (BLI). These techniques are currently used for both preclinical and clinical assessment, and provide valuable diagnostic information. In this article, we have mainly reviewed the established animal models and the assessment of orthotopic HCC using imaging modalities. Additionally, we have introduced a method of orthotopic HCC rat model developed in our laboratory. We have furthermore evaluated the occurrence of tumor mass using molecular imaging techniques.
Collapse
|
48
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
49
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
50
|
Chandra PK, Bao L, Song K, Aboulnasr FM, Baker DP, Shores N, Wimley WC, Liu S, Hagedorn CH, Fuchs SY, Wu T, Balart LA, Dash S. HCV infection selectively impairs type I but not type III IFN signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:214-29. [PMID: 24215913 DOI: 10.1016/j.ajpath.2013.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023]
Abstract
A stable and persistent Hepatitis C virus (HCV) replication cell culture model was developed to examine clearance of viral replication during long-term treatment using interferon-α (IFN-α), IFN-λ, and ribavirin (RBV). Persistently HCV-infected cell culture exhibited an impaired antiviral response to IFN-α+RBV combination treatment, whereas IFN-λ treatment produced a strong and sustained antiviral response that cleared HCV replication. HCV replication in persistently infected cells induced chronic endoplasmic reticulum (ER) stress and an autophagy response that selectively down-regulated the functional IFN-α receptor-1 chain of type I, but not type II (IFN-γ) or type III (IFN-λ) IFN receptors. Down-regulation of IFN-α receptor-1 resulted in defective JAK-STAT signaling, impaired STAT phosphorylation, and impaired nuclear translocation of STAT. Furthermore, HCV replication impaired RBV uptake, because of reduced expression of the nucleoside transporters ENT1 and CNT1. Silencing ER stress and the autophagy response using chemical inhibitors or siRNA additively inhibited HCV replication and induced viral clearance by the IFN-α+RBV combination treatment. These results indicate that HCV induces ER stress and that the autophagy response selectively impairs type I (but not type III) IFN signaling, which explains why IFN-λ (but not IFN-α) produced a sustained antiviral response against HCV. The results also indicate that inhibition of ER stress and of the autophagy response overcomes IFN-α+RBV resistance mechanisms associated with HCV infection.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lili Bao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Fatma M Aboulnasr
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Nathan Shores
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana
| | - William C Wimley
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana
| | - Shuanghu Liu
- Department of Medicine and Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Curt H Hagedorn
- Department of Medicine and Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Serge Y Fuchs
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Luis A Balart
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|