1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Gay CL, Hanley PJ, Falcinelli SD, Kuruc JD, Pedersen SM, Kirchherr J, Raines SLM, Motta CM, Lazarski C, Chansky P, Tanna J, Shibli A, Datar A, McCann CD, Sili U, Ke R, Eron JJ, Archin N, Goonetilleke N, Bollard CM, Margolis DM. The Effects of Human Immunodeficiency Virus Type 1 (HIV-1) Antigen-Expanded Specific T-Cell Therapy and Vorinostat on Persistent HIV-1 Infection in People With HIV on Antiretroviral Therapy. J Infect Dis 2024; 229:743-752. [PMID: 38349333 PMCID: PMC10938201 DOI: 10.1093/infdis/jiad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.
Collapse
Affiliation(s)
- Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Shane D Falcinelli
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Susan M Pedersen
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - Cecilia M Motta
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chris Lazarski
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Pamela Chansky
- Center for Cancer and Immunology Research, Children's National Health System
| | - Jay Tanna
- Center for Cancer and Immunology Research, Children's National Health System
| | - Abeer Shibli
- Center for Cancer and Immunology Research, Children's National Health System
| | - Anushree Datar
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Uluhan Sili
- Center for Cancer and Immunology Research, Children's National Health System
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Nancie Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| |
Collapse
|
4
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
6
|
Wallace Z, Singh PK, Dorrell L. Combination strategies to durably suppress HIV-1: Soluble T cell receptors. J Virus Erad 2022; 8:100082. [PMID: 36065296 PMCID: PMC9440443 DOI: 10.1016/j.jve.2022.100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic interventions to enhance natural HIV-specific CD8+ T cell responses, such as vaccination or adoptive T cell transfer, have been a major focus of HIV cure efforts. However, these approaches have not been effective in overcoming viral immune evasion mechanisms. Soluble T cell receptor (TCR) bispecifics are a new class of 'off-the-shelf' therapeutic designed to address these limitations. These biologics are built on the Immune mobilising monoclonal TCRs against X disease (ImmTAX) platform, which was pioneered in oncology and recently validated by the FDA's approval of tebentafusp for treatment of metastatic uveal melanoma. ImmTAV® are an application of this technology undergoing clinical development for the elimination of chronic viral infections. ImmTAV molecules comprise an affinity-enhanced virus-specific TCR fused to an anti-CD3 effector domain. Engineering of the TCR confers extraordinary specificity and affinity for cognate viral antigen and the anti-CD3 enables retargeting of non-exhausted cytolytic T cells, irrespective of their specificity. These features enable ImmTAV molecules to detect and kill infected cells, even when expressing very low levels of antigen, bypassing ineffective host immune responses. Furthermore, the modularity of the platform allows for engineering of TCRs that effectively target viral variants. In this review, we discuss the progress made in the development of ImmTAV molecules as therapeutics for functional cure of chronic hepatitis B and HIV, from concept to the clinic.
Collapse
|
7
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
8
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
9
|
Li M, Garforth SJ, O’Connor KE, Su H, Lee DM, Celikgil A, Chaparro RJ, Seidel RD, Jones RB, Arav-Boger R, Almo SC, Goldstein H. T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- and CMV-specific T cell expansion in humanized mice. J Clin Invest 2021; 131:e141051. [PMID: 34673568 PMCID: PMC8631598 DOI: 10.1172/jci141051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Microbiology and Immunology
- Department of Pediatrics, and
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Hang Su
- Department of Microbiology and Immunology
| | | | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Harris Goldstein
- Department of Microbiology and Immunology
- Department of Pediatrics, and
| |
Collapse
|
10
|
McCann CD, van Dorp CH, Danesh A, Ward AR, Dilling TR, Mota TM, Zale E, Stevenson EM, Patel S, Brumme CJ, Dong W, Jones DS, Andresen TL, Walker BD, Brumme ZL, Bollard CM, Perelson AS, Irvine DJ, Jones RB. A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies. J Exp Med 2021; 218:212105. [PMID: 33988715 PMCID: PMC8129803 DOI: 10.1084/jem.20201908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This “participant-derived xenograft” model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.
Collapse
Affiliation(s)
- Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY.,Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | | | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Adam R Ward
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC.,PhD Program in Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Elizabeth Zale
- Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Eva M Stevenson
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC.,George Washington University Cancer Center, George Washington University, Washington, DC
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | | | | | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA.,Institute for Medical and Engineering Sciences, Massachusetts Institute of Technology, Cambridge, MA.,Howard Hughes Medical Institute, Chevy Chase, MD
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC.,George Washington University Cancer Center, George Washington University, Washington, DC
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Darrell J Irvine
- Howard Hughes Medical Institute, Chevy Chase, MD.,Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY.,Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
11
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lee PH, Keller MD, Hanley PJ, Bollard CM. Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Front Cell Infect Microbiol 2020; 10:298. [PMID: 32775304 PMCID: PMC7381350 DOI: 10.3389/fcimb.2020.00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) has caused millions of deaths and continues to threaten the health of millions of people worldwide. Despite anti-retroviral therapy (ART) substantially alleviating severity and limiting transmission, HIV has not been eradicated and its persistence can lead to other health concerns such as cancer. The only two cases of HIV cure to date are HIV+ cancer patients receiving an allogeneic hematopoietic stem cell transplantation (allo-HSCT) from a donor with the CCR5 Δ32 mutation. While this approach has not led to such success in other patients and is not applicable to HIV+ individuals without cancer, the encouraging results may point toward a breakthrough in developing a cure strategy for HIV. Adoptive transfer of virus-specific T cells (VSTs) post HSCT has been effectively used to treat and prevent reactivation of latent viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), making VSTs an attractive therapeutic to control HIV rebound. Here we will discuss the potential of using adoptive T cell therapies in combination with other treatments such as HSCT and latency reversing agents (LRAs) to achieve a functional cure for HIV.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Allergy & Immunology, Children's National Hospital, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Ren Y, Huang SH, Patel S, Alberto WDC, Magat D, Ahimovic D, Macedo AB, Durga R, Chan D, Zale E, Mota TM, Truong R, Rohwetter T, McCann CD, Kovacs CM, Benko E, Wimpelberg A, Cannon C, Hardy WD, Bosque A, Bollard CM, Jones RB. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J Clin Invest 2020; 130:2542-2559. [PMID: 32027622 PMCID: PMC7191002 DOI: 10.1172/jci132374] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.
Collapse
Affiliation(s)
- Yanqin Ren
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Szu Han Huang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dean Magat
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dughan Ahimovic
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Amanda B. Macedo
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Ryan Durga
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Elizabeth Zale
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Talia M. Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Thomas Rohwetter
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Chase D. McCann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | | | - W. David Hardy
- Whitman-Walker Health, Washington, DC, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
14
|
Patel S, Hanajiri R, Grant M, Saunders D, Van Pelt S, Keller M, Hanley PJ, Simon G, Nixon DF, Hardy D, Jones RB, Bollard CM. HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:11-20. [PMID: 31720305 PMCID: PMC6838524 DOI: 10.1016/j.omtm.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/03/2019] [Indexed: 11/01/2022]
Abstract
Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Ryo Hanajiri
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Stacey Van Pelt
- GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Michael Keller
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Gary Simon
- Department of Medicine, The George Washington University, Washington, DC 20037, USA
| | - Douglas F Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
15
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
16
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
17
|
In-vivo administration of histone deacetylase inhibitors does not impair natural killer cell function in HIV+ individuals. AIDS 2019; 33:605-613. [PMID: 30830886 DOI: 10.1097/qad.0000000000002112] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Histone deacetylase inhibitors (HDACi) have proven to induce HIV-RNA and antigen expression in resting CD4 T cells of antiretroviral therapy (ART)-treated HIV-infected individuals. However, to achieve viral eradication, immune clearance must follow latency reversal, and thus it is essential to understand the impact of latency reversal agents on immune function. DESIGN Here we evaluate the impact of in-vivo administration of vorinostat (VOR) and panobinostat (PNB) during clinical trials on natural killer (NK) cell function and phenotype. METHODS Cryopreserved peripheral blood mononuclear cells from HIV-positive participants receiving VOR (NCT01319383) or PNB (NCT01680094) were selected to assess the impact of the drugs on cell composition, activation, NK cell phenotype (CD16, NKG2D, NKp30, NKp46 and DNAM-1), cytotoxic activity (CD107a), and interferon (IFN)-γ production. RESULTS No impairment of NK cell function was observed during treatment with either VOR or PNB. An increase in the frequency of CD3CD56 NK cells was consistently observed. Interestingly, after VOR administration, NK cells increased expression of NKp46 and CD16, and showed improved degranulation and IFN-γ production capacity. Moreover, taking together VOR and PNB samples, HIV DNA levels in CD4 cells were negatively correlated with NK cell frequency and NK cell expression of CD16. CONCLUSIONS In-vivo treatment with HDACi does not have measurable negative effects on NK cell function, with some evidence of improved function in vitro. These results have important implications for potential combinatorial approaches to target HIV reservoirs, suggesting that the use of HDACis as a latency reversal agent could be paired with interventions to enhance NK cell activity or recruitment.
Collapse
|
18
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Skinner PJ. Targeting reservoirs of HIV replication in lymphoid follicles with cellular therapies to cure HIV. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/acg2.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela J. Skinner
- Microbiology Research Facility; Veterinary and Biomedical Sciences Department; University of Minnesota; Minneapolis Minnesota
| |
Collapse
|
20
|
Migliori E, Chang M, Muranski P. Restoring antiviral immunity with adoptive transfer of ex-vivo generated T cells. Curr Opin Hematol 2018; 25:486-493. [PMID: 30281036 DOI: 10.1097/moh.0000000000000461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Latent viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (ADV) often reactivate in immunocompromised patients, contributing to poor clinical outcomes. A rapid reconstitution of antiviral responses via adoptive transfer of virus-specific T cells (VSTs) can prevent or eradicate even refractory infections. Here, we evaluate this strategy and the associated methodological, manufacturing and clinical advances. RECENT FINDINGS From the early pioneering but cumbersome efforts to isolate CMV-specific T cell clones, new approaches and techniques have been developed to provide quicker, safer and broader-aimed ex-vivo antigen-specific cells. New manufacturing strategies, such as the use of G-Rex flasks or 'priming' with a library of overlapping viral peptides, allow for culturing greater numbers of cells that could be patient-specific or stored in cell banks for off-the-shelf applications. Rapid isolation of T cells using major histocompatibility complex tetramer or cytokine capture approaches, or genetic reprogramming of cells to target viral antigens can accelerate the generation of potent cellular products. SUMMARY Advances in the ex-vivo generation of VSTs in academic medical centres and as off-the-shelf blood bank-based or commercially produced reagents are likely to result in broader accessibility and possible manufacturing cost reduction of these cell products, and will open new therapeutic prospects for vulnerable and critically ill immunocompromised patients.
Collapse
Affiliation(s)
- Edoardo Migliori
- Columbia Center for Translational Immunology (CCTI), Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
21
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
22
|
Sung JA, Patel S, Clohosey ML, Roesch L, Tripic T, Kuruc JD, Archin N, Hanley PJ, Cruz CR, Goonetilleke N, Eron JJ, Rooney CM, Gay CL, Bollard CM, Margolis DM. HIV-Specific, Ex Vivo Expanded T Cell Therapy: Feasibility, Safety, and Efficacy in ART-Suppressed HIV-Infected Individuals. Mol Ther 2018; 26:2496-2506. [PMID: 30249388 PMCID: PMC6171327 DOI: 10.1016/j.ymthe.2018.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Adoptive T cell therapy has had dramatic successes in the treatment of virus-related malignancies and infections following hematopoietic stem cell transplantation. We adapted this method to produce ex vivo expanded HIV-specific T cells (HXTCs), with the long-term goal of using HXTCs as part of strategies to clear persistent HIV infection. In this phase 1 proof-of-concept study (NCT02208167), we administered HXTCs to antiretroviral therapy (ART)-suppressed, HIV-infected participants. Participants received two infusions of 2 × 107 cells/m2 HXTCs at a 2-week interval. Leukapheresis was performed at baseline and 12 weeks post-infusion to measure the frequency of resting cell infection by the quantitative viral outgrowth assay (QVOA). Overall, participants tolerated HXTCs, with only grade 1 adverse events (AEs) related to HXTCs. Two of six participants exhibited a detectable increase in CD8 T cell-mediated antiviral activity following the two infusions in some, but not all, assays. As expected, however, in the absence of a latency reversing agent, no meaningful decline in the frequency of resting CD4 T cell infection was detected. HXTC therapy in ART-suppressed, HIV-infected individuals appears safe and well tolerated, without any clinical signs of immune activation, likely due to the low residual HIV antigen burden present during ART.
Collapse
Affiliation(s)
- Julia A Sung
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Matthew L Clohosey
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren Roesch
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Tamara Tripic
- Section of Hematology-Oncology, Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancie Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - C Russell Cruz
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clio M Rooney
- Section of Hematology-Oncology, Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol 2018; 53:443-468. [PMID: 29901119 PMCID: PMC6017271 DOI: 10.3892/ijo.2018.4434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental discoveries in the field of biology is the ability to modulate the genome and to monitor the functional outputs derived from genomic alterations. In order to unravel new therapeutic options, scientists had initially focused on inducing genetic alterations in primary cells, in established cancer cell lines and mouse models using either RNA interference or cDNA overexpression or various programmable nucleases [zinc finger nucleases (ZNF), transcription activator-like effector nucleases (TALEN)]. Even though a huge volume of data was produced, its use was neither cheap nor accurate. Therefore, the clustered regularly interspaced short palindromic repeats (CRISPR) system was evidenced to be the next step in genome engineering tools. CRISPR-associated protein 9 (Cas9)-mediated genetic perturbation is simple, precise and highly efficient, empowering researchers to apply this method to immortalized cancerous cell lines, primary cells derived from mouse and human origins, xenografts, induced pluripotent stem cells, organoid cultures, as well as the generation of genetically engineered animal models. In this review, we assess the development of the CRISPR system and its therapeutic applications to a wide range of complex diseases (particularly distinct tumors), aiming at personalized therapy. Special emphasis is given to organoids and CRISPR screens in the design of innovative therapeutic approaches. Overall, the CRISPR system is regarded as an eminent genome engineering tool in therapeutics. We envision a new era in cancer biology during which the CRISPR-based genome engineering toolbox will serve as the fundamental conduit between the bench and the bedside; nonetheless, certain obstacles need to be addressed, such as the eradication of side-effects, maximization of efficiency, the assurance of delivery and the elimination of immunogenicity.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Mihalis Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | |
Collapse
|
24
|
Patel S, Chorvinsky E, Albihani S, Cruz CR, Jones RB, Shpall EJ, Margolis DM, Ambinder RF, Bollard CM. HIV-Specific T Cells Generated from Naive T Cells Suppress HIV In Vitro and Recognize Wide Epitope Breadths. Mol Ther 2018; 26:1435-1446. [PMID: 29724686 DOI: 10.1016/j.ymthe.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022] Open
Abstract
The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Shuroug Albihani
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Conrad Russell Cruz
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David M Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard F Ambinder
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
25
|
Barrett AJ, Prockop S, Bollard CM. Reprint of: Virus-Specific T Cells: Broadening Applicability. Biol Blood Marrow Transplant 2018; 24:S1-S6. [PMID: 29425515 DOI: 10.1016/j.bbmt.2017.12.787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/03/2023]
Abstract
Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT.
Collapse
Affiliation(s)
- A John Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan Prockop
- Pediatric BMT Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Departments of Pediatrics and Microbiology, Immunology and Tropical Medicine, Children's National Medical Center and The George Washington University, Washington, District of Columbia.
| |
Collapse
|
26
|
Yiwen Z, Shilin G, Yingshi C, Lishi S, Baohong L, Chao L, Linghua L, Ting P, Hui Z. Efficient generation of antigen-specific CTLs by the BAFF-activated human B Lymphocytes as APCs: a novel approach for immunotherapy. Oncotarget 2018; 7:77732-77748. [PMID: 27780916 PMCID: PMC5363617 DOI: 10.18632/oncotarget.12792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Efficient antigen presentation is indispensable for cytotoxic T lymphocyte (CTL)-mediated immunotherapy. B-lymphocytes propagated with CD40L have been developed as antigen-presenting cells (APCs), but this capacity needs further optimization. Here, we aimed to expand human B-lymphocytes on a large scale while maintaining their antigen-presenting ability by using both CD40L and B-cell activating factor (BAFF). The addition of BAFF enhanced the expansion efficiency and prolonged the culture time without causing apoptosis of the expanded B-cells. This method thus provided an almost unlimited source of cellular adjuvant to achieve sufficient expansion of CTLs in cases where several rounds of stimulation are required. We also showed that the addition of BAFF significantly enhanced the expression of major costimulatory molecules, CD80 and CD86. Subsequently, the antigen-presenting ability of the B-lymphocytes also increased. Consequently, these B-lymphocytes showed robust CTL responses to inhibit tumor growth after tumor-specific peptide pulses. A similar method induced potent antigen-specific CTL responses, which effectively eradicated human immunodeficiency virus type 1 (HIV-1) latency in CD4 T-lymphocytes isolated from patients receiving suppressive anti-retroviral therapy (ART). Together, our findings indicate that potent antigen-specific CTLs can be generated using BAFF-activated B-lymphocytes as APCs ex vivo. This approach can be applied for CTL-mediated immunotherapy in patients with cancers or chronic viral infections.
Collapse
Affiliation(s)
- Zhang Yiwen
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Gao Shilin
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chen Yingshi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Su Lishi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Luo Baohong
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Liu Chao
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Li Linghua
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, Guangdong, 510080, China
| | - Pan Ting
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhang Hui
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
27
|
Huang SH, Ren Y, Thomas AS, Chan D, Mueller S, Ward AR, Patel S, Bollard CM, Cruz CR, Karandish S, Truong R, Macedo AB, Bosque A, Kovacs C, Benko E, Piechocka-Trocha A, Wong H, Jeng E, Nixon DF, Ho YC, Siliciano RF, Walker BD, Jones RB. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest 2018; 128:876-889. [PMID: 29355843 PMCID: PMC5785246 DOI: 10.1172/jci97555] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Yanqin Ren
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Allison S. Thomas
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Stefanie Mueller
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| | - Adam R. Ward
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Shabnum Patel
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Catherine M. Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Conrad Russell Cruz
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Sara Karandish
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Ronald Truong
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| | - Hing Wong
- Altor Bioscience Corporation, Miramar, Florida, USA
| | - Emily Jeng
- Altor Bioscience Corporation, Miramar, Florida, USA
| | - Douglas F. Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Institute for Medical Engineering and Sciences, MIT, Cambridge, Massachusetts, USA
| | - R. Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Mikulak J, Oriolo F, Zaghi E, Di Vito C, Mavilio D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017; 31:2317-2330. [PMID: 28926399 DOI: 10.1097/qad.0000000000001645] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Natural killer (NK) cells are important effectors of innate immunity playing a key role in the eradication and clearance of viral infections. Over the recent years, several studies have shown that HIV-1 pathologically changes NK cell homeostasis and hampers their antiviral effector functions. Moreover, high levels of chronic HIV-1 viremia markedly impair those NK cell regulatory features that normally regulate the cross talks between innate and adaptive immune responses. These pathogenic events take place early in the infection and are associated with a pathologic redistribution of NK cell subsets that includes the expansion of anergic CD56/CD16 NK cells with an aberrant repertoire of activating and inhibitory receptors. Nevertheless, the presence of specific haplotypes for NK cell receptors and the engagement of NK cell antibody-dependent cell cytotocity have been reported to control HIV-1 infection. This dichotomy can be extremely useful to both predict the clinical outcome of the infection and to develop alternative antiviral pharmacological approaches. Indeed, the administration of antiretroviral therapy in HIV-1-infected patients restores NK cell phenotype and functions to normal levels. Thus, antiretroviral therapy can help to develop NK cell-directed therapeutic strategies that include the use of broadly neutralizing antibodies and toll-like receptor agonists. The present review discusses how our current knowledge of NK cell pathophysiology in HIV-1 infection is being translated both in experimental and clinical trials aimed at controlling the infection and disease.
Collapse
|
29
|
Barrett AJ, Prockop S, Bollard CM. Virus-Specific T Cells: Broadening Applicability. Biol Blood Marrow Transplant 2017; 24:13-18. [PMID: 29032062 DOI: 10.1016/j.bbmt.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
Abstract
Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT.
Collapse
Affiliation(s)
- A John Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan Prockop
- Pediatric BMT Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Departments of Pediatrics and Microbiology, Immunology and Tropical Medicine, Children's National Medical Center and The George Washington University, Washington, District of Columbia.
| |
Collapse
|
30
|
Houghtelin A, Bollard CM. Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol 2017; 8:1272. [PMID: 29075259 PMCID: PMC5641550 DOI: 10.3389/fimmu.2017.01272] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.
Collapse
Affiliation(s)
- Amy Houghtelin
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| |
Collapse
|
31
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
33
|
Sung JA, Sholtis K, Kirchherr J, Kuruc JD, Gay CL, Nordstrom JL, Bollard CM, Archin NM, Margolis DM. Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine 2017; 23:52-58. [PMID: 28803740 PMCID: PMC5605299 DOI: 10.1016/j.ebiom.2017.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 11/26/2022] Open
Abstract
Latently human immunodeficiency virus (HIV)-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR) induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA). The LCA is a quantitative viral outgrowth assay (QVOA) that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period. TAKE HOME MESSAGE VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART)-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catherine M Bollard
- Department of Cellular Therapy, Children's National Medical Center, Washington, DC 20010, United States
| | | | - David M Margolis
- UNC HIV Cure Center; Departments of Medicine; Microbiology & Immunology; UNC Center for AIDS Research, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Kimata JT, Rice AP, Wang J. Challenges and strategies for the eradication of the HIV reservoir. Curr Opin Immunol 2016; 42:65-70. [PMID: 27288651 DOI: 10.1016/j.coi.2016.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/29/2016] [Indexed: 12/31/2022]
Abstract
Despite the success of highly active antiretroviral therapy (HAART) for inhibiting HIV replication and improving clinical outcomes, it fails to cure infection due to the existence of a stable latent proviral reservoir in memory CD4+ T cells. Because of the longevity of these cells harboring transcriptionally silent proviruses, devising strategies to induce viral gene expression so the host immune response can mediate clearance of the infected cells or the cells can undergo virus-induced cell death, has been of considerable recent interest. Here, we review current knowledge of latency, and the challenges to virus induction and eradication. Novel strategies to reactivate HIV reservoirs more effectively, in combination with immunotherapy, could lead to better clearance of the latent HIV reservoir.
Collapse
Affiliation(s)
- Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.
| | - Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
35
|
Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors. Mol Ther 2016; 24:1913-1925. [PMID: 27401039 PMCID: PMC5154472 DOI: 10.1038/mt.2016.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Persistence of human immunodeficiency virus (HIV) in a latent state in long-lived CD4+ T-cells is a major barrier to eradication. Latency-reversing agents that induce direct or immune-mediated cell death upon reactivation of HIV are a possible solution. However, clearance of reactivated cells may require immunotherapeutic agents that are fine-tuned to detect viral antigens when expressed at low levels. We tested the antiviral efficacy of immune-mobilizing monoclonal T-cell receptors against viruses (ImmTAVs), bispecific molecules that redirect CD8+ T-cells to kill HIV-infected CD4+ T-cells. T-cell receptors specific for an immunodominant Gag epitope, SL9, and its escape variants were engineered to achieve supraphysiological affinity and fused to a humanised CD3-specific single chain antibody fragment. Ex vivo polyclonal CD8+ T-cells were efficiently redirected by immune-mobilising monoclonal T-cell receptors against viruses to eliminate CD4+ T-cells from human histocompatibility leukocyte antigen (HLA)-A*0201-positive antiretroviral therapy-treated patients after reactivation of inducible HIV in vitro. The efficiency of infected cell elimination correlated with HIV Gag expression. Immune-mobilising monoclonal T-cell receptors against viruses have potential as a therapy to facilitate clearance of reactivated HIV reservoir cells.
Collapse
|
36
|
Patel S, Jones RB, Nixon DF, Bollard CM. T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy 2016; 18:931-942. [PMID: 27265874 DOI: 10.1016/j.jcyt.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
Although antiretroviral therapy (ART) has been successful in controlling HIV infection, it does not provide a permanent cure, requires lifelong treatment, and HIV-positive individuals are left with social concerns such as stigma. The recent application of T cells to treat cancer and viral reactivations post-transplant offers a potential strategy to control HIV infection. It is known that naturally occurring HIV-specific T cells can inhibit HIV initially, but this response is not sustained in the majority of people living with HIV. Genetically modifying T cells to target HIV, resist infection, and persist in the immunosuppressive environment found in chronically infected HIV-positive individuals might provide a therapeutic solution for HIV. This review focuses on successful preclinical studies and current clinical strategies using T-cell therapy to control HIV infection and mediate a functional cure solution.
Collapse
Affiliation(s)
- Shabnum Patel
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
37
|
Abstract
After the success of combination antiretroviral therapy (cART) to treat HIV infection, the next great frontier is to cure infected persons, a formidable challenge. HIV persists in a quiescent state in resting CD4+ T cells, where the replicative enzymes targeted by cART are not active. Although low levels of HIV transcripts are detectable in these resting cells, little to no viral protein is produced, rendering this reservoir difficult to detect by the host CD8+ T cell response. However, recent advances suggest that this state of latency might be pharmacologically reversed, resulting in viral protein expression without the adverse effects of massive cellular activation. Emerging data suggest that with this approach, infected cells will not die of viral cytopathic effects, but might be eliminated if HIV-specific CD8+ T cells can be effectively harnessed. Here, we address the antiviral properties of HIV-specific CD8+ T cells and how these cells might be harnessed to greater effect toward achieving viral eradication or a functional cure.
Collapse
|
38
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
39
|
Sung JA, Lam S, Garrido C, Archin N, Rooney CM, Bollard CM, Margolis DM. Expanded cytotoxic T-cell lymphocytes target the latent HIV reservoir. J Infect Dis 2015; 212:258-63. [PMID: 25589335 PMCID: PMC4490234 DOI: 10.1093/infdis/jiv022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/30/2014] [Indexed: 02/06/2023] Open
Abstract
Enhanced human immunodeficiency virus (HIV)-specific immunity may be required for HIV eradication. Administration of autologous, ex vivo expanded, virus-specific, cytotoxic T-lymphocytes derived from HIV-infected patients on suppressive antiretroviral therapy (HXTCs) are a powerful tool for proof-of-concept studies. Broadly specific, polyclonal HXTCs resulting from ex vivo expansion demonstrated improved control of autologous reservoir virus compared to bulk CD8(+) T cells in viral inhibition assays. Furthermore, patient-derived HXTCs were able to clear latently infected autologous resting CD4(+) T cells following exposure to the latency-reversing agent, vorinostat. HXTCs will be ideal reagents to administer with precise control in future in vivo studies in combination with latency-reversing agents.
Collapse
Affiliation(s)
| | - Sharon Lam
- Department of Molecular Virology and Microbiology, Department of Immunology, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | | | | | - Cliona M. Rooney
- Department of Molecular Virology and Microbiology, Department of Immunology, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Catherine M. Bollard
- Department of Cellular Therapy, Children's National Medical Center, Washington, District of Columbia
| | - David M. Margolis
- Department of Medicine
- Department of Microbiology and Immunology
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill
| |
Collapse
|
40
|
Barrett AJ, Bollard CM. The coming of age of adoptive T-cell therapy for viral infection after stem cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:62. [PMID: 25992361 DOI: 10.3978/j.issn.2305-5839.2015.01.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Austin John Barrett
- 1 National Heart Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA ; 2 Children's National Health System and The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- 1 National Heart Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA ; 2 Children's National Health System and The George Washington University, Washington, DC, USA
| |
Collapse
|
41
|
Focosi D, Maggi F, Ceccherini-Nelli L, Pistello M. Cell therapies for treatment of human immunodeficiency virus infection. Rev Med Virol 2015; 25:156-74. [PMID: 25727480 DOI: 10.1002/rmv.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
After the serendipitous discovery of HIV eradication in the "Berlin patient", interest has grown in curing HIV infection by replacing the patient's replication-competent blood cells with infection-resistant ones. At the same time, induced pluripotent stem cell technologies and genetic engineering have boosted cell therapy transfer into the clinic. Currently available cell therapy approaches to attempt to cure HIV infection include the following: (1) Transplantation of autologous or allogeneic cells spontaneously resistant or edited to resist HIV infection; (2) Transplantation of autologous T-lymphocytes spontaneously targeting or redirected against HIV; and (3) Transplantation of autologous cells engineered to work as anti-HIV antibody factories. We review here the preliminary results and potential for future applications of these approaches.
Collapse
Affiliation(s)
- Daniele Focosi
- Retrovirus Center and Virology Section, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|