1
|
Pavlou M, Probst M, Kaplan L, Filippova E, Prieve AR, Rieke F, Reh TA. AAV-mediated expression of proneural factors stimulates neurogenesis from adult Müller glia in vivo. EMBO Mol Med 2025; 17:722-746. [PMID: 40050705 PMCID: PMC11982270 DOI: 10.1038/s44321-025-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
The lack of regeneration in the human central nervous system (CNS) has major health implications. To address this, we previously used transgenic mouse models to show that neurogenesis can be stimulated in the adult mammalian retina by driving regeneration programs that other species activate following injury. Expression of specific proneural factors in adult Müller glia causes them to re-enter the cell cycle and give rise to new neurons following retinal injury. To bring this strategy closer to clinical application, we now show that neurogenesis can also be stimulated when delivering these transcription factors to Müller glia using adeno-associated viral (AAV) vectors. AAV-mediated neurogenesis phenocopies the neurogenesis we observed from transgenic animals, with different proneural factor combinations giving rise to distinct neuronal subtypes in vivo. Vector-borne neurons are morphologically, transcriptomically and physiologically similar to bipolar and amacrine/ganglion-like neurons. These results represent a key step forward in developing a cellular reprogramming approach for regenerative medicine in the CNS.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lew Kaplan
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Elizaveta Filippova
- Department of Agricultural and Biological Engineering, Purdue University, Lafayette, IN, USA
| | - Aric R Prieve
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
O’Driscoll EE, Arora S, Lang JF, Davidson BL, Shalem O. CRISPR screen reveals modifiers of rAAV production including known rAAV infection genes playing an unexpected role in vector production. Mol Ther Methods Clin Dev 2025; 33:101408. [PMID: 39980803 PMCID: PMC11840188 DOI: 10.1016/j.omtm.2025.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are an effective and well-established tool in the growing gene therapy field, with five U.S. Food and Drug Administration-approved AAV-mediated gene therapies already on the market and numerous more in clinical trials. However, manufacturing rAAV vectors is an expensive, timely, and labor-intensive process that limits the commercial use of AAV-mediated gene therapies. To address this limitation, we screened producer cells for genes that could be targeted to increase rAAV yield. Specifically, we performed a CRISPR-based genome-wide knockout (KO) screen in human embryonic kidney (HEK) 293 cells using an antibody specific to intact AAV2 capsids coupled with flow cytometry to identify genes that modulate rAAV production. We discovered that the KO of a group of heparan sulfate biosynthesis genes previously implicated in rAAV infectivity decreased rAAV production. Additionally, we identified several vesicular trafficking proteins for which KO in HEK 293 cells increased rAAV yields. Our findings provide evidence that host proteins associated with viral infection may have also been co-opted for viral assembly and that the genetic makeup of viral producer cells can be manipulated to increase particle yield.
Collapse
Affiliation(s)
- Emily E. O’Driscoll
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sakshi Arora
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan F. Lang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L. Davidson
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Sun L, Zhang HB, Jiang HC, Li W, Li MK, Yang XY, Cai YY, Xue KK, Gou YS, Liu XY, Liang Q, Zuo LG, Hu JG, Qian F. LMO7 drives profibrotic fibroblast polarization and pulmonary fibrosis in mice through TGF-β signalling. Acta Pharmacol Sin 2025:10.1038/s41401-025-01488-9. [PMID: 40000880 DOI: 10.1038/s41401-025-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lethal disease. Profibrotic fibroblast polarization during wound healing is one of the main causes of IPF, and the molecular mechanisms involved have yet to be fully determined. LIM domain-only protein 7 (LMO7), which acts as an E3 ubiquitin ligase, is highly expressed in the lung, brain and heart and plays important roles in embryonic development, cancer progression, inflammatory bowel disease and Dreifuss muscular dystrophy (EDMD). In this study, we investigated the role of LMO7 in pulmonary fibrosis. Bleomycin (BLM)-induced lung fibrosis was established in mice. For AAV-mediated gene therapy, AAV-Lmo7 shRNA (AAV-Lmo7 shRNA) was intratracheally administered 6 days before BLM injection. Through transcriptome analysis, we found that the expression of LMO7 was significantly upregulated in the fibroblasts of IPF patients and BLM-induced mice. Knockdown of LMO7 impaired the profibrotic phenotype of fibroblasts in BLM-treated mice and in primary lung fibroblasts stimulated with TGF-β in vitro. We observed that LMO7 binds to SMAD7, mediating its degradation by polyubiquitination of lysine 70 and increasing the stability of TGF-β receptor 1 (TGFβR1). Finally, intratracheal administration of adeno-associated virus (AAV)-mediated Lmo7 shRNA significantly ameliorated the progression of BLM-induced lung fibrosis. Our results suggest that LMO7 is a promising target for blocking profibrotic fibroblast polarization for the treatment of fibrotic lung disease. A model for the role of LMO7 in TGF-β/SMAD signaling during pulmonary fibrosis. During pulmonary fibrosis, ubiquitin E3 ligase LMO7 is up-regulated, and binds with. SMAD7. LMO7 mediates the ubiquitination of SMAD7 on Lysine 70, leading to its degradation, and further enhances the stability of transforming growth factor-beta receptor 1 (TGFβR1).
Collapse
Affiliation(s)
- Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Bo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Chao Jiang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng-Kai Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan-Yuan Cai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Ke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Sen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yue Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Lu-Gen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jian-Guo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
4
|
Wu F, Chen G, Hu R, Liu P, Lou J, Zhao W, He Z, Sha S, Zheng Y. AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408873. [PMID: 39776318 DOI: 10.1002/advs.202408873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults. In this study, we demonstrated that expression of a key AAV receptor (AAVR, Kiaa0319l, or Au040320) in OHCs and vestibular hair cells decreases significantly in mature mice and AAV particles directly interact with AAVR by forming complexes. Consequently, antibody blockage of AAVR significantly inhibits AAV transduction in sensory hair cells in cochlear explants. Moreover, use of AAVR knockout mice confirms inhibition of AAV transduction in sensory hair cells in vivo. Finally, conditional overexpression of AAVR in sensory hair cells of adult mice successfully restores AAV transduction efficiency in OHCs and vestibular hair cells. In conclusion, this strong evidence that AAVR is essential for AAV transduction in sensory hair cells will help to increase the efficacy of future gene therapy in inner ear.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Peiwen Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| |
Collapse
|
5
|
Zhang L, Tan F, Qi J, Lu Y, Wang X, Yang X, Chen X, Zhang X, Fan J, Zhou Y, Peng L, Li N, Xu L, Yang S, Chai R. AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402166. [PMID: 39556694 DOI: 10.1002/advs.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness. It has successfully restored hearing function in >20 types of genetic deafness model mice and can almost completely cure patients with hereditary autosomal recessvie deafness 9 (DFNB9) caused by the OTOFERLIN (OTOF) mutation, thus serving as a translational paradigm for gene therapy for other forms of genetic deafness. However, due to the complexity of the inner ear structure, the diverse nature of deafness genes, and variations in transduction efficiency among different types of inner ear cells targeted by adeno-associated virus (AAV), precision gene therapy approaches are required for different genetic forms of deafness. This review provides a comprehensive overview of gene therapy for hereditary deafness, including preclinical studies and recent research advancements in this field as well as challenges associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyan Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinru Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jinyi Fan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Li Peng
- Otovia Therapeutics Inc., Suzhou, 215101, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
6
|
Shastry S, Barbieri E, Minzoni A, Chu W, Johnson S, Stoops M, Pancorbo J, Gilleskie G, Ritola K, Crapanzano MS, Daniele MA, Menegatti S. Serotype-agnostic affinity purification of adeno-associated virus (AAV) via peptide-functionalized chromatographic resins. J Chromatogr A 2024; 1734:465320. [PMID: 39217737 DOI: 10.1016/j.chroma.2024.465320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Adeno-associated viruses (AAVs) have emerged as a prominent family of vectors for gene delivery, providing therapeutic options to diseases once deemed incurable. At the same time, they necessitate efficient and affordable purification methods that can be platformed to serve all AAV serotypes. Current chromatographic tools, while affording high product purity, fail to bind certain serotypes, provide limited yield and lifetime, and impose harsh elution conditions that can compromise the vector's activity and safety. Addressing these challenges, this work demonstrates the application of new peptide ligands as the first serotype-agnostic technology for AAV purification by affinity chromatography. Our study reveals a pH-dependent affinity interaction: AAV2, AAV3, AAV6, AAV9, and AAVrh.10 are effectively captured at neutral pH, while binding AAV1, AAV5, AAV7, and AAV8 is stronger in a slightly acidic environment. The elution of bound AAVs was achieved using magnesium chloride at neutral pH for all serotypes, consistently affording capsid yields above 50% and genome yields above 80%, together with a >100-fold reduction in host cell proteins and nucleic acids. In particular, peptide ligand A10 exhibited remarkable binding capacity (> 1014 vp per mL of resin) and purification performance for all AAV serotypes, demonstrating broad applicability for gene therapy manufacturing. Finally, this work introduces novel alkaline-stable variants of A10 and demonstrates their use as the first affinity ligands capable of performing multiple cycles of AAV2, AAV8, and AAV9 purification with intermediate caustic cleaning without loss of capacity or product quality. Collectively, these results demonstrate the promise of this technology to further the impact and affordability of gene therapy.
Collapse
Affiliation(s)
- Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Stephanie Johnson
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Mark Stoops
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Kimberly Ritola
- Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | | | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA.
| |
Collapse
|
7
|
Choules MP, Bonate PL, Heo N, Weddell J. Prospective approaches to gene therapy computational modeling - spotlight on viral gene therapy. J Pharmacokinet Pharmacodyn 2024; 51:399-416. [PMID: 37848637 DOI: 10.1007/s10928-023-09889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Clinical studies have found there still exists a lack of gene therapy dose-toxicity and dose-efficacy data that causes gene therapy dose selection to remain elusive. Model informed drug development (MIDD) has become a standard tool implemented throughout the discovery, development, and approval of pharmaceutical therapies, and has the potential to inform dose-toxicity and dose-efficacy relationships to support gene therapy dose selection. Despite this potential, MIDD approaches for gene therapy remain immature and require standardization to be useful for gene therapy clinical programs. With the goal to advance MIDD approaches for gene therapy, in this review we first provide an overview of gene therapy types and how they differ from a bioanalytical, formulation, route of administration, and regulatory standpoint. With this biological and regulatory background, we propose how MIDD can be advanced for AAV-based gene therapies by utilizing physiological based pharmacokinetic modeling and quantitative systems pharmacology to holistically inform AAV and target protein dynamics following dosing. We discuss how this proposed model, allowing for in-depth exploration of AAV pharmacology, could be the key the field needs to treat these unmet disease populations.
Collapse
Affiliation(s)
- Mary P Choules
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Peter L Bonate
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA.
| | - Nakyo Heo
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Jared Weddell
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| |
Collapse
|
8
|
O'Driscoll EE, Arora S, Lang JF, Davidson BL, Shalem O. CRISPR screen for rAAV production implicates genes associated with infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613356. [PMID: 39345423 PMCID: PMC11429925 DOI: 10.1101/2024.09.17.613356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are an effective and well-established tool in the growing gene therapy field, with five FDA-approved AAV-mediated gene therapies already on the market and numerous more in clinical trials. However, manufacturing rAAV vectors is an expensive, timely, and labor-intensive process that limits the commercial use of AAV-mediated gene therapies. To address this limitation, we screened producer cells for genes that could be targeted to increase rAAV yield. Specifically, we performed a CRISPR-based genome-wide knockout screen in HEK 293 cells using an antibody specific to intact AAV2 capsids coupled with flow cytometry to identify genes that modulate rAAV production. We discovered that the knockout of a group of heparan sulfate biosynthesis genes previously implicated in rAAV infectivity decreased rAAV production. Additionally, we identified several vesicular trafficking proteins for which knockout in HEK 293 cells increased rAAV yields. Our findings provide evidence that host proteins associated with viral infection may have also been co-opted for viral assembly and that the genetic makeup of viral producer cells can be manipulated to increase particle yield.
Collapse
Affiliation(s)
- Emily E O'Driscoll
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Equal contribution
| | - Sakshi Arora
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Equal contribution
| | - Jonathan F Lang
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
10
|
Wang H, Li R, Sadekar S, Kamath AV, Shen BQ. A novel approach to quantitate biodistribution and transduction of adeno-associated virus gene therapy using radiolabeled AAV vectors in mice. Mol Ther Methods Clin Dev 2024; 32:101326. [PMID: 39286334 PMCID: PMC11404148 DOI: 10.1016/j.omtm.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
An understanding of recombinant adeno-associated virus (AAV) biodistribution profiles is an important element of a preclinical development program. Here, we have developed a radiolabeling strategy utilizing the co-delivery of 125I (non-residualizing) and 111In (residualizing) radionuclide-conjugated AAVs to provide a detailed distribution quantification at tissue level delineating between the cellular internalized AAV (degraded, 111In-125I) and AAV remaining in the extracellular matrix (intact, 125I). This labeling method has been successfully applied to AAV9 and AAV-PHP.eB as tool molecules without altering the physical properties and biological activities of the AAVs. Upon labeling with either of the radioactive probes, these molecules were systemically injected into C57BL/6 mice. The biodistribution results indicate that AAVs, with a fast distribution profile, were mainly located in the extracellular matrix of highly perfused organs such as liver and spleen at early time points, leading to a difference between capsid quantification and vector genome quantification. The results suggest that the 125I-AAV/111In-AAV co-delivery approach offers a robust and efficient analytical strategy to investigate the detailed tissue distribution of AAV vectors, including both vector genome and protein capsids. This novel method has the potential to be applied to capsid optimization, selection, and lead candidate development.
Collapse
Affiliation(s)
- Hongzhi Wang
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ran Li
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shraddha Sadekar
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
11
|
Willimann M, Tiyaboonchai A, Adachi K, Li B, Waldburger L, Nakai H, Grompe M, Thöny B. AAV Capsid Screening for Translational Pig Research Using a Mouse Xenograft Liver Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596409. [PMID: 38853940 PMCID: PMC11160762 DOI: 10.1101/2024.05.29.596409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.
Collapse
Affiliation(s)
- Melanie Willimann
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Amita Tiyaboonchai
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Kei Adachi
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Bin Li
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Lea Waldburger
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Hiroyuki Nakai
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Markus Grompe
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Beat Thöny
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| |
Collapse
|
12
|
Furuno K, Suzuki K, Sakai S. Transduction and Genome Editing of the Heart with Adeno-Associated Viral Vectors Loaded onto Electrospun Polydioxanone Nonwoven Fabrics. Biomolecules 2024; 14:506. [PMID: 38672522 PMCID: PMC11047894 DOI: 10.3390/biom14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we introduce electrospun polydioxanone (PDO) nonwoven fabrics as a platform for the delivery of adeno-associated virus (AAV) vectors for transduction and genome editing by adhering them to organ surfaces, including the heart. AAV vectors were loaded onto the PDO fabrics by soaking the fabrics in a solution containing AAV vectors. In vitro, the amount of AAV vectors loaded onto the fabrics could be adjusted by changing their concentration in the solution, and the number of cells expressing the green fluorescent protein (GFP) encoded by the AAV vectors increased in correlation with the increasing amount of loaded AAV vectors. In vivo, both transduction and genome editing resulted in the observation of GFP expression around AAV vector-loaded PDO fabrics attached to the surfaces of mouse hearts, indicating effective transduction and expression at the target site. These results demonstrate the great potential of electrospun PDO nonwoven fabrics carrying therapeutic AAV vectors for gene therapy.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
| | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
- Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
| |
Collapse
|
13
|
Moroncini G, Svegliati S, Grieco A, Cuccioloni M, Mozzicafreddo M, Paolini C, Agarbati S, Spadoni T, Amoresano A, Pinto G, Chen Q, Benfaremo D, Tonnini C, Senzacqua M, Alizzi S, Nieto K, Finke D, Viola N, Amico D, Galgani M, Gasparini S, Zuccatosta L, Menzo S, Müller M, Kleinschmidt J, Funaro A, Giordano A, La Cava A, Dorfmüller P, Amoroso A, Pucci P, Pezone A, Avvedimento EV, Gabrielli A. Adeno-Associated Virus Type 5 Infection via PDGFRα Is Associated With Interstitial Lung Disease in Systemic Sclerosis and Generates Composite Peptides and Epitopes Recognized by the Agonistic Immunoglobulins Present in Patients With Systemic Sclerosis. Arthritis Rheumatol 2024; 76:620-630. [PMID: 37975161 DOI: 10.1002/art.42746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Gianluca Moroncini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | - Qingxin Chen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Devis Benfaremo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Silvia Alizzi
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | - Karen Nieto
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doreen Finke
- Università Politecnica delle Marche, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Stefano Gasparini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Lina Zuccatosta
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Menzo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Antonio La Cava
- Federico II University, Napoli, Italy
- University of California, Los Angeles, CA
| | | | - Antonio Amoroso
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | | | | | | | - Armando Gabrielli
- Università Politecnica delle Marche, Ancona, Italy, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy, and Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
15
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Furuno K, Elvitigala KCML, Suzuki K, Sakai S. Local delivery of adeno-associated viral vectors with electrospun gelatin nanofiber mats. J Biomed Mater Res B Appl Biomater 2024; 112:e35345. [PMID: 37902433 DOI: 10.1002/jbm.b.35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/28/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
Adeno-associated viral (AAV) vectors play a significant role in gene therapy, yet the typical delivery methods, like systemic and local AAV injections, often lead to unintended off-target distribution and tissue damage due to injection. In this study, we propose a localized delivery approach for AAV vectors utilizing electrospun gelatin nanofiber mats, which are cross-linked with glutaraldehyde. The AAV vectors, which encoded a green fluorescent protein (GFP), were loaded onto the mats by immersing them in a solution containing the vectors. The amount of AAV vector loaded onto the mats increased as the vector concentration in the solution increased. The loaded AAV vector was steadily released into the cell culture medium over 3 days. The mats incubated for 3 days also showed the ability to transduce into the cells cultured on them. We evaluated the effectiveness of this delivery system by attaching the mats to mouse livers. GFP expression was visible on the surface of the liver beneath the attached mats, but not in areas in direct contact with the mats. These findings suggest that the attachment of AAV vector-loaded electrospun gelatin nanofiber mats to a target site present a promising solution for localized gene delivery while reducing off-target distribution.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Yoshida K, Tsunekawa Y, Kurihara K, Watanabe K, Makino-Manabe Y, Wada M, Tanaka T, Ide T, Okada T. Engineering a highly durable adeno-associated virus receptor for analytical applications. Mol Ther Methods Clin Dev 2023; 31:101157. [PMID: 38152699 PMCID: PMC10751509 DOI: 10.1016/j.omtm.2023.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
Adeno-associated virus (AAV) is a major viral vector used in gene therapy. There are multiple AAV serotypes, and many engineered AAV serotypes are developed to alter their tissue tropisms with capsid modification. The universal AAV receptor (AAVR) is an essential receptor for multiple AAV serotypes. Since most AAV serotypes used in gene therapy infect cells via interaction with AAVR, the quantification of the vector-binding ability of AAV to AAVR could be an important quality check for therapeutic AAV vectors. To enable a steady evaluation of the AAV-AAVR interaction, we created an engineered AAVR through mutagenesis. Engineered AAVR showed high durability against acid while retaining its AAV-binding activity. An affinity chromatography column with the engineered AAVR was also developed. This column enabled repeated binding and acid dissociation measurements of AAVR with various AAV serotypes. Our data showed that the binding affinities of AAV2 to AAVR were diverse among serotypes, providing insight into the relationship with the infection efficiency of AAV vectors. Thus, this affinity column can be used in process development for quality checks, quantitating capsid titers, and affinity purification of AAV vectors. Furthermore, this column may serve as a useful tool in novel AAV vector capsid engineering.
Collapse
Affiliation(s)
- Kouhei Yoshida
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kento Kurihara
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Kazuya Watanabe
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yuriko Makino-Manabe
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Mikako Wada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Tanaka
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Teruhiko Ide
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Richter K, Wurm C, Strasser K, Bauer J, Bakou M, VerHeul R, Sternisha S, Hawe A, Salomon M, Menzen T, Bhattacharya A. Purity and DNA content of AAV capsids assessed by analytical ultracentrifugation and orthogonal biophysical techniques. Eur J Pharm Biopharm 2023; 189:68-83. [PMID: 37196871 DOI: 10.1016/j.ejpb.2023.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Development and manufacturing adeno-associated virus (AAV)-based vectors for gene therapy requires suitable analytical methods to assess the quality of the formulations during development, as well as the quality of different batches and the consistency of the processes. Here, we compare biophysical methods to characterize purity and DNA content of viral capsids from five different serotypes (AAV2, AAV5, AAV6, AAV8, and AAV9). For this purpose, we apply multiwavelength sedimentation velocity analytical ultracentrifugation (SV-AUC) to obtain the species' contents and to derive the wavelength-specific correction factors for the respective insert-size. In an orthogonal manner we perform anion exchange chromatography (AEX) and UV-spectroscopy and the three methods yield comparable results on empty/filled capsid contents with these correction factors. Whereas AEX and UV-spectroscopy can quantify empty and filled AAVs, only SV-AUC could identify the low amounts of partially filled capsids present in the samples used in this study. Finally, we employ negative-staining transmission electron microscopy and mass photometry to support the empty/filled ratios with methods that classify individual capsids. The obtained ratios are consistent throughout the orthogonal approaches as long as no other impurities and aggregates are present. Our results show that the combination of selected orthogonal methods can deliver consistent empty/filled contents on non-standard genome sizes, as well as information on other relevant critical quality attributes, such as AAV capsid concentration, genome concentration, insert size length and sample purity to characterize and compare AAV preparations.
Collapse
Affiliation(s)
- Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| | - Christine Wurm
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Kim Strasser
- Sirion Biotech GmbH, am Haag 6, 82166 Gräfelfing, Germany
| | - Jana Bauer
- Sirion Biotech GmbH, am Haag 6, 82166 Gräfelfing, Germany
| | - Maria Bakou
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Ross VerHeul
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA
| | - Shawn Sternisha
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | | | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Akash Bhattacharya
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA.
| |
Collapse
|
19
|
López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The Structures and Functions of Parvovirus Capsids and Missing Pieces: the Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J Virol 2023; 97:e0016123. [PMID: 37367301 PMCID: PMC10373561 DOI: 10.1128/jvi.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep 2023; 13:8436. [PMID: 37231038 PMCID: PMC10212940 DOI: 10.1038/s41598-023-35547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Although more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dylan Frabutt
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Junping Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Jang S, Shen HK, Ding X, Miles TF, Gradinaru V. Structural basis of receptor usage by the engineered capsid AAV-PHP.eB. Mol Ther Methods Clin Dev 2022; 26:343-354. [PMID: 36034770 PMCID: PMC9382559 DOI: 10.1016/j.omtm.2022.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Adeno-associated virus serotype 9 (AAV9) is a promising gene therapy vector for treating neurodegenerative diseases due to its ability to penetrate the blood-brain barrier. PHP.eB was engineered from AAV9 by insertion of a 7-amino acid peptide and point mutation of neighboring residues, thereby enhancing potency in the central nervous system. Here, we report a 2.24-Å resolution cryo-electron microscopy structure of PHP.eB, revealing conformational differences from other 7-mer insertion capsid variants. In PHP.eB, the 7-mer loop adopts a bent conformation, mediated by an interaction between engineered lysine and aspartate residues. Further, we identify PKD2 as the main AAV receptor (AAVR) domain recognizing both AAV9 and PHP.eB and find that the PHP.eB 7-mer partially destabilizes this interaction. Analysis of previously reported AAV structures together with our pull-down data demonstrate that the 7-mer topology determined by the lysine-aspartate interaction dictates AAVR binding strength. Our results suggest that PHP.eB's altered tropism may arise from both an additional interaction with LY6A and weakening of its AAVR interaction. Changing the insertion length, but not sequence, modifies PKD2 binding affinity, suggesting that a steric clash impedes AAVR binding. This research suggests improved library designs for future AAV selections to identify non-LY6A-dependent vectors and modulate AAVR interaction strength.
Collapse
Affiliation(s)
- Seongmin Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao K Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy F Miles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Nakahama R, Saito A, Nobe S, Togashi K, Suzuki IK, Uematsu A, Emoto K. The tyrosine capsid mutations on retrograde adeno-associated virus accelerates gene transduction efficiency. Mol Brain 2022; 15:70. [PMID: 35941689 PMCID: PMC9358834 DOI: 10.1186/s13041-022-00957-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Adeno-associated virus (AAV) vector is a critical tool for gene delivery through its durable transgene expression and safety profile. Among many serotypes, AAV2-retro is typically utilized for dissecting neural circuits with its retrograde functionality. However, this vector requires a relatively long-term incubation period (over 2 weeks) to obtain enough gene expression levels presumably due to low efficiency in gene transduction. Here, we aimed to enhance transgene expression efficiency of AAV2-retro vectors by substituting multiple tyrosine residues with phenylalanines (YF mutations) in the virus capsid, which is previously reported to improve the transduction efficiency of AAV2-infected cells by evading host cell responses. We found that AAV2-retro with YF mutations (AAV2-retroYF)-mediated transgene expression was significantly enhanced in the primary culture of murine cortical neurons at 1 week after application, comparable to that of the conventional AAV2-retro at 2 week after application. Moreover, transgene expressions in the retrogradely labeled neurons mediated by AAV2-retroYF were significantly increased both in the cortico-cortical circuits and in the subcortical circuits in vivo, while the retrograde functionality of AAV2-retroYF was equally effective as that of AAV2-retro. Our data indicate that YF mutations boost AAV2-retro-mediated retrograde gene transduction in vivo and suggest that the AAV2-retroYF should be useful for efficient targeting of the projection-defined neurons, which is suited to applications for dissecting neural circuits during development as well as future clinical applications.
Collapse
Affiliation(s)
- Ryota Nakahama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Aika Saito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sensho Nobe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Uematsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
24
|
Transduction of Brain Neurons in Juvenile Chum Salmon ( Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring. Int J Mol Sci 2022; 23:ijms23094947. [PMID: 35563338 PMCID: PMC9101580 DOI: 10.3390/ijms23094947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the postembryonic development of the cerebellum in chum salmon, Oncorhynchus keta, the lateral part of the juvenile cerebellum gives rise to the caudomedial part of the definitive cerebellum, which is consistent with the data reported for zebrafish and mouse cerebellum. Thus, the topographic organization of the cerebellum and its efferents are similar between fish (chum salmon and zebrafish) and mammals, including mice and humans. The distributions of recombinant adeno-associated viral vectors (rAAVs) after an injection of the base vector into the cerebellum have shown highly specific patterns of transgene expression in bipolar neurons in the latero-caudal lobe of the juvenile chum tectum opticum. The distribution of rAAVs in the dorsal thalamus, epithalamus, nucleus rotundus, and pretectal complex indicates the targeted distribution of the transgene via the thalamo-cerebellar projections. The detection of GFP expression in the cells of the epiphysis and posterior tubercle of juvenile chum salmon is associated with the transgene’s distribution and with the cerebrospinal fluid flow, the brain ventricles and its outer surface. The direct delivery of the rAAV into the central nervous system by intracerebroventricular administration allows it to spread widely in the brain. Thus, the presence of special projection areas in the juvenile chum salmon cerebellum, as well as outside it, and the identification of the transgene’s expression in them confirm the potential ability of rAAVs to distribute in both intracerebellar and afferent and efferent extracerebellar projections of the cerebellum.
Collapse
|
25
|
Meumann N, Schmithals C, Elenschneider L, Hansen T, Balakrishnan A, Hu Q, Hook S, Schmitz J, Bräsen JH, Franke AC, Olarewaju O, Brandenberger C, Talbot SR, Fangmann J, Hacker UT, Odenthal M, Ott M, Piiper A, Büning H. Hepatocellular Carcinoma Is a Natural Target for Adeno-Associated Virus (AAV) 2 Vectors. Cancers (Basel) 2022; 14:cancers14020427. [PMID: 35053588 PMCID: PMC8774135 DOI: 10.3390/cancers14020427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gene therapy is a novel approach to treat diseases by introducing corrective genetic information into target cells. Adeno-associated virus vectors are the most frequently applied gene delivery tools for in vivo gene therapy and are also studied as part of innovative anticancer strategies. Here, we report on the natural preference of AAV2 vectors for hepatocellular carcinoma (HCC) compared to nonmalignant liver cells in mice and human tissue. This preference in transduction is due to the improved intracellular processing of AAV2 vectors in HCC, resulting in significantly more vector genomes serving as templates for transcription in the cell nucleus. Based on this natural tropism for HCC, novel therapeutic strategies can be designed or existing therapeutic approaches can be strengthened as they currently result in only a minor improvement of the poor prognosis for most liver cancer patients. Abstract Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current—or develop novel—strategies for treating HCC.
Collapse
Affiliation(s)
- Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Christian Schmithals
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
| | - Leroy Elenschneider
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Asha Balakrishnan
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Qingluan Hu
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Sebastian Hook
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Ann-Christin Franke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
| | - Olaniyi Olarewaju
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Josef Fangmann
- KRH Klinikum Siloah, Liver Center Hannover (LCH), 30459 Hannover, Germany;
| | - Ulrich T. Hacker
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- Institute of Pathology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael Ott
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-511-532-5106
| |
Collapse
|
26
|
AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 2022; 25:106-115. [PMID: 34887588 DOI: 10.1038/s41593-021-00969-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.
Collapse
|
27
|
Bennett A, Hull J, Jolinon N, Tordo J, Moss K, Binns E, Mietzsch M, Hagemann C, Linden RM, Serio A, Chipman P, Sousa D, Broecker F, Seeberger P, Henckaerts E, McKenna R, Agbandje-McKenna M. Comparative structural, biophysical, and receptor binding study of true type and wild type AAV2. J Struct Biol 2021; 213:107795. [PMID: 34509611 PMCID: PMC9918372 DOI: 10.1016/j.jsb.2021.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 01/25/2023]
Abstract
Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joshua Hull
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nelly Jolinon
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | - Katie Moss
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Enswert Binns
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cathleen Hagemann
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | | | - Andrea Serio
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Chipman
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Duncan Sousa
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, 89 Chieftan Way Rm 119, Tallahassee, FL 32306, USA
| | - Felix Broecker
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter Seeberger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Macdonald J, Marx J, Büning H. Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1096-1119. [PMID: 34662226 DOI: 10.1089/hum.2021.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Closing the gap in knowledge on the cause of neurodegenerative disorders is paving the way toward innovative treatment strategies, among which gene therapy has emerged as a top candidate. Both conventional gene therapy and genome editing approaches are being developed, and a great number of human clinical trials are ongoing. Already 2 years ago, the first gene therapy for a neurodegenerative disease, spinal muscular atrophy type 1 (SMA1), obtained market approval. To realize such innovative strategies, gene therapy delivery tools are key assets. Here, we focus on recombinant adeno-associated virus (AAV) vectors and report on strategies to improve first-generation vectors. Current efforts focus on the viral capsid to modify the host-vector interaction aiming at increasing the efficacy of target cell transduction, at simplifying vector administration, and at reducing the risk of vector dose-related side effects.
Collapse
Affiliation(s)
- Josephine Macdonald
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Sherpa C, Le Grice SFJ. Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Curr HIV Res 2021; 18:114-131. [PMID: 32039686 DOI: 10.2174/1570162x18666200210121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
30
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
31
|
Chen W, Yao S, Wan J, Tian Y, Huang L, Wang S, Akter F, Wu Y, Yao Y, Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J Control Release 2021; 333:129-138. [PMID: 33775685 DOI: 10.1016/j.jconrel.2021.03.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
The presence of the blood-brain barrier (BBB) remains a challenge in the treatment of central nervous system (CNS) diseases, as it hinders the infiltration of many therapeutic drugs into the brain parenchyma. Therefore, developing efficacious pharmacological agents that can traverse the BBB is crucial for optimal treatment of diseases of the CNS such as neurodegenerative conditions and brain tumors. Adeno-associated virus (AAV), one of the most promising gene therapy vectors, has been shown to cross the BBB safely and is non-pathogenic in nature and therefore has been utilized for numerous diseases of the CNS. Along with the development of protein engineering techniques such as directed evolution including DNA shuffling, a great number of BBB-crossing AAVs have been developed, that could be systemically injected for therapeutic benefit. In this review, we discuss several feasible approaches to improve transportation of therapeutic agents to the CNS. We also discuss the advantages of using BBB-crossing AAVs, their role as a gene delivery agent and highlight the different types of BBB-AAV vectors that have been developed in order to provide a greater insight into how they can be used in diseases of the CNS.
Collapse
Affiliation(s)
- Wenli Chen
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Wang
- Department of TCM, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Nuclear Medicine, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China.
| |
Collapse
|
32
|
Chatterjee D, Marmion DJ, McBride JL, Manfredsson FP, Butler D, Messer A, Kordower JH. Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9. Gene Ther 2021; 29:390-397. [PMID: 33753910 PMCID: PMC9203269 DOI: 10.1038/s41434-021-00244-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
The development of high efficiency, central nervous system (CNS) targeting AAV-based gene therapies is necessary to address challenges in both pre-clinical and clinical investigations. The engineered capsids, AAV.PHP.B and AAV.PHP.eB, show vastly improved blood-brain barrier penetration compared to their parent serotype, AAV9, but with variable effect depending on animal system, strain, and delivery route. As most characterizations of AAV.PHP variants have been performed in mice, it is currently unknown whether AAV.PHP variants improve CNS targeting when delivered intrathecally in rats. We evaluated the comparative transduction efficiencies of equititer doses (6 × 1011vg) of AAV.PHP.eB-CAG-GFP and AAV9-CAG-GFP when delivered into the cisterna magna of 6–9-month old rats. Using both quantitative and qualitative assessments, we observed consistently superior biodistribution of GFP+ cells and fibers in animals treated with AAV.PHP.eB compared to those treated with AAV9. Enhanced GFP signal was uniformly observed throughout rostrocaudal brain regions in AAV.PHP.eB-treated animals with matching GFP protein expression detected in the forebrain, midbrain, and cerebellum. Collectively, these data illustrate the benefit of intracisternal infusions of AAV.PHP.eB as an optimal system to distribute CNS gene therapies in preclinical investigations of rats, and may have important translational implications for the clinical CNS targeting.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jodi L McBride
- Divison of Neuroscience, Oregon National Primate Research Center, Beaverton; Departments of Behavioral Neuroscience and Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David Butler
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA. .,ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
33
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 725] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Chen Q, Luo H, Zhou C, Yu H, Yao S, Fu F, Seeley R, Ji X, Yang Y, Chen P, Jin H, Tong P, Chen D, Wu C, Du W, Ruan H. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS One 2020; 15:e0243359. [PMID: 33320893 PMCID: PMC7737971 DOI: 10.1371/journal.pone.0243359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common arthropathy, characterized by progressive degeneration of the articular cartilage. Currently, there are no disease-modifying approaches for OA treatment. Adeno-associated virus (AAV)-mediated gene therapy has recently become a potential treatment for OA due to its exceptional characteristics; however, the tropism and transduction efficiency of different AAV serotypes to articular joints and the safety profile of AAV applications are still unknown. The present study aims to screen an ideal AAV serotype to efficiently transfer genes to arthritic cartilage. AAV vectors of different serotypes expressing eGFP protein were injected into the knee joint cavities of mice, with all joint tissues collected 30 days after AAV injection. The transduction efficiency of AAVs was quantified by assessing the fluorescent intensities of eGFP in the cartilage of knee joints. Structural and morphological changes were analyzed by toluidine blue staining. Changes to ECM metabolism and pyroptosis of chondrocytes were determined by immunohistochemical staining. Fluorescence analysis of eGFP showed that eGFP was expressed in the cartilage of knee joints injected with each AAV vector. Quantification of eGFP intensity indicated that AAV2, 7 and 8 had the highest transduction efficiencies. Both toluidine blue staining and Mankin score showed that AAV6 aggravated cartilage degeneration. The analysis of key molecules in ECM metabolism suggested that AAV5 and 7 significantly reduced collagen type II, while AAV9 increased ADAMTS-4 but decreased MMP-19. In addition, transduction with AAV2, 5, 7 and 8 had no obvious effect on pyroptosis of chondrocytes. Comprehensive score analysis also showed that AAV2 had the highest score in intra-articular gene transfer. Collectively, our findings point to AAV2 as the best AAV serotype candidate for gene transfer on arthritic cartilage, resulting in minimal impact to ECM metabolism and pyroptosis of chondrocytes.
Collapse
Affiliation(s)
- Quan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcong Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yanping Yang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peifeng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengliang Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- * E-mail: (HR); (WD); (CW)
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail: (HR); (WD); (CW)
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (HR); (WD); (CW)
| |
Collapse
|
35
|
Tosolini AP, Sleigh JN. Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Front Mol Neurosci 2020; 13:129. [PMID: 32765219 PMCID: PMC7379875 DOI: 10.3389/fnmol.2020.00129] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-mediated gene therapy has the potential to deliver exogenous genetic material into specific cell types to promote survival and counteract disease. This is particularly enticing for neuronal conditions, as the nervous system is renowned for its intransigence to therapeutic targeting. Administration of gene therapy viruses into skeletal muscle, where distal terminals of motor and sensory neurons reside, has been shown to result in extensive transduction of cells within the spinal cord, brainstem, and sensory ganglia. This route is minimally invasive and therefore clinically relevant for gene therapy targeting to peripheral nerve soma. For successful transgene expression, viruses administered into muscle must undergo a series of processes, including host cell interaction and internalization, intracellular sorting, long-range retrograde axonal transport, endosomal liberation, and nuclear import. In this review article, we outline key characteristics of major gene therapy viruses—adenovirus, adeno-associated virus (AAV), and lentivirus—and summarize the mechanisms regulating important steps in the virus journey from binding at peripheral nerve terminals to nuclear delivery. Additionally, we describe how neuropathology can negatively influence these pathways, and conclude by discussing opportunities to optimize the intramuscular administration route to maximize gene delivery and thus therapeutic potential.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
36
|
Shen Y, Campbell RE, Côté DC, Paquet ME. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans. Front Neural Circuits 2020; 14:41. [PMID: 32760252 PMCID: PMC7373823 DOI: 10.3389/fncir.2020.00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
As the technological hurdles are overcome and optogenetic techniques advance to have more control over neurons, therapies based on these approaches will begin to emerge in the clinic. Here, we consider the technical challenges surrounding the transition of this breakthrough technology from an investigative tool to a true therapeutic avenue. The emerging strategies and remaining tasks surrounding genetically encoded molecules which respond to light as well as the vehicles required to deliver them are discussed.The use of optogenetics in humans would represent a completely new paradigm in medicine and would be associated with unprecedented technical considerations. To be applied for stimulation of neurons in humans, an ideal optogenetic tool would need to be non-immunogenic, highly sensitive, and activatable with red light or near-infrared light (to maximize light penetration while minimizing photodamage). To enable sophisticated levels of neuronal control, the combined use of optogenetic actuators and indicators could enable closed-loop all-optical neuromodulation. Such systems would introduce additional challenges related to spectral orthogonality between actuator and indicator, the need for decision making computational algorithms and requirements for large gene cassettes. As in any gene therapy, the therapeutic efficiency of optogenetics will rely on vector delivery and expression in the appropriate cell type. Although viral vectors such as those based on AAVs are showing great potential in human trials, barriers to their general use remain, including immune responses, delivery/transport, and liver clearance. Limitations associated with the gene cassette size which can be packaged in currently approved vectors also need to be addressed.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Daniel C Côté
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Physique et Génie Physique, Université Laval, Quebec City, QC, Canada
| | - Marie-Eve Paquet
- Centre de Recherche CERVO, Université Laval, Quebec City, QC, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
37
|
Preparation and Administration of Adeno-associated Virus Vectors for Corneal Gene Delivery. Methods Mol Biol 2020; 2145:77-102. [PMID: 32542602 DOI: 10.1007/978-1-0716-0599-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene delivery approaches using adeno-associated virus (AAV) vectors are currently the preferred method for human gene therapy applications and have demonstrated success in clinical trials for a diverse set of diseases including retinal blindness. To date, no clinical trials using AAV gene therapy in the anterior eye have been initiated; however, corneal gene delivery appears to be an attractive approach for treating both corneal and ocular surface diseases. Multiple preclinical studies by our lab and others have demonstrated efficient AAV vector-mediated gene delivery to the cornea for immunomodulation, anti-vascularization, and enzyme supplementation. Interestingly, the route of AAV vector administration and nuances such as administered volume influence vector tropism and transduction efficiency. In this chapter, a detailed protocol for AAV vector production and specific approaches for AAV-mediated gene transfer to the cornea via subconjunctival and intrastromal injections are described.
Collapse
|
38
|
Structure comparison of the chimeric AAV2.7m8 vector with parental AAV2. J Struct Biol 2019; 209:107433. [PMID: 31859208 DOI: 10.1016/j.jsb.2019.107433] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
The AAV2.7m8 vector is an engineered capsid with a 10-amino acid insertion in adeno-associated virus (AAV) surface variable region VIII (VR-VIII) resulting in the alteration of an antigenic region of AAV2 and the ability to efficiently transduce retina cells following intravitreal administration. Directed evolution and in vivo screening in the mouse retina isolated this vector. In the present study, we sought to identify the structural differences between a recombinant AAV2.7m8 (rAAV2.7m8) vector packaging a GFP genome and its parental serotype, AAV2, by cryo-electron microscopy (cryo-EM) and image reconstruction. The structures of rAAV2.7m8 and AAV2 were determined to 2.91 and 3.02 Å resolution, respectively. The rAAV2.7m8 amino acid side-chains for residues 219-745 (the last C-terminal residue) were interpretable in the density map with the exception of the 10 inserted amino acids. While observable in a low sigma threshold density, side-chains were only resolved at the base of the insertion, likely due to flexibility at the top of the loop. A comparison to parental AAV2 (ordered from residues 217-735) showed the structures to be similar, except at some side-chains that had different orientations and, in VR-VIII containing the 10 amino acid insertion. VR-VIII is part of an AAV2 antigenic epitope, and the difference is consistent with rAAV2.7m8's escape from a known AAV2 monoclonal antibody, C37-B. The observations provide valuable insight into the configuration of inserted surface peptides on the AAV capsid and structural differences to be leveraged for future AAV vector rational design, especially for retargeted tropism and antibody escape.
Collapse
|
39
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
40
|
An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 2018; 92:JVI.02213-17. [PMID: 29343568 DOI: 10.1128/jvi.02213-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Determinants and mechanisms of cell attachment and entry steer adeno-associated virus (AAV) in its utility as a gene therapy vector. Thus far, a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico-reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of the multiplicity of infection. Virus overlay assays and rescue experiments in nonpermissive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knockout mice were equally as permissive to transduction by AAVrh32.33 as wild-type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multimodal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved among all primate AAVs except for those of the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of the entry of AAV, a vector system of broad utility in gene therapy.IMPORTANCE Adeno-associated virus (AAV) is a nonpathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies with this vector.
Collapse
|
41
|
Grimm D, Büning H. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Hum Gene Ther 2017; 28:1075-1086. [DOI: 10.1089/hum.2017.172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dirk Grimm
- Heidelberg University Hospital, Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|