1
|
Moya-Alvarado G, Valero-Peña X, Aguirre-Soto A, Bustos FJ, Lazo OM, Bronfman FC. PLC-γ-Ca 2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Front Mol Neurosci 2024; 17:1009404. [PMID: 38660384 PMCID: PMC11040097 DOI: 10.3389/fnmol.2024.1009404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile (UC), Santiago, Chile
| | - Xavier Valero-Peña
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernando J. Bustos
- Constantin-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francisca C. Bronfman
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
2
|
Kutsarova E, Schohl A, Munz M, Wang A, Zhang YY, Bilash OM, Ruthazer ES. BDNF signaling in correlation-dependent structural plasticity in the developing visual system. PLoS Biol 2023; 21:e3002070. [PMID: 37011100 PMCID: PMC10101647 DOI: 10.1371/journal.pbio.3002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.
Collapse
Affiliation(s)
- Elena Kutsarova
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Anne Schohl
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Martin Munz
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Wang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Interdepartmental Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Yuan Yuan Zhang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Olesia M Bilash
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- NYU Neuroscience Institute, New York University, New York, New York, United States of America
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Lazo OM, Schiavo G. Rab10 regulates the sorting of internalised TrkB for retrograde axonal transport. eLife 2023; 12:81532. [PMID: 36897066 PMCID: PMC10005780 DOI: 10.7554/elife.81532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.
Collapse
Affiliation(s)
- Oscar Marcelo Lazo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| |
Collapse
|
4
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
6
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|
7
|
Zhang T, Cheng X, Jia S, Poo MM, Zeng Y, Xu B. Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. SCIENCE ADVANCES 2021; 7:eabh0146. [PMID: 34669481 PMCID: PMC8528419 DOI: 10.1126/sciadv.abh0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks (ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks, whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at output neurons generated by spike timing–dependent plasticity was allowed to self-propagate to limited upstream synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated synaptic modifications across neuronal layers that reduce computational cost.
Collapse
Affiliation(s)
- Tielin Zhang
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Cheng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Jia
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-ming Poo
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Yi Zeng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Xu
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author.
| |
Collapse
|
8
|
Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol 2021; 42:468-486. [PMID: 34187261 DOI: 10.1080/07388551.2021.1932716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) cell cultures offer an unparalleled platform to recreate spatial arrangements of cells in vitro. 3D cell culture systems have gained increasing interest due to their evident advantages in providing more physiologically relevant information and more predictive data compared to their two-dimensional (2D) counterpart. Design and well-established fabrication of organoids (a particular type of 3D cell culture system) are nowadays considered a pivotal achievement for their ability to replicate in vitro cytoarchitecture and the functionalities of an organ. In this condition, pluripotent stem cells self-organize into 3D structures mimicking the in vivo microenvironments, architectures and multi-lineage differentiation. Scaffolds are key supporting elements in these 3D constructs, and Matrigel is the most commonly used matrix despite its relevant translation limitations including animal-derived sources, non-defined composition, batch-to-batch variability and poorly tailorable properties. Alternatively, 3D synthetic scaffolds, including self-assembling peptides, show promising biocompatibility and biomimetic properties, and can be tailored on specific target tissue/cells. In this review, we discuss the recent advances on 3D cell culture systems and organoids, promising tools for tissue engineering and regenerative medicine applications. For this purpose, we will describe the current state-of-the-art on 3D cell culture systems and organoids based on currently available synthetic-based biomaterials (including tailored self-assembling peptides) either tested in in vivo animal models or developed in vitro with potential application in the field of tissue engineering, with the aim to inspire researchers to take on such promising platforms for clinical applications in the near future.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
9
|
Smith BJ, Côté PD, Tremblay F. Voltage-gated sodium channel-dependent retroaxonal modulation of photoreceptor function during post-natal development in mice. Dev Neurobiol 2021; 81:353-365. [PMID: 33248000 DOI: 10.1002/dneu.22793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
Juvenile (postnatal day 16) mice lacking Nav 1.6 channels (null-mutant Scn8admu ) have reduced photoreceptor function, which is unexpected given that Nav channels have not been detected in mouse photoreceptors and do not contribute appreciably to photoreceptor function in adults. We demonstrate that acute block of Nav channels with intravitreal TTX in juvenile (P16) wild-type mice has no effect on photoreceptor function. However, reduced light activity by prolonged dark adaptation from P8 caused significant reduction in photoreceptor function at P16. Injecting TTX into the retrobulbar space at P16 to specifically block Nav channels in the optic nerve also caused a reduction in photoreceptor function comparable to that seen at P16 in null-mutant Scn8a mice. In both P16 null-mutant Scn8admu and retrobulbar TTX-injected wild-type mice, photoreceptor function was restored following intravitreal injection of the TrkB receptor agonist 7,8-dihydroxyflavone, linking Nav -dependent retrograde transport to TrkB-dependent neurotrophic factor production pathways as a modulatory influence of photoreceptor function at P16. We also found that in Scn8admu mice, photoreceptor function recovers by P22-25 despite more precarious general health of the animal. Retrobulbar injection of TTX in the wild type still reduced the photoreceptor response at this age but to a lesser extent, suggesting that Nav -dependent modulation of photoreceptor function is largely transient, peaking soon after eye opening. Together, these results suggest that the general photosensitivity of the retina is modulated following eye opening by retrograde transport through activity-dependent retinal ganglion cell axonal signaling targeting TrkB receptors.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Izaak Walton Killam Health Centre, Halifax, NS, Canada
| |
Collapse
|
10
|
Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY, Bai YL. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 2020; 15:1045-1057. [PMID: 31823884 PMCID: PMC7034265 DOI: 10.4103/1673-5374.270312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb. However, the molecular mechanism underlying its efficacy remains unclear. In this study, a middle cerebral artery occlusion (MCAO) rat model was produced by the suture method. Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days, starting from the 7th day after middle cerebral artery occlusion. Day 1 of treatment lasted for 10 minutes at 2 r/min, day 2 for 20 minutes at 2 r/min, and from day 3 onward for 20 minutes at 4 r/min. CatWalk gait analysis, adhesive removal test, and Y-maze test were used to investigate motor function, sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21st day after MCAO. On the 21st day after MCAO, the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay. The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography. The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats, but had no effect on cognitive function. The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3 (Gria3) in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1A, Avpr1a in the middle cerebral artery-occluded rats. In the ipsilateral hippocampus, only Adra2a was downregulated, and there was no significant change in Gria3. Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3, which is an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region. The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged. Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion, but had no effect on Synapsin I levels. Besides, we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus. This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats, and suggests that these positive effects occur via the upregulation of the postsynaptic membrane α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital of Tongji University; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Yun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhu H, Jin R, Jiang D, Zhu JJ. Perturbation Electrochemiluminescence Imaging to Observe the Fluctuation of Charge-Transfer Resistance in Individual Graphene Microsheets with Redox-Induced Defects. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46666-46670. [PMID: 31744294 DOI: 10.1021/acsami.9b14017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, the fluctuation of charge-transfer resistance in individual reduced graphene oxide (rGO) microsheets with more redox-induced defects is unprecedentedly visualized using a perturbation electrochemiluminescence (ECL) imaging. This perturbation uses a short and low potential to recover defect-covered rGO microsheets slightly and then introduces a high potential to form more redox-induced defects resulting in an increase of charge-transfer resistance. Also, these defects at rGO microsheets enhance their catalytic feature and the resultant ECL intensity so that the temporal resolution in ECL imaging is improved to 30 ms. Aided by this fast imaging approach, the exponential decrease of ECL intensity at individual graphene microsheets after the oxidation is observed, which reflects the increase of their charge-transfer resistances. Since the charge-transfer resistance at electrode surfaces is mainly affected by the conductivity of electrode materials, the result provides the dynamic information to support the reduction of the electrical conductivity in graphene with more defects.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
12
|
DeCostanzo AJ, Fung CCA, Fukai T. Hippocampal Neurogenesis Reduces the Dimensionality of Sparsely Coded Representations to Enhance Memory Encoding. Front Comput Neurosci 2019; 12:99. [PMID: 30666194 PMCID: PMC6330828 DOI: 10.3389/fncom.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts. From this rule, the DG population partitions into neuronal ensembles each of which is biased to represent one of the contexts. This corresponds to a low dimensional representation of the contexts, whereby the fastest dimensionality reduction is achieved in sparse models. We then modify the rule, showing that equivalent representations and performance are achieved when neurons compete for synaptic stability rather than neuronal survival. Our results suggest that competition for stability in sparse models is well-suited to developing ensembles of what may be called memory engram cells.
Collapse
Affiliation(s)
- Anthony J DeCostanzo
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan.,Ascent Robotics Inc., Tokyo, Japan
| | - Chi Chung Alan Fung
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoki Fukai
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
13
|
Kuśmierz Ł, Isomura T, Toyoizumi T. Learning with three factors: modulating Hebbian plasticity with errors. Curr Opin Neurobiol 2017; 46:170-177. [PMID: 28918313 DOI: 10.1016/j.conb.2017.08.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/30/2017] [Indexed: 01/06/2023]
Abstract
Synaptic plasticity is a central theme in neuroscience. A framework of three-factor learning rules provides a powerful abstraction, helping to navigate through the abundance of models of synaptic plasticity. It is well-known that the dopamine modulation of learning is related to reward, but theoretical models predict other functional roles of the modulatory third factor; it may encode errors for supervised learning, summary statistics of the population activity for unsupervised learning or attentional feedback. Specialized structures may be needed in order to generate and propagate third factors in the neural network.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takuya Isomura
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Ruan H, Gao J, Qi X, Tao Y, Guo X, Guo Z, Zheng L, Song Y, Liao Y, Shen W. Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo. Dev Neurobiol 2017; 77:947-962. [PMID: 28033671 DOI: 10.1002/dneu.22480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 01/28/2023]
Abstract
Histone deacetylase 1 (HDAC1) is thought to play pivotal roles in neurogenesis and neurodegeneration. However, the role of HDAC1 in neuronal growth and structural plasticity in the developing brain in vivo remains unclear. Here, we show that in the optic tectum of Xenopus laevis, HDAC1 knockdown dramatically decreased the frequency of AMPAR-mediated synaptic currents and increased the frequency of GABAAR-mediated currents, whereas HDAC1 overexpression significantly decreased the frequency of GABAAR-mediated synaptic currents. Both HDAC1 knockdown and overexpression adversely affected dendritic arbor growth and visual experience-dependent structural plasticity. Furthermore, HDAC1 knockdown decreased BDNF expression via a mechanism that involves acetylation of specific histone H4 residues at lysine K5. In particular, the deficits in dendritic growth and visually guided avoidance behavior in HDAC1-knockdown tadpoles could be rescued by acute tectal infusion of BDNF. These results establish a relationship between HDAC1 expression, histone H4 modification and BDNF signaling in the visual-experience dependent regulation of dendritic growth, structural plasticity and function in intact animals in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 947-962, 2017.
Collapse
Affiliation(s)
- Hangze Ruan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xianjie Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yi Tao
- Department of Neurosurgery, Nanjing Medical University Affiliated Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210029, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Zhaoyi Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Lijun Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yaling Song
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
15
|
Shi W, Huang C, Xu X, Jin G, Huang R, Huang J, Chen Y, Ju S, Wang Y, Shi Y, Qin J, Zhang Y, Liu Q, Wang X, Zhang X, Chen J. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater 2016; 45:247-261. [PMID: 27592818 DOI: 10.1016/j.actbio.2016.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
Due to the poor self-regeneration of brain tissue, stem cell transplantation therapy is purported to enable the replacement of lost neurons after traumatic brain injury (TBI). The main challenge of brain regeneration is whether the transplanted cells can survive and carry out neuronal functions in the lesion area. The brain is a complex neuronal network consisting of various types of cells that significantly influence on each other, and the survival of the implanted stem cells in brain is critically influenced by the surrounding cells. Although stem cell-based therapy is developing rapidly, most previous studies just focus on apply single type of stem cells as cell source. Here, we found that co-culturing human umbilical cord mesenchymal stem cells (hUC-MSCs) directly with the activated astrocytes benefited to the proliferation and neuron differentiation of hUC-MSCs in vitro. In this study, hUC-MSCs and the activated astrocytes were seeded in RADA16-BDNF peptide scaffold (R-B-SPH scaffold), a specifical self-assembling peptide hydrogel, in which the environment promoted the differentiation of typical neuron-like cells with neurites extending in three-dimensional directions. Moreover, the results showed co-culture of hUC-MSCs and activated astrocytes promoted more BDNF secretion which may benefit to both neural differentiation of ectogenic hUC-MSCs and endogenic neurogenesis. In order to promote migration of the transplanted hUC-MSCs to the host brain, the hUC-MSCs were forced with CXC chemokine receptor 4 (CXCR4). We found that the moderate-sized lesion cavity, but not the large cavity caused by TBI was repaired via the transplantation of hUC-MSCsCXCR4 and activated astrocytes embedded in R-B-SPH scaffolds. The functional neural repair for TBI demonstrated in this study is mainly due to the transplantation system of double cells, hUC-MSCs and activated astrocytes. We believe that this novel cell transplantation system offers a promising treatment option for cell replacement therapy for TBI. STATEMENT OF SIGNIFICANCE In this reach, we specifically linked RGIDKRHWNSQ, a functional peptide derived from BDNF, to the C-terminal of RADARADARADARADA (RADA16) to structure a functional self-assembling peptide hydrogel scaffold, RADA16-BDNF (R-B-SPH scaffold) for the better transplantation of the double cell unit. Also, the novel scaffold was used as cell-carrier for transplantation double cell unit (hUC-MSCs/astrocyte) for treating traumatic brain injury. The results of this study showing that R-B-SPH scaffold was pliancy and flexibility to fit the brain lesion cavity and promotes the outgrowth of axons and dendrites of the neurons derived from hUC-MSCs in vitro and in vivo, indicating the 3D R-B-SPH scaffold provided a suitable microenvironment for hUC-MSC survival, proliferation and differentiation. Also, our results showing the double-cells transplantation system (hUC-MSCs/astrocyte) may be a novel cell-based therapeutic strategy for neuroregeneration after TBI with potential value for clinical application.
Collapse
|
16
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Kang DS, Yang YR, Lee C, Kim S, Ryu SH, Suh PG. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development. Adv Biol Regul 2016; 60:167-173. [PMID: 26588873 DOI: 10.1016/j.jbior.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Over the past decade, converging evidence suggests that PLCγ1 signaling has key roles in controlling neural development steps. PLCγ1 functions as a signal transducer that converts an extracellular stimulus into intracellular signals by generating second messengers such as DAG and IP3. DAG functions as an activator of either PKC or transient receptor potential cation channels (TRPCs), while IP3 induces the calcium release from intracellular calcium stores. These second messengers regulate the morphological change of neuron, such as neurite outgrowth, migration, axon pathfinding, and synapse formation. These morphological changes depend on finely tuned calcium signaling following receptor tyrosine kinase-mediated PLCγ1 signaling. Thus, deregulation of PLCγ1 signaling causes various abnormalities of neuronal development and it may be associated with diverse neurological disorders. Herein, we discuss the current understanding of the PLCγ1 signaling pathway in neural development and provide recent advances of how PLCγ1 signaling is involved in the formation of neuronal processes for functionally faithful brain development.
Collapse
Affiliation(s)
- Du-Seock Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Cheol Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - SaetByeol Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
18
|
Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2015; 136:620-36. [DOI: 10.1111/jnc.13432] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 11/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Gao
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Mi Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Hong-Yun Zhao
- The Fifth Ward of Neurology Rehabilitation Center; Hangzhou Armed Police Hospital; Hangzhou China
| | - Qian-Qian Xu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Yu-Ming Huang
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qun-Cao Si
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing-Ming Wu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Xia-Min Hu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Li-Bo Sun
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Shawn M. McClintock
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
- Division of Brain Stimulation and Neurophysiology; Department of Psychiatry and Behavioral Sciences; Duke University School of Medicine; Durham North Carolina USA
- Department of Psychiatry; UT Southwestern Medical Center; Dallas Texas USA
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
19
|
Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci U S A 2015. [PMID: 26216953 DOI: 10.1073/pnas.1511830112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation.
Collapse
|
20
|
Kita EM, Scott EK, Goodhill GJ. Topographic wiring of the retinotectal connection in zebrafish. Dev Neurobiol 2015; 75:542-56. [PMID: 25492632 DOI: 10.1002/dneu.22256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/08/2022]
Abstract
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map.
Collapse
Affiliation(s)
- Elizabeth M Kita
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
21
|
Rosa JM, Feller MB. Neurodevelopment: a novel role for activity in shaping retinal circuits. Curr Biol 2014; 24:R964-6. [PMID: 25291639 DOI: 10.1016/j.cub.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of synaptic inputs onto retinal bipolar cells is influenced by transmitter release from neighboring bipolar cells, implicating a new form of population-based retrograde plasticity in the development of these neural circuits.
Collapse
Affiliation(s)
- Juliana M Rosa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
22
|
Granseth B, Fukushima Y, Sugo N, Lagnado L, Yamamoto N. Regulation of thalamocortical axon branching by BDNF and synaptic vesicle cycling. Front Neural Circuits 2013; 7:202. [PMID: 24391549 PMCID: PMC3868945 DOI: 10.3389/fncir.2013.00202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
During development, axons form branches in response to extracellular molecules. Little is known about the underlying molecular mechanisms. Here, we investigate how neurotrophin-induced axon branching is related to synaptic vesicle cycling for thalamocortical axons. The exogenous application of brain-derived neurotrophic factor (BDNF) markedly increased axon branching in thalamocortical co-cultures, while removal of endogenous BDNF reduced branching. Over-expression of a C-terminal fragment of AP180 that inhibits clathrin-mediated endocytosis affected the laminar distribution and the number of branch points. A dominant-negative synaptotagmin mutant that selectively targets synaptic vesicle cycling, strongly suppressed axon branching. Moreover, axons expressing the mutant synaptotagmin were resistant to the branch-promoting effect of BDNF. These results suggest that synaptic vesicle cycling might regulate BDNF induced branching during the development of the axonal arbor.
Collapse
Affiliation(s)
- Björn Granseth
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Osaka, Japan
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Yuichi Fukushima
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Osaka, Japan
| | - Noriuki Sugo
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Osaka, Japan
| | - Leon Lagnado
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, UK
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Osaka, Japan
| |
Collapse
|
23
|
Lu H, Park H, Poo MM. Spike-timing-dependent BDNF secretion and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130132. [PMID: 24298135 DOI: 10.1098/rstb.2013.0132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.
Collapse
Affiliation(s)
- Hui Lu
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, , Berkeley, CA 94720, USA
| | | | | |
Collapse
|
24
|
The growth factors cascade and the dendrito-/synapto-genesis versus cell survival in adult hippocampal neurogenesis: the chicken or the egg. Ageing Res Rev 2013; 12:777-85. [PMID: 23777808 DOI: 10.1016/j.arr.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 01/28/2023]
Abstract
The decision between cellular survival and death is governed by a balance between proapoptotic versus antiapoptotic signaling cascades. Growth factors are key actors, playing two main roles both at developmental and adult stages: a supporting antiapoptotic role through diverse actions converging in the mitochondria, and a promoter role of cell maturation and plasticity through dendritogenesis and synaptogenesis, especially relevant for the adult hippocampal neurogenesis, a case of development during adulthood. Here, both parallel roles mutually feed forward each other (the success in avoiding apoptosis lets the cell to grow and differentiate, which in turn lets the cell to reach new targets and form new synapses accessing new sources of growth factors to support cell survival) in a circular cause and consequence, or a "the chicken or the egg" dilemma. While identifying the first case of this dilemma makes no sense, one possible outcome might have biological relevance: the decision between survival and death in the adult hippocampal neurogenesis is mainly concentrated at a specific time window, and recent data suggest some divergences between the survival and the maturational promoter effect of growth factors. This review summarizes these evidences suggesting how growth factors might contribute to the live-or-die decision of adult-born immature granule neurons through influencing the maturation of the young neuron by means of its connectivity into a mature functional circuit.
Collapse
|
25
|
Abstract
Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain.
Collapse
|
26
|
Melo CV, Mele M, Curcio M, Comprido D, Silva CG, Duarte CB. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. PLoS One 2013; 8:e53793. [PMID: 23326507 PMCID: PMC3543267 DOI: 10.1371/journal.pone.0053793] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.
Collapse
Affiliation(s)
- Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
| | - Diogo Comprido
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla G. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
27
|
McFarlane S, Lom B. The Xenopus retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Dev Neurobiol 2012; 72:520-36. [PMID: 21634016 DOI: 10.1002/dneu.20928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons receive inputs through their multiple branched dendrites and pass this information on to the next neuron via long axons, which branch within the target. The shape the neuron acquires is thus the key to its proper functioning in the neural circuit in which it participates. Both axons and dendrites grow in a directed fashion to their target partner neurons by responding to a large number of molecular cues in the milieu through which they extend. They then go through the process of synaptogenesis, first choosing a neuron on which to synapse, and then the appropriate subcellular location. How a neuron acquires its unique shape, establishes and modifies appropriate synaptic connectivity, and the molecular signals involved, are key questions in developmental neurobiology. Such questions of nervous system wiring are being pursued actively with a variety of different animal models and neuron types, each with its own unique advantages. Among these, the developing retinal ganglion cell (RGC) of the South African clawed frog, Xenopus laevis, has proven particularly fruitful for revealing the secrets of how axons and dendrites acquire their final morphology and connectivity. In this review, we describe how this system can be used to understand the multiple molecular events that instruct the incorporation of RGCs into the neural circuit that controls vision.
Collapse
Affiliation(s)
- Sarah McFarlane
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| | | |
Collapse
|
28
|
Cerveny KL, Varga M, Wilson SW. Continued growth and circuit building in the anamniote visual system. Dev Neurobiol 2012; 72:328-45. [PMID: 21563317 DOI: 10.1002/dneu.20917] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fish and amphibia are capable of lifelong growth and regeneration. The two core components of their visual system, the retina and tectum both maintain small populations of stem cells that contribute new neurons and glia to these tissues as they grow. As the animals age, the initial retinal projections onto the tectum are continuously remodeled to maintain retinotopy. These properties raise several biological challenges related to the control of proliferation and differentiation of retinal and tectal stem cells. For instance, how do stem and progenitor cells integrate intrinsic and extrinsic cues to produce the appropriate type and number of cells needed by the growing tissue. Does retinal growth or neuronal activity influence tectal growth? What are the cellular and molecular mechanisms that enable retinal axons to shift their tectal connections as these two tissues grow in incongruent patterns? While we cannot yet provide answers to these questions, this review attempts to supply background and context, laying the ground work for new investigations.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell and Developmental Biology, University College, London, UK
| | | | | |
Collapse
|
29
|
Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A 2012; 109:15924-9. [PMID: 23019376 DOI: 10.1073/pnas.1207767109] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.
Collapse
|
30
|
Nerve growth factor in the hippocamposeptal system: evidence for activity-dependent anterograde delivery and modulation of synaptic activity. J Neurosci 2012; 32:7701-10. [PMID: 22649248 DOI: 10.1523/jneurosci.0028-12.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. The prevailing view is that, depending on the target and mode of action, most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered. Here we provide the neuroanatomical substrate for an anterograde hippocamposeptal transport of NGF by demonstrating its presence in mouse hippocampal GABAergic neurons and in their hippocamposeptal axons that ramify densely and abut neurons in the medial septum/diagonal band of Broca (MS/DB). We also demonstrate an activity-dependent increase in septal NGF levels that is dependent on the pattern of intrahippocampal stimulation. In addition, we show that acute exposure to NGF, via activation of TrkA, attenuates GABA(A) receptor-mediated inhibitory synaptic currents and reduces sensitivity to exogenously applied GABA. These acute actions of NGF display cell type and functional selectivity insofar as (1) they were found in cholinergic, but not GABAergic, MS/DB neurons, and (2) glutamate-mediated excitatory synaptic activity as well as AMPA-activated current responses were unaffected. Our results advocate a novel anterograde, TrkA-mediated NGF signaling in the CNS.
Collapse
|
31
|
Wei HP, Yao YY, Zhang RW, Zhao XF, Du JL. Activity-Induced Long-Term Potentiation of Excitatory Synapses in Developing Zebrafish Retina In Vivo. Neuron 2012; 75:479-89. [DOI: 10.1016/j.neuron.2012.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 11/16/2022]
|
32
|
Peng X, Parsons TD, Balice-Gordon RJ. Determinants of synaptic strength vary across an axon arbor. J Neurophysiol 2012; 107:2430-41. [PMID: 22279193 PMCID: PMC3362249 DOI: 10.1152/jn.00615.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/23/2012] [Indexed: 12/20/2022] Open
Abstract
We used synaptophysin-pHluorin expressed in hippocampal neurons to address how functional properties of terminals, namely, evoked release, total vesicle pool size, and release fraction, vary spatially across individual axon arbors. Consistent with previous reports, over short arbor distances (≈ 100 μm), evoked release was spatially heterogeneous when terminals contacted different postsynaptic dendrites or neurons. Regardless of the postsynaptic configuration, the evoked release and total vesicle pool size spatially covaried, suggesting that the fraction of synaptic vesicles available for release (release fraction) was similar over short distances. Evoked release and total vesicle pool size were highly correlated with the amount of NMDA receptors and PSD-95 in postsynaptic specialization. However, when individual axons were followed over longer distances (several hundred micrometers), a significant increase in evoked release was observed distally that was associated with an increased release fraction in distal terminals. The increase in distal release fraction can be accounted for by changes in individual vesicle release probability as well as readily releasable pool size. Our results suggest that for a single axon arbor, presynaptic strength indicated by evoked release over short distances is correlated with heterogeneity in total vesicle pool size, whereas over longer distances presynaptic strength is correlated with the spatial modulation of release fraction. Thus the mechanisms that determine synaptic strength differ depending on spatial scale.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Department of Biology Graduate Group, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | | | | |
Collapse
|
33
|
Rodger J, Drummond ES, Hellström M, Robertson D, Harvey AR. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells. PLoS One 2012; 7:e31061. [PMID: 22347429 PMCID: PMC3275572 DOI: 10.1371/journal.pone.0031061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/31/2011] [Indexed: 01/24/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, The University of Western Australia, Perth, Australia
| | - Eleanor S. Drummond
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | - Mats Hellström
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | - Donald Robertson
- Discipline of Physiology, School of Biomedical and Biomolecular Sciences, The University of Western Australia, Perth, Australia
| | - Alan R. Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
- * E-mail:
| |
Collapse
|
34
|
Castillo PE. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005728. [PMID: 22147943 DOI: 10.1101/cshperspect.a005728] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitous forms of long-term potentiation (LTP) and depression (LTD) are caused by enduring increases or decreases in neurotransmitter release. Such forms or presynaptic plasticity are equally observed at excitatory and inhibitory synapses and the list of locations expressing presynaptic LTP and LTD continues to grow. In addition to the mechanistically distinct forms of postsynaptic plasticity, presynaptic plasticity offers a powerful means to modify neural circuits. A wide range of induction mechanisms has been identified, some of which occur entirely in the presynaptic terminal, whereas others require retrograde signaling from the postsynaptic to presynaptic terminals. In spite of this diversity of induction mechanisms, some common induction rules can be identified across synapses. Although the precise molecular mechanism underlying long-term changes in transmitter release in most cases remains unclear, increasing evidence indicates that presynaptic LTP and LTD can occur in vivo and likely mediate some forms of learning.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
35
|
Neurotrophic factors and the regeneration of adult retinal ganglion cell axons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:1-33. [PMID: 23211458 DOI: 10.1016/b978-0-12-407178-0.00002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult central nervous system (CNS) has only a limited capacity to regenerate axons after injury. This is due to a number of factors including the presence of extrinsic inhibitory factors that limit plasticity, lack of effective trophic support, and intrinsic changes in neuronal responsiveness. In this review, we describe the expression and role of neurotrophins in retinal ganglion cells (RGCs) during development and adulthood, and the receptors and miscellaneous signaling systems that influence axonal regeneration after injury. The impact of exogenous neurotrophic factors on adult RGCs injured at different sites in the visual pathway is described for several modes of delivery, including recombinant factors, viral vectors, cell transplantation, as well as combinatorial treatments involving other pharmacotherapeutic agents. Indirect, off-target effects of neurotrophic factors on RGC axonal regeneration are also considered. There remain unresolved issues relating to optimal delivery of neurotrophic factors, and we emphasize the need to develop safe, reliable methods for the regulation of exogenous supply of these factors to the injured CNS.
Collapse
|
36
|
Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction. J Neurosci 2011; 31:14754-62. [PMID: 21994391 DOI: 10.1523/jneurosci.3599-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) induces synaptic potentiation at both neuromuscular junctions (NMJs) and synapses of the CNS through a Ca2+ -dependent pathway. The molecular mechanism underlying BDNF-induced synaptic potentiation, especially the regulation of Ca2+ dynamics, is not well understood. Using the Xenopus NMJ in culture as a model system, we show that pharmacological inhibition or morpholino-mediated knockdown of Xenopus TRPC1 (XTRPC1) significantly attenuated the BDNF-induced potentiation of the frequency of spontaneous synaptic responses at the NMJ. Functionally, XTRPC1 was required specifically in postsynaptic myocytes for BDNF-induced Ca2+ elevation and full synaptic potentiation at the NMJ, suggesting a previously underappreciated postsynaptic function of Ca2+ signaling in neurotrophin-induced synaptic plasticity, in addition to its well established role at presynaptic sites. Mechanistically, blockade of the p75 neurotrophin receptor abolished BDNF-induced postsynaptic Ca2+ elevation and restricted BDNF-induced synaptic potentiation, while knockdown of the TrkB receptor in postsynaptic myocytes had no effect. Our study suggests that BDNF-induced synaptic potentiation involves coordinated presynaptic and postsynaptic responses and identifies TRPC1 as a molecular mediator for postsynaptic Ca2+ elevation required for BDNF-induced synaptic plasticity.
Collapse
|
37
|
Namikawa J, Nishimoto R, Tani J. A neurodynamic account of spontaneous behaviour. PLoS Comput Biol 2011; 7:e1002221. [PMID: 22028634 PMCID: PMC3197631 DOI: 10.1371/journal.pcbi.1002221] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/19/2011] [Indexed: 01/25/2023] Open
Abstract
The current article suggests that deterministic chaos self-organized in cortical dynamics could be responsible for the generation of spontaneous action sequences. Recently, various psychological observations have suggested that humans and primates can learn to extract statistical structures hidden in perceptual sequences experienced during active environmental interactions. Although it has been suggested that such statistical structures involve chunking or compositional primitives, their neuronal implementations in brains have not yet been clarified. Therefore, to reconstruct the phenomena, synthetic neuro-robotics experiments were conducted by using a neural network model, which is characterized by a generative model with intentional states and its multiple timescales dynamics. The experimental results showed that the robot successfully learned to imitate tutored behavioral sequence patterns by extracting the underlying transition probability among primitive actions. An analysis revealed that a set of primitive action patterns was embedded in the fast dynamics part, and the chaotic dynamics of spontaneously sequencing these action primitive patterns was structured in the slow dynamics part, provided that the timescale was adequately set for each part. It was also shown that self-organization of this type of functional hierarchy ensured robust action generation by the robot in its interactions with a noisy environment. This article discusses the correspondence of the synthetic experiments with the known hierarchy of the prefrontal cortex, the supplementary motor area, and the primary motor cortex for action generation. We speculate that deterministic dynamical structures organized in the prefrontal cortex could be essential because they can account for the generation of both intentional behaviors of fixed action sequences and spontaneous behaviors of pseudo-stochastic action sequences by the same mechanism.
Collapse
Affiliation(s)
| | | | - Jun Tani
- Brain Science Institute, RIKEN, Wako, Japan
| |
Collapse
|
38
|
Activity-dependent transcription of BDNF enhances visual acuity during development. Neuron 2011; 70:455-67. [PMID: 21555072 DOI: 10.1016/j.neuron.2011.02.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2011] [Indexed: 01/14/2023]
Abstract
In the developing Xenopus tadpole, conditioning with 20 min of visual stimulation leads to increased proBDNF protein levels in the tectum measured 4 hr later. Following conditioning, the ability to induce direction selectivity in tectal neurons, as well as both retinotectal long-term potentiation and depression, thought to underlie this phenomenon, was strongly facilitated. This facilitation was blocked by knockdown of BDNF expression in tectal neurons. Animals that had been exposed to visual conditioning and subsequently received normal visual input for 7-11 hr exhibited higher spatial frequency thresholds of tectal cell responses to counterphasing gratings than nonconditioned control animals. An improvement in visual acuity was confirmed by enhanced sensitivity to counterphasing gratings in a behavioral test. These results indicate that brief sensory stimulation, by initiating nuclear transcription and de novo protein synthesis of BDNF, can facilitate the refinement of response properties in the developing visual system.
Collapse
|
39
|
Cantrell DR, Cang J, Troy JB, Liu X. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells. PLoS Comput Biol 2010; 6:e1000967. [PMID: 20975932 PMCID: PMC2958799 DOI: 10.1371/journal.pcbi.1000967] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/21/2010] [Indexed: 01/11/2023] Open
Abstract
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina. The developmental separation of ON and OFF pathways is one of the fundamental features of the visual system. In the mouse retina, some bi-stratified ON-OFF RGCs are refined into mono-stratified ON or OFF RGCs during the first postnatal month. However, the process by which the RGCs' physiological receptive field properties mature remains incompletely characterized, mainly due to the lack of a reliable and efficient method to classify RGCs into different subtypes. Here we have developed an innovative analysis, Spike Triggered Covariance – Non-Centered (STC-NC), and demonstrated that this technique can accurately characterize the receptive field properties of ON, OFF and ON-OFF center cells. We show that, in wildtype mouse, RGCs gradually develop sensitivity to focal stimulation after eye opening, and the development of ON-OFF receptive field center properties correlates well with their dendritic laminar refinement. Furthermore, overexpression of NT-3 accelerates the developmental decrease of receptive field center size in ON-OFF cells. Our study is the first to establish the STC-NC analysis which can successfully identify ON-OFF subtype RGCs and to demonstrate how receptive field development relates to a neurotrophic driver in the retina.
Collapse
Affiliation(s)
- Donald R. Cantrell
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jianhua Cang
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - John B. Troy
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JBT); (XL)
| | - Xiaorong Liu
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JBT); (XL)
| |
Collapse
|
40
|
Lu H, Cheng PL, Lim BK, Khoshnevisrad N, Poo MM. Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 2010; 67:821-33. [PMID: 20826313 DOI: 10.1016/j.neuron.2010.08.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2010] [Indexed: 11/26/2022]
Abstract
Medial prefrontal cortex (mPFC) is known to be involved in relapse after cocaine withdrawal, but the underlying cellular mechanism remains largely unknown. Here, we report that after terminating repeated cocaine exposure in rats, a gradual increase in the expression of brain-derived neurotrophic factor (BDNF) in the mPFC facilitates activity-induced long-term potentiation (LTP) of excitatory synapses on layer V pyramidal neurons. This enhanced synaptic plasticity could be attributed to BDNF-induced suppression of GABAergic inhibition in the mPFC by reducing the surface expression of GABA(A) receptors. The BDNF effect was mediated by BDNF-TrkB-phosphatase 2A signaling pathway. Downregulating TrkB expression bilaterally in the mPFC reduced the locomotor hypersensitivity to cocaine 8 days after cocaine withdrawal. Thus, elevated BDNF expression after cocaine withdrawal sensitizes the excitatory synapses in the mPFC to undergo activity-induced persistent potentiation that may contribute to cue-induced drug craving and drug-seeking behavior.
Collapse
Affiliation(s)
- Hui Lu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
41
|
da Silva S, Wang F. Retrograde neural circuit specification by target-derived neurotrophins and growth factors. Curr Opin Neurobiol 2010; 21:61-7. [PMID: 20810276 DOI: 10.1016/j.conb.2010.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023]
Abstract
Neural circuit assembly during development involves a series of highly regulated steps. While genetically pre-determined programs play key roles in the early steps including neurogenesis, migration, and initial growth and guidance of axons; increasing evidence indicates that as the axons reach their targets, the late steps of neuronal differentiation and connectivity formation may be influenced or even specified by target-derived signals. Here we attempt to provide a brief synthesized review on the roles of retrograde neurotrophin and growth factor signaling in regulating the final stages of neural circuit specificity such as axonal projection, dendritic patterning, neurotransmitter phenotype acquisition, and synapse formation.
Collapse
Affiliation(s)
- Susana da Silva
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC 27710, USA
| | | |
Collapse
|
42
|
Knipper M, Zimmermann U, Müller M. Molecular aspects of tinnitus. Hear Res 2010; 266:60-9. [DOI: 10.1016/j.heares.2009.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023]
|
43
|
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 2010; 70:271-88. [PMID: 20186709 DOI: 10.1002/dneu.20774] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development, neural networks are established in a highly organized manner, which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
44
|
Nikolakopoulou AM, Meynard MM, Marshak S, Cohen-Cory S. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure. J Comp Neurol 2010; 518:972-89. [PMID: 20127801 DOI: 10.1002/cne.22258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synaptogenesis is a dynamic process that involves structural changes in developing axons and dendrites as synapses form and mature. The visual system of Xenopus laevis has been used as a model to study dynamic changes in axons and dendrites as synapses form in the living brain and the molecular mechanisms that control these processes. Brain-derived neurotrophic factor (BDNF) contributes to the establishment and refinement of visual connectivity by modulating retinal ganglion cell (RGC) axon arborization and presynaptic differentiation. Here, we have analyzed the ultrastructural organization of the Xenopus retinotectal system to understand better the maturation of this synaptic circuit and the relation between synapse ultrastructure and the structural changes in connectivity that take place in response to BDNF. Expression of yellow fluorescent protein (YFP) followed by preembedding immunoelectron microscopy was used to identify RGC axons specifically in living tadpoles. Injection of recombinant BDNF was used to alter endogenous BDNF levels acutely in the optic tectum. Our studies reveal a rapid transition from a relatively immature synaptic circuit in which retinotectal synapses are formed on developing filopodial-like processes to a circuit in which RGC axon terminals establish synapses with dendritic shafts and spines. Moreover, our studies reveal that BDNF treatment increases the number of spine synapses and docked vesicle number at YFP-identified synaptic sites within 24 hours of treatment. These fine structural changes at retinotectal synapses are consistent with the role that BDNF plays in the functional maturation of synaptic circuits and with dynamic, rapid changes in synaptic connectivity during development.
Collapse
|
45
|
Ruthazer ES, Aizenman CD. Learning to see: patterned visual activity and the development of visual function. Trends Neurosci 2010; 33:183-92. [PMID: 20153060 DOI: 10.1016/j.tins.2010.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/17/2022]
Abstract
To successfully interact with their environments, developing organisms need to correctly process sensory information and generate motor outputs appropriate to their size and structure. Patterned sensory experience has long been known to induce various forms of developmental plasticity that ultimately shape mature neural circuits. These same types of plasticity also allow developing organisms to respond appropriately to the external world by dynamically adapting neural circuit function to ongoing changes in brain circuitry and sensory input. Recent work on the visual systems of frogs and fish has provided an unprecedented view into how visual experience dynamically affects circuit function at many levels, ranging from gene expression to network function, ultimately leading to system-wide functional adaptations.
Collapse
Affiliation(s)
- Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
46
|
Long-range retrograde spread of LTP and LTD from optic tectum to retina. Proc Natl Acad Sci U S A 2009; 106:18890-6. [PMID: 19887635 DOI: 10.1073/pnas.0910659106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural activity can induce persistent strengthening or weakening of synapses, known as long-term potentiation (LTP) or long-term depression (LTD), respectively. As potential cellular mechanisms underlying learning and memory, LTP and LTD are generally regarded as synapse-specific "imprints" of activity, although there is evidence in vitro that LTP/LTD may spread to adjacent synapses. Here, we report that LTP and LTD induced in vivo at retinotectal synapses of Xenopus tadpoles undergo rapid long-range retrograde spread from the optic tectum to the retina, resulting in potentiation and depression of bipolar cell synapses on the dendrites of retinal ganglion cells, respectively. The retrograde spread of LTP and LTD required retrograde signaling initiated by brain-derived neurotrophic factor and nitric oxide in the tectum, respectively. Such bidirectional adjustment of the strength of input synapses in accordance to that of output synapses may serve to coordinate developmental refinement and learning functions of neural circuits.
Collapse
|
47
|
Regehr WG, Carey MR, Best AR. Activity-dependent regulation of synapses by retrograde messengers. Neuron 2009; 63:154-70. [PMID: 19640475 PMCID: PMC3251517 DOI: 10.1016/j.neuron.2009.06.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Throughout the brain, postsynaptic neurons release substances from their cell bodies and dendrites that regulate the strength of the synapses they receive. Diverse chemical messengers have been implicated in retrograde signaling from postsynaptic neurons to presynaptic boutons. Here, we provide an overview of the signaling systems that lead to rapid changes in synaptic strength. We consider the capabilities, specializations, and physiological roles of each type of signaling system.
Collapse
Affiliation(s)
- Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
48
|
Seiler MJ, Aramant RB, Seeliger MW, Bragadottir R, Mahoney M, Narfstrom K. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration. Vet Ophthalmol 2009; 12:158-69. [PMID: 19392875 DOI: 10.1111/j.1463-5224.2009.00693.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate whether sheets of fetal retinal allografts can integrate into the dystrophic Abyssinian cat retina with progressive rod cone degeneration. METHODS Fetal retinal sheets (cat gestational day 42), incubated with BDNF microspheres, were transplanted to the subretinal space of four cats at an early disease stage. Cats were studied by fundus examinations, bilateral full-field flash ERGs, and indocyanine green and fluorescein angiograms up to 4 months following surgery. E42 donor and transplanted eyes were analyzed by histology and immunohistochemistry for retinal markers. RESULTS Funduscopy and angiography showed good integration of the transplants in two of four cats, including extension of host blood vessels into the transplant and some scarring in the host. In these two, transplants were found in the subretinal space with laminated areas, with photoreceptor outer segments in normal contacts with the host retinal pigment epithelium. In some areas, transplants appeared to be well-integrated within the host neural retina. Neither of these two cats showed functional improvement in ERGs. In the other two cats, only remnants of donor tissue were left. Transplants stained for all investigated cellular markers. No PKC immunoreactivity was detected in the fetal donor retina at E42, but developed in the 4-month-old grafts. CONCLUSIONS Fetal sheet transplants can integrate well within a degenerating cat retina and develop good lamination of photoreceptors. Functional improvement was not demonstrated by ERG in cats with well-laminated grafts. Transplants need to be further evaluated in cat host retinas with a more advanced retinal degeneration using longer follow-up times.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Ophthalmology, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW. β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 2009; 32:821-33. [PMID: 19540623 DOI: 10.1016/j.neurobiolaging.2009.05.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
Abstract
The neurotrophin, brain-derived neurotrophic factor (BDNF), is essential for synaptic function, plasticity and neuronal survival. At the axon terminal, when BDNF binds to its receptor, tropomyosin-related kinase B (TrkB), the signal is propagated along the axon to the cell body, via retrograde transport, regulating gene expression and neuronal function. Alzheimer disease (AD) is characterized by early impairments in synaptic function that may result in part from neurotrophin signaling deficits. Growing evidence suggests that soluble β-amyloid (Aβ) assemblies cause synaptic dysfunction by disrupting both neurotransmitter and neurotrophin signaling. Utilizing a novel microfluidic culture chamber, we demonstrate a BDNF retrograde signaling deficit in AD transgenic mouse neurons (Tg2576) that can be reversed by γ-secretase inhibitors. Using BDNF-GFP, we show that BDNF-mediated TrkB retrograde trafficking is impaired in Tg2576 axons. Furthermore, Aβ oligomers alone impair BDNF retrograde transport. Thus, Aβ reduces BDNF signaling by impairing axonal transport and this may underlie the synaptic dysfunction observed in AD.
Collapse
Affiliation(s)
- Wayne W Poon
- Institute for Brain Aging and Dementia, University of California, Irvine, 1226 Gillespie NRF, Irvine, CA 92697, United States.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen L, Sham CW, Chan AM, Francisco LM, Wu Y, Mareninov S, Sharpe AH, Freeman GJ, Yang XJ, Braun J, Gordon LK. Role of the immune modulator programmed cell death-1 during development and apoptosis of mouse retinal ganglion cells. Invest Ophthalmol Vis Sci 2009; 50:4941-8. [PMID: 19420345 DOI: 10.1167/iovs.09-3602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mammalian programmed cell death (PD)-1 is a membrane-associated receptor regulating the balance between T-cell activation, tolerance, and immunopathology; however, its role in neurons has not yet been defined. The hypothesis that PD-1 signaling actively promotes retinal ganglion cell (RGC) death within the developing mouse retina was investigated. METHODS Mature retinal cell types expressing PD-1 were identified by immunofluorescence staining of vertical retina sections; developmental expression was localized by immunostaining and quantified by Western blot analysis. PD-1 involvement in developmental RGC survival was assessed in vitro using retinal explants and in vivo using PD-1 knockout mice. PD-1 ligand gene expression was detected by RT-PCR. RESULTS PD-1 is expressed in most adult RGCs and undergoes dynamic upregulation during the early postnatal window of retinal cell maturation and physiological programmed cell death (PCD). In vitro blockade of PD-1 signaling during this time selectively increases the survival of RGCs. Furthermore, PD-1-deficient mice show a selective increase in RGC number in the neonatal retina at the peak of developmental RGC death. Lastly, gene expression of the immune PD-1 ligand genes Pdcd1lg1 and Pdcd1lg2 was found throughout postnatal retina maturation. CONCLUSIONS These findings collectively support a novel role for a PD-1-mediated signaling pathway in developmental PCD during postnatal RGC maturation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Molecular and Medical Pharmacology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|