1
|
Zhao R, Nawrocki A, Møller-Jensen J, Liu G, Olsen JE, Thomsen LE. Mechanistic divergence between SOS response activation and antibiotic-induced plasmid conjugation in Escherichia coli. Microbiol Spectr 2025:e0009025. [PMID: 40434128 DOI: 10.1128/spectrum.00090-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The SOS response is a critical DNA damage repair mechanism in bacteria, designed to counteract genotoxic stress and ensure survival. This system can be activated by different classes of antimicrobial agents, each inducing the SOS response through different mechanisms. Moreover, it has been observed that certain antibiotics can enhance conjugative plasmid transfer frequencies. However, while previous studies have suggested that the SOS response contributes to horizontal transfer of certain genes, its role in plasmid conjugation remains unclear. In this study, we investigated the relationship between the SOS response and conjugation of IncI1 and IncFII plasmids harboring various blaCTX-M resistance genes. Results showed that cefotaxime and mitomycin C induced both the SOS response and conjugation, while ciprofloxacin induced the SOS response without affecting conjugation frequencies. Further analysis of SOS mutants, ranging from constitutively inactive to hyper-induced states, revealed no correlation between SOS levels and conjugation frequencies, despite upregulation of tra gene expression in a SOS hyper-induced strain. Proteomic analysis revealed that cefotaxime-induced conjugation was associated with increased transfer and pilus protein expression. In contrast, the SOS hyper-induced strain displayed limited upregulation of plasmid-encoded proteins, suggesting post-transcriptional regulation. Additionally, putative LexA binding sites on the IncI1 plasmid revealed potential SOS-mediated regulation of plasmid genes, highlighting the interaction between the SOS response and plasmid, although it did not significantly affect conjugation.IMPORTANCEPlasmids play a critical role in the dissemination of antibiotic resistance through conjugation. Recent research suggests that the use of antibiotics not only selects for already resistant variants but further increases the rate of plasmid-encoded conjugative transmission by increasing expression of the conjugative system. At the same time, these antibiotics are known to induce the stress-related SOS response in bacteria. To be able to counteract an antibiotic-induced increase in conjugative transfer of resistance plasmid, there is a need for a fundamental understanding of the regulation of transmission, including whether this happens through activation of the SOS response. In this research, we show that antibiotic-induced conjugation and induction of the SOS response happen through different mechanisms, and thus that future strategies to control the spread of antibiotics cannot interfere with the SOS response as its target.
Collapse
Affiliation(s)
- Ruoxuan Zhao
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Region Syddanmark, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Region Syddanmark, Denmark
| | - Gang Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
| |
Collapse
|
2
|
Santos JA, Timinskas K, Ramudzuli AA, Lamers MH, Venclovas Č, Warner DF, Gessner SJ. The RecA-NT homology motif in ImuB mediates the interaction with ImuA', which is essential for DNA damage-induced mutagenesis. J Biol Chem 2025; 301:108108. [PMID: 39706264 PMCID: PMC11791113 DOI: 10.1016/j.jbc.2024.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
The mycobacterial mutasome-comprising ImuA', ImuB, and DnaE2-has been implicated in DNA damage-induced mutagenesis in Mycobacterium tuberculosis. ImuB, which is predicted to enable mutasome function via its interaction with the β clamp, is a catalytically inactive Y-family DNA polymerase. Like some other members of the Y-family, ImuB features a recently identified amino acid motif with homology to the RecA N terminus (RecA-NT). Given the role of RecA-NT in RecA oligomerization, we hypothesized that ImuB RecA-NT mediates the interaction with ImuA', an RecA homolog of unknown function. Here, we constructed a panel of imuB alleles in which the RecA-NT was removed or mutated. Our results indicate that RecA-NT is critical for the interaction of ImuB with ImuA'. A region downstream of RecA-NT, ImuB-C, appears to stabilize the ImuB-ImuA' interaction, but its removal does not prevent complex formation. In contrast, replacing two hydrophobic residues of RecA-NT, L378 and V383, disrupts the ImuA'-ImuB interaction. To our knowledge, this is the first experimental evidence suggesting a role for RecA-NT in mediating the interaction between a Y-family member and an RecA homolog.
Collapse
Affiliation(s)
- Joana A Santos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kęstutis Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Atondaho A Ramudzuli
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Sophia J Gessner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Timinskas K, Timinskas A, Venclovas Č. Common themes in architecture and interactions of prokaryotic PolB2 and Pol V mutasomes inferred from in silico studies. Comput Struct Biotechnol J 2025; 27:401-410. [PMID: 39906160 PMCID: PMC11791011 DOI: 10.1016/j.csbj.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Translesion DNA synthesis (TLS) is typically performed by inherently error-prone Y-family DNA polymerases. Extensively studied Escherichia coli Pol V mutasome, composed of UmuC, an UmuD' dimer and RecA is an example of a multimeric Y-family TLS polymerase. Less commonly TLS is performed by DNA polymerases of other families. One of the most intriguing such cases in B-family is represented by archaeal PolB2 and its bacterial homologs. Previously thought to be catalytically inactive, PolB2 was recently shown to be absolutely required for targeted mutagenesis in Sulfolobus islandicus. However, the composition and structure of the PolB2 holoenzyme remain unknown. We used highly accurate AlphaFold structural models, coupled with protein sequence and genome context analysis to comprehensively characterize PolB2 and its associated proteins, PPB2, a small helical protein, and iRadA, a catalytically inactive Rad51 homolog. We showed that these three proteins can form a heteropentameric PolB2 complex featuring high confidence modeling scores. Unexpectedly, we found that PolB2 binds iRadA through a structural motif reminiscent of RadA/Rad51 oligomerization motif. In some mutasomes we identified clamp binding motifs, present in either iRadA or PolB2, but rarely in both. We also used AlphaFold to derive a three-dimensional structure of Pol V, for which the experimental structure remains unsolved thus precluding comprehensive understanding of its molecular mechanism. Our analysis showed that the structural features of Pol V explain many of the puzzling previous experimental results. Even though models of PolB2 and Pol V mutasomes are structurally different, we found striking similarities in their architectural organization and interactions.
Collapse
Affiliation(s)
- Kęstutis Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
4
|
Widney KA, Yang DD, Rusch LM, Copley SD. CRISPR-Cas9-assisted genome editing in E. coli elevates the frequency of unintended mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.584922. [PMID: 38562785 PMCID: PMC10983943 DOI: 10.1101/2024.03.19.584922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cas-assisted lambda Red recombineering techniques have rapidly become a mainstay of bacterial genome editing. Such techniques have been used to construct both individual mutants and massive libraries to assess the effects of genomic changes. We have found that a commonly used Cas9-assisted editing method results in unintended mutations elsewhere in the genome in 26% of edited clones. The unintended mutations are frequently found over 200 kb from the intended edit site and even over 10 kb from potential off-target sites. We attribute the high frequency of unintended mutations to error-prone polymerases expressed in response to dsDNA breaks introduced at the edit site. Most unintended mutations occur in regulatory or coding regions and thus may have phenotypic effects. Our findings highlight the risks associated with genome editing techniques involving dsDNA breaks in E. coli and likely other bacteria and emphasize the importance of sequencing the genomes of edited cells to ensure the absence of unintended mutations.
Collapse
Affiliation(s)
- Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| |
Collapse
|
5
|
Gessner S, Martin ZAM, Reiche MA, Santos JA, Dinkele R, Ramudzuli A, Dhar N, de Wet TJ, Anoosheh S, Lang DM, Aaron J, Chew TL, Herrmann J, Müller R, McKinney JD, Woodgate R, Mizrahi V, Venclovas Č, Lamers MH, Warner DF. Investigating the composition and recruitment of the mycobacterial ImuA'-ImuB-DnaE2 mutasome. eLife 2023; 12:e75628. [PMID: 37530405 PMCID: PMC10421592 DOI: 10.7554/elife.75628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in Mycobacterium tuberculosis during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA' and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an imuBAAAAGG mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.
Collapse
Affiliation(s)
- Sophia Gessner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Zela Alexandria-Mae Martin
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Joana A Santos
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Ryan Dinkele
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Atondaho Ramudzuli
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Neeraj Dhar
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Department of Integrative Biomedical Sciences, University of Cape TownCape TownSouth Africa
| | - Saber Anoosheh
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Dirk M Lang
- Confocal and Light Microscope Imaging Facility, Department of Human Biology, University of Cape TownCape TownSouth Africa
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover-BraunschweigBraunschweigGermany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover-BraunschweigBraunschweigGermany
| | - John D McKinney
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| |
Collapse
|
6
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Abstract
In response to DNA damage, bacterial RecA protein forms filaments with the assistance of DinI protein. The RecA filaments stimulate the autocleavage of LexA, the repressor of more than 50 SOS genes, and activate the SOS response. During the late phase of SOS response, the RecA filaments stimulate the autocleavage of UmuD and λ repressor CI, leading to mutagenic repair and lytic cycle, respectively. Here, we determined the cryo-electron microscopy structures of Escherichia coli RecA filaments in complex with DinI, LexA, UmuD, and λCI by helical reconstruction. The structures reveal that LexA and UmuD dimers bind in the filament groove and cleave in an intramolecular and an intermolecular manner, respectively, while λCI binds deeply in the filament groove as a monomer. Despite their distinct folds and oligomeric states, all RecA filament binders recognize the same conserved protein features in the filament groove. The SOS response in bacteria can lead to mutagenesis and antimicrobial resistance, and our study paves the way for rational drug design targeting the bacterial SOS response.
Collapse
|
8
|
ATPase Activity of Bacillus subtilis RecA Affects the Dynamic Formation of RecA Filaments at DNA Double Strand Breaks. mSphere 2022; 7:e0041222. [PMID: 36321831 PMCID: PMC9769622 DOI: 10.1128/msphere.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in homologous recombination (HR). In vivo, RecA forms filamentous structures termed "threads," which are essential for HR, but whose nature is still ill defined. We show that RecA from Bacillus subtilis having lower ATP binding activity can still form nucleoprotein filaments in vitro, features lower dsDNA binding activity, but still retains most of wild type RecA activity in vivo. Contrarily, loss of ATPase activity strongly reduced formation of nucleoprotein filaments in vitro, and effectivity to repair double strand breaks (DSBs) in vivo. In the presence of wild type RecA protein, additionally expressed RecA with lowered ATPbinding activity only moderately affected RecA dynamics, while loss of ATPase activity leads to a large reduction of the formation of threads, as well as of their dynamic changes observed in a seconds-scale. Single molecule tracking of RecA revealed incorporation of freely diffusing and nonspecifically DNA-bound molecules into threads upon induction of a single DSB. This change of dynamics was highly perturbed in the absence of ATPase activity, revealing that filamentous forms of RecA as well as their dynamics depend on ATPase activity. Based on the idea that ATPase activity of RecA is most important for DNA strand exchange activity, our data suggest that extension and retraction of threads due is to many local strand invasion events during the search for sequences homologous to the induced DNA break site. IMPORTANCE Single-strand (ss) DNA binding ATPase RecA is the central recombinase in homologous recombination, and therefore essential for DNA repair pathways involving DNA strand exchange reactions. In several bacterial, RecA forms filamentous structures along the long axis of cells after induction of double strand breaks (DSBs) in the chromosome. These striking assemblies likely reflect RecA/ssDNA nucleoprotein filaments, which can extend and remodel within a time frame of few minutes. We show that ATPase activity of RecA is pivotal for these dynamic rearrangements, which include recruitment of freely diffusing molecules into low-mobile molecules within filaments. Our data suggest that ssDNA binding- and unbinding reactions are at the heart of RecA dynamics that power the dynamics of subcellular filamentous assemblies, leading to strand exchange reactions over a distance of several micrometers.
Collapse
|
9
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Abstract
In bacterial cells, DNA damage tolerance is manifested by the action of translesion DNA polymerases that can synthesize DNA across template lesions that typically block the replicative DNA polymerase III. It has been suggested that one of these translesion DNA synthesis DNA polymerases, DNA polymerase IV, can either act in concert with the replisome, switching places on the β sliding clamp with DNA polymerase III to bypass the template damage, or act subsequent to the replisome skipping over the template lesion in the gap in nascent DNA left behind as the replisome continues downstream. Evidence exists in support of both mechanisms. Using single-molecule analyses, we show that DNA polymerase IV associates with the replisome in a concentration-dependent manner and remains associated over long stretches of replication fork progression under unstressed conditions. This association slows the replisome, requires DNA polymerase IV binding to the β clamp but not its catalytic activity, and is reinforced by the presence of the γ subunit of the β clamp-loading DnaX complex in the DNA polymerase III holoenzyme. Thus, DNA damage is not required for association of DNA polymerase IV with the replisome. We suggest that under stress conditions such as induction of the SOS response, the association of DNA polymerase IV with the replisome provides both a surveillance/bypass mechanism and a means to slow replication fork progression, thereby reducing the frequency of collisions with template damage and the overall mutagenic potential.
Collapse
|
11
|
Ojha D, Jaszczur MM, Sikand A, McDonald JP, Robinson A, van Oijen AM, Mak CH, Pinaud F, Cox MM, Woodgate R, Goodman MF. Host cell RecA activates a mobile element-encoded mutagenic DNA polymerase. Nucleic Acids Res 2022; 50:6854-6869. [PMID: 35736210 PMCID: PMC9262582 DOI: 10.1093/nar/gkac515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chi H Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 Wisconsin, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Alves IR, Vêncio RZ, Galhardo RS. Whole genome analysis of UV-induced mutagenesis in Caulobacter crescentus. Mutat Res 2022; 825:111787. [PMID: 35691139 DOI: 10.1016/j.mrfmmm.2022.111787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
UV-induced mutagenesis is, to greater extent, a phenomenon dependent on translesion synthesis (TLS) and regulated by the SOS response in bacteria. Caulobacter crescentus, like many bacterial species, employs the ImuABC (ImuAB DnaE2) pathway in TLS. To have a better understanding of the characteristics of UV-induced mutagenesis in this organism, we performed a whole genome analysis of mutations present in survivors after an acute UVC exposure (300 J/m2). We found an average of 3.2 mutations/genome in irradiated samples, distributed in a mutational spectrum consisting exclusively of base substitutions, including tandem mutations. Although limited in conclusions by the small number of mutations identified, our study points to the feasibility of using whole-genome sequencing to study mutagenesis occurring in experiments involving a single acute exposure to genotoxic agents.
Collapse
Affiliation(s)
- Ingrid R Alves
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Ricardo Z Vêncio
- Department of Computing and Mathematics FFCLRP, Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Bonde NJ, Romero ZJ, Chitteni-Pattu S, Cox MM. RadD is a RecA-dependent accessory protein that accelerates DNA strand exchange. Nucleic Acids Res 2022; 50:2201-2210. [PMID: 35150260 PMCID: PMC8887467 DOI: 10.1093/nar/gkac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
15
|
McDonald JP, Quiros DR, Vaisman A, Mendez AR, Reyelt J, Schmidt M, Gonzalez M, Woodgate R. CroS R391 , an ortholog of the λ Cro repressor, plays a major role in suppressing polV R391 -dependent mutagenesis. Mol Microbiol 2021; 116:877-889. [PMID: 34184328 PMCID: PMC8460599 DOI: 10.1111/mmi.14777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Dominic R. Quiros
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Alexandra Vaisman
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | | | - Jan Reyelt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
- Present address:
AGC Biologics GmbHHeidelbergGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | | | - Roger Woodgate
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
16
|
ImuA Facilitates SOS Mutagenesis by Inhibiting RecA-Mediated Activity in Myxococcus xanthus. Appl Environ Microbiol 2021; 87:e0091921. [PMID: 34190612 DOI: 10.1128/aem.00919-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteria have two pathways to restart stalled replication forks caused by environmental stresses, error-prone translesion DNA synthesis (TLS) catalyzed by TLS polymerase and error-free template switching catalyzed by RecA, and their competition on the arrested fork affects bacterial SOS mutagenesis. DnaE2 is an error-prone TLS polymerase, and its functions require ImuA and ImuB. Here, we investigated the transcription of imuA, imuB, and dnaE2 in UV-C-irradiated Myxococcus xanthus and found that the induction of imuA occurred significantly earlier than that of the other two genes. Mutant analysis showed that unlike that of imuB or dnaE2, the deletion of imuA significantly delayed bacterial regrowth and slightly reduced the bacterial mutation frequency and UV resistance. Transcriptomic analysis revealed that the absence of ImuA released the expression of some known SOS genes, including recA1, recA2, imuB, and dnaE2. Yeast two-hybrid and pulldown analyses proved that ImuA interacts physically with RecA1 besides ImuB. Protein activity analysis indicated that ImuA had no DNA-binding activity but inhibited the DNA-binding and recombinase activity of RecA1. These findings indicate the new role of ImuA in SOS mutagenesis; that is, ImuA inhibits the recombinase activity of RecA1, thereby facilitating SOS mutagenesis in M. xanthus. IMPORTANCE DnaE2 is responsible for bacterial SOS mutagenesis in nearly one-third of sequenced bacterial strains. However, its mechanism, especially the function of one of its accessory proteins, ImuA, is still unclear. Here, we report that M. xanthus ImuA could affect SOS mutagenesis by inhibiting the recombinase activity of RecA1, which helps to explain the mechanism of DnaE2-dependent TLS and the selection of the two restart pathways to repair the stalled replication fork.
Collapse
|
17
|
Kotova VY, Abilev SK, Zavilgelsky GB. The Ratio between Lethal and Mutagenic Damages in the DNA of Plasmids and Bacteriophages Induced by 8-Methoxypsoralen Plus UV (λ ≥ 320 nm) Treatment. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Jain K, Wood EA, Romero ZJ, Cox MM. RecA-independent recombination: Dependence on the Escherichia coli RarA protein. Mol Microbiol 2021; 115:1122-1137. [PMID: 33247976 PMCID: PMC8160026 DOI: 10.1111/mmi.14655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
Most, but not all, homologous genetic recombination in bacteria is mediated by the RecA recombinase. The mechanistic origin of RecA-independent recombination has remained enigmatic. Here, we demonstrate that the RarA protein makes a major enzymatic contribution to RecA-independent recombination. In particular, RarA makes substantial contributions to intermolecular recombination and to recombination events involving relatively short (<200 bp) homologous sequences, where RecA-mediated recombination is inefficient. The effects are seen here in plasmid-based recombination assays and in vivo cloning processes. Vestigial levels of recombination remain even when both RecA and RarA are absent. Additional pathways for RecA-independent recombination, possibly mediated by helicases, are suppressed by exonucleases ExoI and RecJ. Translesion DNA polymerases may also contribute. Our results provide additional substance to a previous report of a functional overlap between RecA and RarA.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity. DNA Repair (Amst) 2021; 103:103130. [PMID: 33991871 DOI: 10.1016/j.dnarep.2021.103130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.
Collapse
|
20
|
Sikand A, Jaszczur M, Bloom LB, Woodgate R, Cox MM, Goodman MF. The SOS Error-Prone DNA Polymerase V Mutasome and β-Sliding Clamp Acting in Concert on Undamaged DNA and during Translesion Synthesis. Cells 2021; 10:cells10051083. [PMID: 34062858 PMCID: PMC8147279 DOI: 10.3390/cells10051083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.
Collapse
Affiliation(s)
- Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Malgorzata Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Linda B. Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA;
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Myron F. Goodman
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Correspondence:
| |
Collapse
|
21
|
Faraz M, Woodgate R, Clausen AR. Tracking Escherichia coli DNA polymerase V to the entire genome during the SOS response. DNA Repair (Amst) 2021; 101:103075. [PMID: 33662762 PMCID: PMC8286053 DOI: 10.1016/j.dnarep.2021.103075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA and can be used as a marker of DNA replication enzymology. To investigate on a genome-wide scale, how E. coli pol V accesses undamaged chromosomal DNA during the SOS response, we mapped the location of ribonucleotides incorporated by steric gate variants of pol V across the entire E. coli genome. To do so, we used strains that are deficient in ribonucleotide excision repair (ΔrnhB), deficient in pol IV DNA polymerase, constitutively express all SOS-regulated genes [lexA(Def)] and constitutively “activated” RecA* (recA730). The strains also harbor two steric gate variants of E. coli pol V (Y11A, or F10L), or a homolog of pol V, (pol VR391-Y13A). Ribonucleotides are frequently incorporated by the pol V-Y11A and pol VR391-Y13A variants, with a preference to the lagging strand. In contrast, the pol V-F10L variant incorporates less ribonucleotides and no strand preference is observed. Sharp transitions in strand specificity are observed at the replication origin (oriC), while a gradient is observed at the termination region. To activate RecA* in a recA+ strain, we treated the strains with ciprofloxacin and genome-wide mapped the location of the incorporated ribonucleotides. Again, the pol V-Y11A steric gate variant exhibited a lagging strand preference. Our data are consistent with a specific role for pol V in lagging strand DNA synthesis across the entire E. coli genome during the SOS response.
Collapse
Affiliation(s)
- Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
22
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
23
|
Single-molecule fluorescence microscopy reveals modulation of DNA polymerase IV-binding lifetimes by UmuD (K97A) and UmuD'. Curr Genet 2021; 67:295-303. [PMID: 33386487 DOI: 10.1007/s00294-020-01134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
DNA polymerase IV (pol IV) is expressed at increased levels in Escherichia coli cells that suffer DNA damage. In a recent live-cell single-molecule fluorescence microscopy study, we demonstrated that the formation of pol IV foci is strongly recB-dependent in cells treated with the DNA break-inducing antibiotic ciprofloxacin. The results of that study support a model in which pol IV acts to extend D-loop structures during recombinational repair of DNA double-strand breaks. In the present study, we extend upon this work, investigating the UmuD and UmuD' proteins as potential modulators of pol IV activity in ciprofloxacin-treated cells. We found that the non-cleavable mutant UmuD(K97A) promotes long-lived association of pol IV with the nucleoid, whereas its cleaved form, UmuD', which accumulates in DNA-damaged cells, reduces binding. The results provide additional support for a model in which UmuD and UmuD' directly modulate pol IV-binding to the nucleoid.
Collapse
|
24
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
25
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
26
|
Jin H, Kim R, Bhaya D. Deciphering proteolysis pathways for the error-prone DNA polymerase in cyanobacteria. Environ Microbiol 2020; 23:559-571. [PMID: 31908125 DOI: 10.1111/1462-2920.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19 ) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Rick Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| |
Collapse
|
27
|
Pol V-Mediated Translesion Synthesis Elicits Localized Untargeted Mutagenesis during Post-replicative Gap Repair. Cell Rep 2019; 24:1290-1300. [PMID: 30067983 DOI: 10.1016/j.celrep.2018.06.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/14/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022] Open
Abstract
In vivo, replication forks proceed beyond replication-blocking lesions by way of downstream repriming, generating daughter strand gaps that are subsequently processed by post-replicative repair pathways such as homologous recombination and translesion synthesis (TLS). The way these gaps are filled during TLS is presently unknown. The structure of gap repair synthesis was assessed by sequencing large collections of single DNA molecules that underwent specific TLS events in vivo. The higher error frequency of specialized relative to replicative polymerases allowed us to visualize gap-filling events at high resolution. Unexpectedly, the data reveal that a specialized polymerase, Pol V, synthesizes stretches of DNA both upstream and downstream of a site-specific DNA lesion. Pol V-mediated untargeted mutations are thus spread over several hundred nucleotides, strongly eliciting genetic instability on either side of a given lesion. Consequently, post-replicative gap repair may be a source of untargeted mutations critical for gene diversification in adaptation and evolution.
Collapse
|
28
|
A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. Proc Natl Acad Sci U S A 2019; 116:25591-25601. [PMID: 31796591 DOI: 10.1073/pnas.1914485116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.
Collapse
|
29
|
Deng T, Zhao H, Shi M, Qiu Y, Jiang S, Yang X, Zhao Y, Zhang Y. Photoactivated Trifunctional Platinum Nanobiotics for Precise Synergism of Multiple Antibacterial Modes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902647. [PMID: 31614073 DOI: 10.1002/smll.201902647] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Integrating multiple strategies of antibacterial mechanisms into one has been proven to have tremendous promise for improving antimicrobial efficiency. Hence, dual-valent platinum nanoparticles (dvPtNPs) with a zero-valent platinum core (Pt0 ) and bi-valent platinum shell (Pt2+ ions), combining photothermal and photodynamic therapy, together with "chemotherapy," emerge as spatiotemporally light-activatable platinum nano-antibiotics. Under near-infrared (NIR) exposure, the multiple antibacterial modes of dvPtNPs are triggered. The Pt0 core reveals significant hyperthermia via effective photothermal conversion while an immediate release of chemotherapeutic Pt2+ ions occurs through hyperthermia-initiated destabilization of metallic interactions, together with reactive oxygen species (ROS) level increase, thereby resulting in synergistic antibacterial effects. The precise cooperative effects between photothermal, photodynamic, and Pt2+ antibacterial effects are achieved on both Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, where bacterial viability and colony-forming units are significantly reduced. Moreover, similar results are observed in mice subcutaneous abscess models. Significantly, after NIR treatment, dvPtNP exhibits a more robust bacteria-killing efficiency than other PtNP groups, owing to its integration of dramatic damage to the bacterial membrane and DNA, and alteration to ATP and ROS metabolism. This study broadens the avenues for designing and synthesizing antibacterial materials with higher efficiency.
Collapse
Affiliation(s)
- Tian Deng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, 518057, P. R. China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
| | - Yun Qiu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
| | - Shuting Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, 518057, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, 518057, P. R. China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
30
|
Walsh E, Henrikus SS, Vaisman A, Makiela-Dzbenska K, Armstrong TJ, Łazowski K, McDonald JP, Goodman MF, van Oijen AM, Jonczyk P, Fijalkowska IJ, Robinson A, Woodgate R. Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V ICE391. DNA Repair (Amst) 2019; 84:102685. [PMID: 31543434 DOI: 10.1016/j.dnarep.2019.102685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/18/2022]
Abstract
pol VICE391 (RumA'2B) is a low-fidelity polymerase that promotes considerably higher levels of spontaneous "SOS-induced" mutagenesis than the related E. coli pol V (UmuD'2C). The molecular basis for the enhanced mutagenesis was previously unknown. Using single molecule fluorescence microscopy to visualize pol V enzymes, we discovered that the elevated levels of mutagenesis are likely due, in part, to prolonged binding of RumB to genomic DNA leading to increased levels of DNA synthesis compared to UmuC. We have generated a steric gate pol VICE391 variant (pol VICE391_Y13A) that readily misincorporates ribonucleotides into the E. coli genome and have used the enzyme to investigate the molecular mechanisms of Ribonucleotide Excision Repair (RER) under conditions of increased ribonucleotide-induced stress. To do so, we compared the extent of spontaneous mutagenesis promoted by pol V and pol VICE391 to that of their respective steric gate variants. Levels of mutagenesis promoted by the steric gate variants that are lower than that of the wild-type enzyme are indicative of active RER that removes misincorporated ribonucleotides, but also misincorporated deoxyribonucleotides from the genome. Using such an approach, we confirmed that RNase HII plays a pivotal role in RER. In the absence of RNase HII, Nucleotide Excision Repair (NER) proteins help remove misincorporated ribonucleotides. However, significant RER occurs in the absence of RNase HII and NER. Most of the RNase HII and NER-independent RER occurs on the lagging strand during genome duplication. We suggest that this is most likely due to efficient RNase HI-dependent RER which recognizes the polyribonucleotide tracts generated by pol VICE391_Y13A. These activities are critical for the maintenance of genomic integrity when RNase HII is overwhelmed, or inactivated, as ΔrnhB or ΔrnhB ΔuvrA strains expressing pol VICE391_Y13A exhibit genome and plasmid instability in the absence of RNase HI.
Collapse
Affiliation(s)
- Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | - Thomas J Armstrong
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Krystian Łazowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910 USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
31
|
Cong Q, Anishchenko I, Ovchinnikov S, Baker D. Protein interaction networks revealed by proteome coevolution. Science 2019; 365:185-189. [PMID: 31296772 PMCID: PMC6948103 DOI: 10.1126/science.aaw6718] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/07/2019] [Indexed: 01/19/2023]
Abstract
Residue-residue coevolution has been observed across a number of protein-protein interfaces, but the extent of residue coevolution between protein families on the whole-proteome scale has not been systematically studied. We investigate coevolution between 5.4 million pairs of proteins in Escherichia coli and between 3.9 millions pairs in Mycobacterium tuberculosis We find strong coevolution for binary complexes involved in metabolism and weaker coevolution for larger complexes playing roles in genetic information processing. We take advantage of this coevolution, in combination with structure modeling, to predict protein-protein interactions (PPIs) with an accuracy that benchmark studies suggest is considerably higher than that of proteome-wide two-hybrid and mass spectrometry screens. We identify hundreds of previously uncharacterized PPIs in E. coli and M. tuberculosis that both add components to known protein complexes and networks and establish the existence of new ones.
Collapse
Affiliation(s)
- Qian Cong
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
32
|
Zlatohurska M, Gorb T, Romaniuk L, Korol N, Faidiuk Y, Kropinski AM, Kushkina A, Tovkach F. Complete genome sequence analysis of temperate Erwinia bacteriophages 49 and 59. J Basic Microbiol 2019; 59:754-764. [PMID: 31099101 DOI: 10.1002/jobm.201900205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 11/09/2022]
Abstract
To date, a small number of temperate phages are known to infect members of the genus Erwinia. In this study, the genomes of temperate phages vB_EhrS_49 and vB_EhrS_59 infecting Erwinia horticola, the causative agent of beech black bacteriosis in Ukraine, were sequenced and annotated. Their genomes reveal no significant similarity to that of any previously reported viruses of Enterobacteriaceae. At the same time, phages 49 and 59 share extensive nucleotide sequence identity across the regions encoding head assembly, DNA packaging, and lysis. Despite significant homology between structural modules, the organization of distal tail morphogenesis genes is different. Furthermore, a number of putative morons and DNA methylases have been found in both phage genomes. Due to the revealed synteny as well as the structure of lysogeny module, phages 49 and 59 are suggested to be novel members of the lambdoid phage group. Conservative structural genes together with varying homology across the nonstructural region of the genomes make phages 49 and 59 highly promising objects for studying the genetic recombination and evolution of microbial viruses. The obtained data may as well be helpful for better understanding of relationships among Erwinia species.
Collapse
Affiliation(s)
- Maryna Zlatohurska
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Gorb
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Romaniuk
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Natalia Korol
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Faidiuk
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine.,ESC "Institute of Biology and Medicine", Department of Microbiology and Immunology, Taras Shevchenko Kyiv National University, Kyiv, Ukraine
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Alla Kushkina
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Fedor Tovkach
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
33
|
Timinskas K, Venclovas Č. New insights into the structures and interactions of bacterial Y-family DNA polymerases. Nucleic Acids Res 2019; 47:4393-4405. [PMID: 30916324 PMCID: PMC6511836 DOI: 10.1093/nar/gkz198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022] Open
Abstract
Bacterial Y-family DNA polymerases are usually classified into DinB (Pol IV), UmuC (the catalytic subunit of Pol V) and ImuB, a catalytically dead essential component of the ImuA-ImuB-DnaE2 mutasome. However, the true diversity of Y-family polymerases is unknown. Furthermore, for most of them the structures are unavailable and interactions are poorly characterized. To gain a better understanding of bacterial Y-family DNA polymerases, we performed a detailed computational study. It revealed substantial diversity, far exceeding traditional classification. We found that a large number of subfamilies feature a C-terminal extension next to the common Y-family region. Unexpectedly, in most C-terminal extensions we identified a region homologous to the N-terminal oligomerization motif of RecA. This finding implies a universal mode of interaction between Y-family members and RecA (or ImuA), in the case of Pol V strongly supported by experimental data. In gram-positive bacteria, we identified a putative Pol V counterpart composed of a Y-family polymerase, a YolD homolog and RecA. We also found ImuA-ImuB-DnaE2 variants lacking ImuA, but retaining active or inactive Y-family polymerase, a standalone ImuB C-terminal domain and/or DnaE2. In summary, our analyses revealed that, despite considerable diversity, bacterial Y-family polymerases share previously unanticipated similarities in their structural domains/motifs and interactions.
Collapse
Affiliation(s)
- Kęstutis Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
34
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
35
|
Ghodke H, Paudel BP, Lewis JS, Jergic S, Gopal K, Romero ZJ, Wood EA, Woodgate R, Cox MM, van Oijen AM. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. eLife 2019; 8:42761. [PMID: 30717823 PMCID: PMC6363387 DOI: 10.7554/elife.42761] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the λ repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*). Single-molecule imaging techniques in live cells demonstrate that RecA is largely sequestered in storage structures during normal metabolism. Upon DNA damage, the storage structures dissolve and the cytosolic pool of RecA rapidly nucleates to form early SOS-signaling complexes, maturing into DNA-bound RecA bundles at later time points. Both before and after SOS induction, RecA* largely appears at locations distal from replisomes. Upon completion of repair, RecA storage structures reform.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kamya Gopal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
36
|
Jaszczur MM, Vo DD, Stanciauskas R, Bertram JG, Sikand A, Cox MM, Woodgate R, Mak CH, Pinaud F, Goodman MF. Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genet 2019; 15:e1007956. [PMID: 30716079 PMCID: PMC6375631 DOI: 10.1371/journal.pgen.1007956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/14/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.
Collapse
Affiliation(s)
- Malgorzata M. Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Dan D. Vo
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Ramunas Stanciauskas
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jeffrey G. Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi H. Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Zutterling C, Mursalimov A, Talhaoui I, Koshenov Z, Akishev Z, Bissenbaev AK, Mazon G, Geacintov NE, Gasparutto D, Groisman R, Zharkov DO, Matkarimov BT, Saparbaev M. Aberrant repair initiated by the adenine-DNA glycosylase does not play a role in UV-induced mutagenesis in Escherichia coli. PeerJ 2018; 6:e6029. [PMID: 30568855 PMCID: PMC6286661 DOI: 10.7717/peerj.6029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2'-deoxyguanosine-5'-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. METHODS Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproduct (6-4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. RESULTS We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6-4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. DISCUSSION These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.
Collapse
Affiliation(s)
- Caroline Zutterling
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aibek Mursalimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ibtissam Talhaoui
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | - Zhanat Koshenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Gerard Mazon
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Didier Gasparutto
- CEA, CNRS, INAC, SyMMES, Université Grenoble Alpes, Grenoble, France
| | - Regina Groisman
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Murat Saparbaev
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
38
|
Raychaudhury P, Marians KJ. The recombination mediator proteins RecFOR maintain RecA* levels for maximal DNA polymerase V Mut activity. J Biol Chem 2018; 294:852-860. [PMID: 30482842 DOI: 10.1074/jbc.ra118.005726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/20/2018] [Indexed: 11/06/2022] Open
Abstract
DNA template damage can potentially block DNA replication. Cells have therefore developed different strategies to repair template lesions. Activation of the bacterial lesion bypass DNA polymerase V (Pol V) requires both the cleavage of the UmuD subunit to UmuD' and the acquisition of a monomer of activated RecA recombinase, forming Pol V Mut. Both of these events are mediated by the generation of RecA* via the formation of a RecA-ssDNA filament during the SOS response. Formation of RecA* is itself modulated by competition with the ssDNA-binding protein (SSB) for binding to ssDNA. Previous observations have demonstrated that RecA filament formation on SSB-coated DNA can be favored in the presence of the recombination mediator proteins RecF, RecO, and RecR. We show here using purified proteins that in the presence of SSB and RecA, a stable RecA-ssDNA filament is not formed, although sufficient RecA* is generated to support some activation of Pol V. The presence of RecFOR increased RecA* generation and allowed Pol V to synthesize longer DNA products and to elongate from an unpaired primer terminus opposite template damage, also without the generation of a stable RecA-ssDNA filament.
Collapse
Affiliation(s)
- Paromita Raychaudhury
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
39
|
Gonzalez M, Huston D, McLenigan MP, McDonald JP, Garcia AM, Borden KS, Woodgate R. SetR ICE391, a negative transcriptional regulator of the integrating conjugative element 391 mutagenic response. DNA Repair (Amst) 2018; 73:99-109. [PMID: 30581075 DOI: 10.1016/j.dnarep.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022]
Abstract
The integrating conjugative element ICE391 (formerly known as IncJ R391) harbors an error-prone DNA polymerase V ortholog, polVICE391, encoded by the ICE391 rumAB operon. polV and its orthologs have previously been shown to be major contributors to spontaneous and DNA damage-induced mutagenesis in vivo. As a result, multiple levels of regulation are imposed on the polymerases so as to avoid aberrant mutagenesis. We report here, that the mutagenesis-promoting activity of polVICE391 is additionally regulated by a transcriptional repressor encoded by SetRICE391, since Escherichia coli expressing SetRICE391 demonstrated reduced levels of polVICE391-mediated spontaneous mutagenesis relative to cells lacking SetRICE391. SetRICE391 regulation was shown to be specific for the rumAB operon and in vitro studies with highly purified SetRICE391 revealed that under alkaline conditions, as well as in the presence of activated RecA, SetRICE391 undergoes a self-mediated cleavage reaction that inactivates repressor functions. Conversely, a non-cleavable SetRICE391 mutant capable of maintaining repressor activity, even in the presence of activated RecA, exhibited low levels of polVICE391-dependent mutagenesis. Electrophoretic mobility shift assays revealed that SetRICE391 acts as a transcriptional repressor by binding to a site overlapping the -35 region of the rumAB operon promoter. Our study therefore provides evidence indicating that SetRICE391 acts as a transcriptional repressor of the ICE391-encoded mutagenic response.
Collapse
Affiliation(s)
- Martín Gonzalez
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA.
| | - Donald Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Audrey M Garcia
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Kylie S Borden
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
40
|
Fujii S, Isogawa A, Fuchs RP. Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo. Toxicol Res 2018; 34:297-302. [PMID: 30370004 PMCID: PMC6195876 DOI: 10.5487/tr.2018.34.4.297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/20/2022] Open
Abstract
Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.
Collapse
Affiliation(s)
- Shingo Fujii
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| | - Asako Isogawa
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| | - Robert P Fuchs
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| |
Collapse
|
41
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
42
|
Sundarrajan S, Rao S, Padmanabhan S. Cloning and high-level expression of Thermus thermophilus RecA in E. coli: purification and novel use in HBV diagnostics. Braz J Microbiol 2018; 49:848-855. [PMID: 29691193 PMCID: PMC6175717 DOI: 10.1016/j.bjm.2018.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022] Open
Abstract
We studied the role of Thermus thermophilus Recombinase A (RecA) in enhancing the PCR signals of DNA viruses such as Hepatitis B virus (HBV). The RecA gene of a thermophilic eubacterial strain, T. thermophilus, was cloned and hyperexpressed in Escherichia coli. The recombinant RecA protein was purified using a single heat treatment step without the use of any chromatography steps, and the purified protein (>95%) was found to be active. The purified RecA could enhance the polymerase chain reaction (PCR) signals of HBV and improve the detection limit of the HBV diagnosis by real time PCR. The yield of recombinant RecA was ∼35mg/L, the highest yield reported for a recombinant RecA to date. RecA can be successfully employed to enhance detection sensitivity for the diagnosis of DNA viruses such as HBV, and this methodology could be particularly useful for clinical samples with HBV viral loads of less than 10IU/mL, which is interesting and novel.
Collapse
Affiliation(s)
- Sudarson Sundarrajan
- Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Sri Shankara Research Center, Shankarapuram, Bangalore, India
| | - Sneha Rao
- Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Sri Shankara Research Center, Shankarapuram, Bangalore, India
| | - Sriram Padmanabhan
- Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Sri Shankara Research Center, Shankarapuram, Bangalore, India.
| |
Collapse
|
43
|
Kubiak JM, Culyba MJ, Liu MY, Mo CY, Goulian M, Kohli RM. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage. ACS Synth Biol 2017; 6:2067-2076. [PMID: 28826208 PMCID: PMC5696648 DOI: 10.1021/acssynbio.7b00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bacterial SOS stress-response
pathway is a pro-mutagenic DNA
repair system that mediates bacterial survival and adaptation to genotoxic
stressors, including antibiotics and UV light. The SOS pathway is
composed of a network of genes under the control of the transcriptional
repressor, LexA. Activation of the pathway involves linked but distinct
events: an initial DNA damage event leads to activation of RecA, which
promotes autoproteolysis of LexA, abrogating its repressor function
and leading to induction of the SOS gene network. These linked events
can each independently contribute to DNA repair and mutagenesis, making
it difficult to separate the contributions of the different events
to observed phenotypes. We therefore devised a novel synthetic circuit
to unlink these events and permit induction of the SOS gene network
in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic
SOS circuit demonstrate small-molecule inducible expression of SOS
genes as well as the associated resistance to UV light. Exploiting
our ability to activate SOS genes independently of upstream events,
we further demonstrate that the majority of SOS-mediated mutagenesis
on the chromosome does not readily occur with orthogonal pathway induction
alone, but instead requires DNA damage. More generally, our approach
provides an exemplar for using synthetic circuit design to separate
an environmental stressor from its associated stress-response pathway.
Collapse
Affiliation(s)
- Jeffrey M. Kubiak
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Monica Yun Liu
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charlie Y. Mo
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Goulian
- Department
of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
44
|
Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus. DNA Repair (Amst) 2017; 59:20-26. [DOI: 10.1016/j.dnarep.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 02/02/2023]
|
45
|
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 2017; 591:1083-1100. [PMID: 28079255 DOI: 10.1002/1873-3468.12556] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.
Collapse
Affiliation(s)
| | - Vincenzo Sannino
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Anna de Antoni
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Hervé Técher
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Baldi
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
46
|
Goodman MF. Better living with hyper-mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:421-34. [PMID: 27273795 PMCID: PMC4945469 DOI: 10.1002/em.22023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 05/12/2023]
Abstract
The simplest forms of mutations, base substitutions, typically have negative consequences, aside from their existential role in evolution and fitness. Hypermutations, mutations on steroids, occurring at frequencies of 10(-2) -10(-4) per base pair, straddle a domain between fitness and death, depending on the presence or absence of regulatory constraints. Two facets of hypermutation, one in Escherichia coli involving DNA polymerase V (pol V), the other in humans, involving activation-induced deoxycytidine deaminase (AID) are portrayed. Pol V is induced as part of the DNA-damage-induced SOS regulon, and is responsible for generating the lion's share of mutations when catalyzing translesion DNA synthesis (TLS). Four regulatory mechanisms, temporal, internal, conformational, and spatial, activate pol V to copy damaged DNA and then deactivate it. On the flip side of the coin, SOS-induced pols V, IV, and II mutate undamaged DNA, thus providing genetic diversity heightening long-term survival and evolutionary fitness. Fitness in humans is principally the domain of a remarkably versatile immune system marked by somatic hypermutations (SHM) in immunoglobulin variable (IgV) regions that ensure antibody (Ab) diversity. AID initiates SHM by deaminating C → U, favoring hot WRC (W = A/T, R = A/G) motifs. Since there are large numbers of trinucleotide motif targets throughout IgV, AID must exercise considerable catalytic restraint to avoid attacking such sites repeatedly, which would otherwise compromise diversity. Processive, random, and inefficient AID-catalyzed dC deamination simulates salient features of SHM, yet generates B-cell lymphomas when working at the wrong time in the wrong place. Environ. Mol. Mutagen. 57:421-434, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myron F. Goodman
- Correspondence to Myron F. Goodman, Department of Biological Sciences, Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910, USA,
| |
Collapse
|
47
|
Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y. Antibacterial properties and mechanisms of gold-silver nanocages. NANOSCALE 2016; 8:11143-52. [PMID: 27180869 DOI: 10.1039/c6nr01114d] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Naiman K, Pagès V, Fuchs RP. A defect in homologous recombination leads to increased translesion synthesis in E. coli. Nucleic Acids Res 2016; 44:7691-9. [PMID: 27257075 PMCID: PMC5027485 DOI: 10.1093/nar/gkw488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the 'SOS signal'. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
Collapse
Affiliation(s)
- Karel Naiman
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Vincent Pagès
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Robert P Fuchs
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
49
|
Goodman MF, McDonald JP, Jaszczur MM, Woodgate R. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair (Amst) 2016; 44:42-50. [PMID: 27236212 DOI: 10.1016/j.dnarep.2016.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli.
Collapse
Affiliation(s)
- Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA.
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
50
|
Jaszczur M, Bertram JG, Robinson A, van Oijen AM, Woodgate R, Cox MM, Goodman MF. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry 2016; 55:2309-18. [PMID: 27043933 DOI: 10.1021/acs.biochem.6b00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Department of Biological Sciences, University of Southern California , Los Angeles, California 90089-0371, United States
| | - Jeffrey G Bertram
- Department of Biological Sciences, University of Southern California , Los Angeles, California 90089-0371, United States
| | - Andrew Robinson
- School of Chemistry, University of Wollongong , Wollongong, Australia
| | | | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health , Rockville, Maryland 20850, United States
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California , Los Angeles, California 90089-0371, United States.,Department of Chemistry, University of Southern California , Los Angeles, California 90089-1062, United States
| |
Collapse
|