1
|
Jos S, Kambaru A, Prasad TK, Parthasarathi S, Kamariah N, Nath S, Padmanabhan B, Padavattan S. Structural and functional insights into the nuclear role of Parkinson's disease-associated α-synuclein as a histone chaperone. Commun Biol 2025; 8:712. [PMID: 40341765 PMCID: PMC12062221 DOI: 10.1038/s42003-025-08138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
α-Synuclein (αSyn) plays a critical role in the pathogenesis of 'Synucleinopathies'. Although increased nuclear αSyn localization induces neurotoxicity, its definitive physiological role remains elusive. Previous studies on nuclear αSyn are limited to its interactions with individual histones and dsDNA, leaving a significant gap in understanding its interactions with assembled histone H2a-H2b dimer and (H3-H4)2 tetramer, as well as its role in chromatin regulation. Here, we demonstrate that αSyn binds specifically to both H2a-H2b and (H3-H4)2 with high affinity. Truncation studies reveal that αSyn(1-103) region interacts with (H3-H4)2, while the acidic (121-140) C-terminal end is crucial for H2a-H2b binding and contains a conserved DEF/YxP motif present in other dimer-binding histone chaperones. High-resolution structure of αSyn(121-140) with H2a-H2b complex reveals that αSyn adopts two binding modes (BM-1 and BM-2). Nonetheless, the αSyn C-terminal end in both modes overlap but runs in opposite orientations, specifically interacting with the H2a-L2 and H2b-L1 loop regions of the dimer and cap the H2a-R78 residue. Mutational analysis confirms that αSyn-Y136 and P138 residues, part of the DEF/YxP motif, together with H2a-R78, are critical for αSyn-(H2a-H2b) interaction. The chaperoning assay supports αSyn's function as a histone chaperone, suggesting the potential role of αSyn in the nucleosome assembly/disassembly process.
Collapse
Affiliation(s)
- Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Archanalakshmi Kambaru
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Thazhe Kootteri Prasad
- Center for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Shylaja Parthasarathi
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Neelagandan Kamariah
- Center for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| |
Collapse
|
2
|
Liu X, Zhao Y, Zhang L, Wang J, Luo L, Zhang S, Zhu Q, Shi Y, Yuan C, Xiao Q, Xiong M, Duan Y, Chen H, Yao H, Cai L, Zhang J, Li G, Li L. ANP32E expression in pancreatic cancer is associated with impaired gemcitabine efficacy and poor patient prognosis. Mol Cell Probes 2025; 82:102030. [PMID: 40306467 DOI: 10.1016/j.mcp.2025.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and fatal malignancy, although gemcitabine is administered as a single or combined therapeutic agent. Our previous study demonstrated that ANP32E overexpression promoted PDAC cell proliferation. However, whether it affects treatment outcome and clinical prognosis is still unclear. In the present study, we aimed to determine whether ANP32E is negatively associated with the treatment outcome of gemcitabine. METHODS We collected clinical characteristics and treatment information from a total of 75 PDAC patients to assess the association of ANP32E expression via immunohistochemical (IHC) staining with overall survival (OS) in patients who were or were not treated with gemcitabine-based chemotherapy, followed by a clinical replication study with transcriptomic data from the TCGA database and functional validation experiments involving the knockdown of ANP32E in the Hup-T3 and SU86.86 human pancreatic cancer cell lines. RESULTS We demonstrated the interference effect of ANP32E on gemcitabine efficacy and patient prognosis in PDAC patients by using our own clinical samples or publicly available TCGA datasets. Downregulation of ANP32E significantly sensitized Hup-T3 and SU86.86 cells to gemcitabine, which was consistent with the results of the above association studies. CONCLUSION Our findings suggest that ANP32E might serve as a negative biomarker for poor prognosis and a predictive indicator for poor gemcitabine efficacy. These findings suggest that ANP32E might be a potential therapeutic target to help develop effective drugs to overcome gemcitabine resistance and reduce the risk for relapse or metastasis in patients with PDAC.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China; Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China; Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China
| | - Junting Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Liaoxin Luo
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Shihui Zhang
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Qin Zhu
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Beijing, 100700, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China
| | - Qifeng Xiao
- Pancreatic and Gastric Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuanyuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China
| | - Lin Cai
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Jianwei Zhang
- Pancreatic and Gastric Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guangxi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
3
|
Lukasak BJ, Korb E. Histone variants: expanding the epigenetic potential of neurons one amino acid at a time. Trends Biochem Sci 2025:S0968-0004(25)00079-9. [PMID: 40268580 DOI: 10.1016/j.tibs.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Replication-independent histone variants play an essential role in postmitotic neurons. Here, we review how the subtle sequence differences of histone variants compared to their canonical counterparts underly neuronal function. We focus on variants H3.3, H2A.Z, H2A.X, macroH2A, and H2BE; all of which contain divergent sequences that coordinate a diverse set of outcomes. In particular, we highlight their role in neuronal development, plasticity, and memory, with an emphasis on how single amino acid changes can mediate these complex functions. Lastly, we comment on an emerging field of study evaluating the link between histone variants and neurological disorders. Future studies of histone variants will be important to furthering our understanding of neuronal function.
Collapse
Affiliation(s)
- Bradley J Lukasak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Park BJ, Hua S, Casler KD, Cefaloni E, Ayers MC, Lake RF, Murphy KE, Vertino PM, O'Connell MR, Murphy PJ. CUT&Tag Identifies Repetitive Genomic Loci that are Excluded from ChIP Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636299. [PMID: 39974916 PMCID: PMC11838576 DOI: 10.1101/2025.02.03.636299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Determining the genomic localization of chromatin features is an essential aspect of investigating gene expression control, and ChIP-Seq has long been the gold standard technique for interrogating chromatin landscapes. Recently, the development of alternative methods, such as CUT&Tag, have provided researchers with alternative strategies that eliminate the need for chromatin purification, and allow for in situ investigation of histone modifications and chromatin bound factors. Mindful of technical differences, we set out to investigate whether distinct chromatin modifications were equally compatible with these different chromatin interrogation techniques. We found that ChIP-Seq and CUT&Tag performed similarly for modifications known to reside at gene regulatory regions, such as promoters and enhancers, but major differences were observed when we assessed enrichment over heterochromatin-associated loci. Unlike ChIP-Seq, CUT&Tag detects robust levels of H3K9me3 at a substantial number of repetitive elements, with especially high sensitivity over evolutionarily young retrotransposons. IAPEz-int elements for example, exhibited underrepresentation in mouse ChIP-Seq datasets but strong enrichment using CUT&Tag. Additionally, we identified several euchromatin-associated proteins that co-purify with repetitive loci and are similarly depleted when applying ChIP-based methods. This study reveals that our current knowledge of chromatin states across the heterochromatin portions of the mammalian genome is extensively incomplete, largely due to limitations of ChIP-Seq. We also demonstrate that newer in situ chromatin fragmentation-based techniques, such as CUT&Tag and CUT&RUN, are more suitable for studying chromatin modifications over repetitive elements and retrotransposons.
Collapse
Affiliation(s)
- Brandon J Park
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Shan Hua
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Karli D Casler
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Eric Cefaloni
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Michael C Ayers
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Rahiim F Lake
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Kristin E Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Paula M Vertino
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Mitchell R O'Connell
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Patrick J Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
- Cornell University, Department of Molecular Biology and Genetics
| |
Collapse
|
5
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
6
|
Diegmüller F, Leers J, Hake SB. The "Ins and Outs and What-Abouts" of H2A.Z: A tribute to C. David Allis. J Biol Chem 2025; 301:108154. [PMID: 39761855 PMCID: PMC11808731 DOI: 10.1016/j.jbc.2025.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.Z, a nucleosome component he was the first to discover as hv1 in Tetrahymena. We summarize the latest findings from the past 5 years regarding the mammalian H2A.Z histone, focusing on its deposition and eviction mechanisms, its roles in transcriptional regulation, DNA damage repair, chromatin structure organization, and embryonic development, as well as how its deregulation or mutation(s) of its histone chaperones contribute to disease development. As Dave liked to say 'Every amino acid matters'; the discovery and characterization of functionally different H2A.Z's isoforms, which vary only in three amino acids, prove him-once again-right.
Collapse
Affiliation(s)
- Felix Diegmüller
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
7
|
Castro-Muñoz JL, Maestri D, Yoon L, Karisetty BC, Tempera I, Lieberman P. Histone Variant H2A.Z Cooperates with EBNA1 to Maintain Epstein-Barr Virus Latent Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635203. [PMID: 39975074 PMCID: PMC11838259 DOI: 10.1101/2025.01.28.635203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chromatin structure plays a central role in the regulation of Epstein-Barr Virus (EBV) latency. The histone variant H2A.Z.1 has been implicated in chromatin structures associated with initiation of transcription and DNA replication. Here, we investigate the functional role of H2AZ.1 in the regulation of EBV chromatin, gene expression and copy number during latent infection. We found that H2A.Z.1 is highly enriched with EBNA1 binding sites at oriP and Qp, and to a lesser extent with transcriptionally active CTCF binding sites on the EBV genomes in both Mutu I Burkitt lymphoma (BL) and SNU719 EBV-associated gastric carcinoma (EBVaGC) cell lines. RNA-interference depletion of H2A.Z.1 resulted in the reactivation of viral lytic genes (ZTA and EAD) and increases viral DNA copy numbers in both MutuI and SNU719 cells. H2A.Z depletion also led to a decrease in EBNA1 binding to oriP and Qp, on the viral episome as well as on oriP plasmids independently of other viral genes and genomes. H2A.Z.1 depletion also reduced peaks of H3K27ac and H4K20me3 at regulatory elements in the EBV genome. In the cellular genome, H2A.Z.1 colocalized with only a subset of EBNA1 binding sites and H2A.Z.1 depletion altered transcription of genes associated with myc targets and mTORC1 signaling. Taken together, these findings indicate that H2A.Z.1 cooperates with EBNA1 to regulate chromatin structures important for epigenetic programming of the latent episome.
Collapse
Affiliation(s)
| | | | - Leena Yoon
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
8
|
Sun LY, Ke SB, Li BX, Chen FS, Huang ZQ, Li L, Zhang JF, Cai YX, Zhu HJ, Zhang XD, Du RL, Liu Y, Chen YS. ANP32E promotes esophageal cancer progression and paclitaxel resistance via P53/SLC7A11 axis-regulated ferroptosis. Int Immunopharmacol 2025; 144:113436. [PMID: 39566382 DOI: 10.1016/j.intimp.2024.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Esophageal cancer (EC) is associated with high mortality rates and widespread resistance to chemotherapeutic agents, like paclitaxel (PTX), posing a significant global public health challenge. ANP32E is a member of the acidic nuclear phosphoprotein 32 family, its specific biological functions and mechanisms in EC remain unclear. Through bioinformatics analysis and clinical tissue sample studies, we observed a marked upregulation of ANP32E expression in EC tissues. Utilizing ANP32E knock-out EC cell models and xenograft experiments in nude mice, we demonstrated that the absence of ANP32E significantly inhibits tumor progression and migration, whereas its overexpression exacerbates tumor growth. Transcriptomic sequencing (RNA-seq) further revealed activation of the ferroptosis pathway in ANP32E deficient cells, which was confirmed through experiments showing enhanced ferroptosis that could be reversed by the ferroptosis inhibitor ferrostatin-1. At the molecular level, ANP32E regulates EC progression and ferroptosis via the p53/SLC7A11 axis. ANP32E depletion resulted in increased p53 expression level, while inhibition of p53 partially restored the suppressed cell proliferation and increased ferroptosis in ANP32E-depleted cells. Additionally, knocking out ANP32E significantly enhanced EC cell sensitivity to PTX, Combining PTX with the ferroptosis inducer erastin was more effective in inhibiting tumor growth. In vivo, we confirmed the synergistic effect of ANP32E knock-out combined with PTX demonstrating superior tumor suppressing. Overall, our findings suggest that ANP32E regulates EC progression and ferroptosis through the p53/SLC7A11 axis, offering a potential molecular target for overcoming PTX resistance in EC treatment.
Collapse
Affiliation(s)
- Li-Ying Sun
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo-Xin Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Fei-Shan Chen
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Zhi-Qun Huang
- Department of Allergy The 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Le Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jian-Feng Zhang
- Xuancheng Institutes of Food and Drug Control, Xuancheng 242000, China
| | - Yu-Xin Cai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang-Jia Zhu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Dong Zhang
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- Hengyang Medical School, University of South China, Hengyang 421000, China.
| | - Yong-Shun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Johal KS, Youssef SA, Ibrahim SM, Dizon-Mapula LA, Galluzzo IR, Stefanelli G. Srcap loss alters H2A.Z-dependent and neuronal differentiation-related gene expression in N2A cells. Biochem Cell Biol 2025; 103:1-12. [PMID: 40068207 DOI: 10.1139/bcb-2024-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
The chromatin remodeler SRCAP plays a critical role in depositing the histone variant H2A.Z, which is essential for transcriptional regulation, chromatin accessibility, and neurodevelopmental processes. Despite its known importance, the mechanisms by which SRCAP regulates H2A.Z dynamics during neuronal differentiation remain poorly understood. Here, we investigated the impact of Srcap knockdown on H2A.Z incorporation and transcriptional regulation in N2A cells. Chromatin immunoprecipitation revealed reduced H2A.Z occupancy at activity-dependent and neurodevelopmental genes upon Srcap knockdown, confirming Srcap's role in H2A.Z deposition. Interestingly, CBP recruitment and global histone H3 acetylation were unaffected by Srcap knockdown at steady-state conditions, suggesting an H2A.Z-specific function of Srcap. We also observed that retinoic acid-induced neuronal differentiation leads to dynamic changes in H2A.Z levels at developmental loci, which are disrupted in Srcap-deficient cells. Gene expression analysis revealed altered expression of neurodevelopmental genes in the absence of Srcap, correlating with reduced H2A.Z occupancy. Together, these findings demonstrate that Srcap is essential for regulating H2A.Z dynamics and gene expression during neuronal differentiation, offering new insights into its role in chromatin remodelling and its potential involvement in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karanveer S Johal
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Sandra A Youssef
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Samira M Ibrahim
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Lina A Dizon-Mapula
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Isabella R Galluzzo
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Gilda Stefanelli
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
10
|
Zhang K, Wei J, Zhang S, Fei L, Guo L, Liu X, Ji Y, Chen W, Ciamponi FE, Chen W, Li M, Zhai J, Fu T, Massirer KB, Yu Y, Lupien M, Wei Y, Arrowsmith CH, Wu Q, Tan W. A chemical screen identifies PRMT5 as a therapeutic vulnerability for paclitaxel-resistant triple-negative breast cancer. Cell Chem Biol 2024; 31:1942-1957.e6. [PMID: 39232499 DOI: 10.1016/j.chembiol.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Paclitaxel-resistant triple negative breast cancer (TNBC) remains one of the most challenging breast cancers to treat. Here, using an epigenetic chemical probe screen, we uncover an acquired vulnerability of paclitaxel-resistant TNBC cells to protein arginine methyltransferases (PRMTs) inhibition. Analysis of cell lines and in-house clinical samples demonstrates that resistant cells evade paclitaxel killing through stabilizing mitotic chromatin assembly. Genetic or pharmacologic inhibition of PRMT5 alters RNA splicing, particularly intron retention of aurora kinases B (AURKB), leading to a decrease in protein expression, and finally results in selective mitosis catastrophe in paclitaxel-resistant cells. In addition, type I PRMT inhibition synergies with PRMT5 inhibition in suppressing tumor growth of drug-resistant cells through augmenting perturbation of AURKB-mediated mitotic signaling pathway. These findings are fully recapitulated in a patient-derived xenograft (PDX) model generated from a paclitaxel-resistant TNBC patient, providing the rationale for targeting PRMTs in paclitaxel-resistant TNBC.
Collapse
Affiliation(s)
- KeJing Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China; Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan 410000, China
| | - Juan Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - SheYu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Liyan Fei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Lu Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xueying Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - YiShuai Ji
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - WenJun Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Felipe E Ciamponi
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas 13083-872, Brazil
| | - WeiChang Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - MengXi Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China; Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan 410000, China
| | - Jie Zhai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Ting Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Katlin B Massirer
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas 13083-872, Brazil
| | - Yang Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C4, Canada; Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Yong Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5S 1A1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| | - Qin Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China.
| | - WeiHong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
11
|
Fu Q, Nguyen T, Kumar B, Azadi P, Zheng YG. Identification of the Regulatory Elements and Protein Substrates of Lysine Acetoacetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621296. [PMID: 39554048 PMCID: PMC11565915 DOI: 10.1101/2024.10.31.621296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Short chain fatty acylations establish connections between cell metabolism and regulatory pathways. Lysine acetoacetylation (Kacac) was recently identified as a new histone mark. However, regulatory elements, substrate proteins, and epigenetic functions of Kacac remain unknown, hindering further in-depth understanding of acetoacetate modulated (patho)physiological processes. Here, we created a chemo-immunological approach for reliable detection of Kacac, and demonstrated that acetoacetate serves as the primary precursor for histone Kacac. We report the enzymatic addition of the Kacac mark by the acyltransferases GCN5, p300, and PCAF, and its removal by deacetylase HDAC3. Furthermore, we establish acetoacetyl-CoA synthetase (AACS) as a key regulator of cellular Kacac levels. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveal the broad impacts of Kacac on multifaceted cellular processes. These findings unveil pivotal regulatory mechanisms for the acetoacetate-mediated Kacac pathway, opening a new avenue for further investigation into ketone body functions in various pathophysiological states.
Collapse
Affiliation(s)
- Qianyun Fu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Mews P, Van der Zee Y, Gurung A, Estill M, Futamura R, Kronman H, Ramakrishnan A, Ryan M, Reyes AA, Garcia BA, Browne CJ, Sidoli S, Shen L, Nestler EJ. Cell type-specific epigenetic priming of gene expression in nucleus accumbens by cocaine. SCIENCE ADVANCES 2024; 10:eado3514. [PMID: 39365860 PMCID: PMC11451531 DOI: 10.1126/sciadv.ado3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
A hallmark of addiction is the ability of drugs of abuse to trigger relapse after periods of prolonged abstinence. Here, we describe an epigenetic mechanism whereby chronic cocaine exposure causes lasting chromatin and downstream transcriptional modifications in the nucleus accumbens (NAc), a critical brain region controlling motivation. We link prolonged withdrawal from cocaine to the depletion of the histone variant H2A.Z, coupled with increased genome accessibility and latent priming of gene transcription, in D1 dopamine receptor-expressing medium spiny neurons (D1 MSNs) that relate to aberrant gene expression upon drug relapse. The histone chaperone ANP32E removes H2A.Z from chromatin, and we demonstrate that D1 MSN-selective Anp32e knockdown prevents cocaine-induced H2A.Z depletion and blocks cocaine's rewarding actions. By contrast, very different effects of cocaine exposure, withdrawal, and relapse were found for D2 MSNs. These findings establish histone variant exchange as an important mechanism and clinical target engaged by drugs of abuse to corrupt brain function and behavior.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan Ryan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abner A. Reyes
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medticine, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Ouararhni K, Mietton F, Sabir JSM, Ibrahim A, Molla A, Albheyri RS, Zari AT, Bahieldin A, Menoni H, Bronner C, Dimitrov S, Hamiche A. Identification of a novel DNA oxidative damage repair pathway, requiring the ubiquitination of the histone variant macroH2A1.1. BMC Biol 2024; 22:188. [PMID: 39218869 PMCID: PMC11368025 DOI: 10.1186/s12915-024-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Collapse
Affiliation(s)
- Khalid Ouararhni
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Flore Mietton
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Annie Molla
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Raed S Albheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé Menoni
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Christian Bronner
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
- Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France.
| |
Collapse
|
14
|
Shi L, Zhang Z, Huang Y, Zheng Y. FOXCUT regulates the malignant phenotype of triple-negative breast Cancer via the miR-337-3p/ANP32E Axis. Genomics 2024; 116:110892. [PMID: 38944356 DOI: 10.1016/j.ygeno.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The lack of specific molecular targets and the rapid spread lead to a worse prognosis of triple-negative breast cancer (TNBC). Therefore, identifying new therapeutic and prognostic biomarkers helps to develop effective treatment strategies for TNBC. METHODS Through preliminary bioinformatics analysis, FOXCUT was found to be significantly overexpressed in breast cancer, especially in TNBC. Tissue samples were collected from 15 TNBC patients, and qRT-PCR was employed to validate the expression of FOXCUT in both TNBC patient tissues and TNBC cell lines. We also carried out the GSEA analysis and KEGG enrichment analysis of FOXCUT. Additionally, the effects of FOXCUT knockdown on TNBC cell malignant behaviors, and aerobic glycolysis were assessed by methods including CCK-8, Transwell, western blot, and Seahorse XF 96 analyses. Moreover, utilizing databases predicting interactions between ceRNAs, corresponding lncRNA-miRNA binding relationships, and miRNA-mRNA interactions were predicted. These predictions were subsequently validated through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS FOXCUT exhibited high expression in both TNBC tissues and cell lines, fostering cell malignant behaviors and glycolysis. FOXCUT was found to sponge miR-337-3p, while miR-337-3p negatively regulated the expression of ANP32E. Consequently, FOXCUT ultimately facilitated the malignant phenotype of TNBC by upregulating ANP32E expression. CONCLUSION This study elucidated the role of FOXCUT in elevating aerobic glycolysis levels in TNBC and driving malignant cancer cell development via the miR-337-3p/ANP32E regulatory axis.
Collapse
Affiliation(s)
- Lei Shi
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Ziwen Zhang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yabing Zheng
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
15
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
16
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
17
|
Sun W, Dong Q, Li X, Gao J, Ye X, Hu C, Li F, Chen Y. The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B. Nat Commun 2024; 15:4322. [PMID: 38773107 PMCID: PMC11109203 DOI: 10.1038/s41467-024-48418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.
Collapse
Affiliation(s)
- Wenqi Sun
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA.
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
18
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
19
|
Gopinathan G, Xu Q, Luan X, Diekwisch TGH. CFDP1 regulates the stability of pericentric heterochromatin thereby affecting RAN GTPase activity and mitotic spindle formation. PLoS Biol 2024; 22:e3002574. [PMID: 38630655 PMCID: PMC11023358 DOI: 10.1371/journal.pbio.3002574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/02/2024] [Indexed: 04/19/2024] Open
Abstract
The densely packed centromeric heterochromatin at minor and major satellites is comprised of H3K9me2/3 histones, the heterochromatin protein HP1α, and histone variants. In the present study, we sought to determine the mechanisms by which condensed heterochromatin at major and minor satellites stabilized by the chromatin factor CFDP1 affects the activity of the small GTPase Ran as a requirement for spindle formation. CFDP1 colocalized with heterochromatin at major and minor satellites and was essential for the structural stability of centromeric heterochromatin. Loss of CENPA, HP1α, and H2A.Z heterochromatin components resulted in decreased binding of the spindle nucleation facilitator RCC1 to minor and major satellite repeats. Decreased RanGTP levels as a result of diminished RCC1 binding interfered with chromatin-mediated microtubule nucleation at the onset of mitotic spindle formation. Rescuing chromatin H2A.Z levels in cells and mice lacking CFDP1 through knock-down of the histone chaperone ANP32E not only partially restored RCC1-dependent RanGTP levels but also alleviated CFDP1-knockout-related craniofacial defects and increased microtubule nucleation in CFDP1/ANP32E co-silenced cells. Together, these studies provide evidence for a direct link between condensed heterochromatin at major and minor satellites and microtubule nucleation through the chromatin protein CFDP1.
Collapse
Affiliation(s)
- Gokul Gopinathan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Qian Xu
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Xianghong Luan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Thomas G. H. Diekwisch
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
20
|
Dijkwel Y, Hart-Smith G, Kurscheid S, Tremethick DJ. ANP32e Binds Histone H2A.Z in a Cell Cycle-Dependent Manner and Regulates Its Protein Stability in the Cytoplasm. Mol Cell Biol 2024; 44:72-85. [PMID: 38482865 PMCID: PMC10950284 DOI: 10.1080/10985549.2024.2319731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.
Collapse
Affiliation(s)
- Yasmin Dijkwel
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David J. Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
21
|
Gilbert CJ, Rabolli CP, Golubeva VA, Sattler KM, Wang M, Ketabforoush A, Arnold WD, Lepper C, Accornero F. YTHDF2 governs muscle size through a targeted modulation of proteostasis. Nat Commun 2024; 15:2176. [PMID: 38467649 PMCID: PMC10928198 DOI: 10.1038/s41467-024-46546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
The regulation of proteostasis is fundamental for maintenance of muscle mass and function. Activation of the TGF-β pathway drives wasting and premature aging by favoring the proteasomal degradation of structural muscle proteins. Yet, how this critical post-translational mechanism is kept in check to preserve muscle health remains unclear. Here, we reveal the molecular link between the post-transcriptional regulation of m6A-modified mRNA and the modulation of SMAD-dependent TGF-β signaling. We show that the m6A-binding protein YTHDF2 is essential to determining postnatal muscle size. Indeed, muscle-specific genetic deletion of YTHDF2 impairs skeletal muscle growth and abrogates the response to hypertrophic stimuli. We report that YTHDF2 controls the mRNA stability of the ubiquitin ligase ASB2 with consequences on anti-growth gene program activation through SMAD3. Our study identifies a post-transcriptional to post-translational mechanism for the coordination of gene expression in muscle.
Collapse
Affiliation(s)
- Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Charles P Rabolli
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Meifang Wang
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Division of Neuromuscular Disorders, Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Christoph Lepper
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Liu J, Liu Y, Zhao Q. Knockdown of ANP32E inhibits colorectal cancer cell growth and glycolysis by regulating the AKT/mTOR pathway. Open Life Sci 2024; 19:20220817. [PMID: 38585643 PMCID: PMC10997116 DOI: 10.1515/biol-2022-0817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 04/09/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor, with an increasing number of deaths worldwide each year. Tremendous advances in the diagnosis and treatment of CRC have significantly improved the outcomes for CRC patients. Additionally, accumulating evidence has hinted the relationship between acidic nuclear phosphoprotein 32 family member E (ANP32E) and cancer progression. But the role of ANP32E in CRC remains unclear. In our study, through TCGA database, it was demonstrated that the expression of ANP32E was enhanced in COAD tissues (n = 286). In addition, the mRNA and protein expression of ANP32E was also confirmed to be upregulated in CRC cell lines. Further investigation uncovered that knockdown of ANP32E suppressed cell proliferation and glycolysis, and facilitated cell apoptosis in CRC. Moreover, inhibition of ANP32E inhibited the AKT/mTOR pathway. Through rescue assays, we discovered that the reduced cell proliferation, glycolysis and the enhanced cell apoptosis mediated by ANP32E repression was reversed by SC79 treatment. In summary, ANP32E aggravated the growth and glycolysis of CRC cells by stimulating the AKT/mTOR pathway. This finding suggested that the ANP32E has the potential to be explored as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Clinical Laboratory, Beihua University Affiliated Hospital, No. 12, Jiefang Middle Road, Jilin, Jilin, 132011, China
| | - Yanchao Liu
- Department of Clinical Laboratory, Jilin Gynecology and Obstetrics Hospital, Jilin, Jilin, 130211, China
| | - Qi Zhao
- Department of Clinical Laboratory, Beihua University Affiliated Hospital, No. 12, Jiefang Middle Road, Jilin, Jilin, 132011, China
| |
Collapse
|
23
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
24
|
Halblander FN, Meng FW, Murphy PJ. Anp32e protects against accumulation of H2A.Z at Sox motif containing promoters during zebrafish gastrulation. Dev Biol 2024; 507:34-43. [PMID: 38159623 PMCID: PMC10922954 DOI: 10.1016/j.ydbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z binding during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation and developmental genes become precociously active. Accordingly, H2A.Z accumulation occurs most extensively at Sox motif-associated genes, including many which are normally activated following gastrulation. Altogether, our results provide compelling evidence for a mechanism in which Anp32e preferentially restricts H2A.Z accumulation at Sox motifs to regulate the initial phases of developmental differentiation in zebrafish.
Collapse
Affiliation(s)
- Fabian N Halblander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Fanju W Meng
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Patrick J Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Ignatyeva M, Patel AKM, Ibrahim A, Albiheyri RS, Zari AT, Bahieldin A, Bronner C, Sabir JSM, Hamiche A. Identification and Characterization of HIRIP3 as a Histone H2A Chaperone. Cells 2024; 13:273. [PMID: 38334665 PMCID: PMC10854748 DOI: 10.3390/cells13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.
Collapse
Affiliation(s)
- Maria Ignatyeva
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdul Kareem Mohideen Patel
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Raed S. Albiheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali T. Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christian Bronner
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
| |
Collapse
|
26
|
Kawaguchi K, Kazama M, Hata T, Matsuo M, Obokata J, Satoh S. Inducible Expression of the Restriction Enzyme Uncovered Genome-Wide Distribution and Dynamic Behavior of Histones H4K16ac and H2A.Z at DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:142-155. [PMID: 37930797 DOI: 10.1093/pcp/pcad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Mei Kazama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8560, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| |
Collapse
|
27
|
Kaur R, Kumar P, Kumar A. Insights on the nuclear shuttling of H2A-H2B histone chaperones. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:902-914. [PMID: 38133493 DOI: 10.1080/15257770.2023.2296616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
All cellular processes that involve the unwinding of DNA also lead to the systematic shuttling of histones. Histone shuttling across the nuclear membrane is facilitated by a class of proteins known as - histone chaperones. Histone chaperones are classified based on their binding to H3/H4 histones or H2A/H2B histones. During the shuttling process, two types of signals - NLS and NES are recognized by the nuclear transport proteins. However, this is the nuclear transport protein and the mechanism of signal recognition by the protein is still unknown. Thus, in this piece of work, the NLS and NES signals are predicted on important H2A/H2B binding histone chaperones. In addition, cellular localization and potential DNA binding regions of histone chaperones are predicted. Mapping of predicted regions on the histone chaperone's structure suggested that the critical binding regions mainly lie on the disordered region of the histone chaperones. NLS and NES are present in the N- and C-terminal of the histone chaperones. Most histone chaperones contain bipartiate NLS signals. This article sheds light on the crucial aspect that in addition of being directly engaged in nucleosome synthesis and disassembly in vivo, histone chaperone also performs various specific roles via histone binding activity.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University Mathura, Bharthia, Uttar Pradesh, India
| | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Indian Council for Medical Research (ICMR-NICPR), Noida, Uttar Pradesh, India
| | - Anuj Kumar
- ICMR-National Institute of Cancer Prevention and Research, Indian Council for Medical Research (ICMR-NICPR), Noida, Uttar Pradesh, India
| |
Collapse
|
28
|
Halblander FN, Meng FW, Murphy PJ. Anp32e protects against accumulation of H2A.Z at Sox motif containing promoters during zebrafish gastrulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572196. [PMID: 38187710 PMCID: PMC10769258 DOI: 10.1101/2023.12.18.572196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation, and precocious developmental transcription of Sox motif associated genes. Altogether, our results provide compelling evidence for a mechanism in which Anp32e restricts H2A.Z accumulation at Sox motif-containing promoters, and subsequent down-regulation of Anp32e enables temporal up-regulation of Sox motif associated genes.
Collapse
Affiliation(s)
- Fabian N. Halblander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester NY, 14642, USA
| | - Fanju W. Meng
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester NY, 14642, USA
| | - Patrick J. Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester NY, 14642, USA
| |
Collapse
|
29
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
30
|
Mandemaker IK, Fessler E, Corujo D, Kotthoff C, Wegerer A, Rouillon C, Buschbeck M, Jae LT, Mattiroli F, Ladurner AG. The histone chaperone ANP32B regulates chromatin incorporation of the atypical human histone variant macroH2A. Cell Rep 2023; 42:113300. [PMID: 37858472 DOI: 10.1016/j.celrep.2023.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
All vertebrate genomes encode for three large histone H2A variants that have an additional metabolite-binding globular macrodomain module, macroH2A. MacroH2A variants impact heterochromatin organization and transcription regulation and establish a barrier for cellular reprogramming. However, the mechanisms of how macroH2A is incorporated into chromatin and the identity of any chaperones required for histone deposition remain elusive. Here, we develop a split-GFP-based assay for chromatin incorporation and use it to conduct a genome-wide mutagenesis screen in haploid human cells to identify proteins that regulate macroH2A dynamics. We show that the histone chaperone ANP32B is a regulator of macroH2A deposition. ANP32B associates with macroH2A in cells and in vitro binds to histones with low nanomolar affinity. In vitro nucleosome assembly assays show that ANP32B stimulates deposition of macroH2A-H2B and not of H2A-H2B onto tetrasomes. In cells, depletion of ANP32B strongly affects global macroH2A chromatin incorporation, revealing ANP32B as a macroH2A histone chaperone.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, the Netherlands.
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, LMU Munich, 81377 Munich, Germany
| | - David Corujo
- Applied Epigenetics Program, Myeloid Neoplasm Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, 08916 Badalona, Barcelona, Spain; Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| | - Christiane Kotthoff
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Wegerer
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Clément Rouillon
- Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Marcus Buschbeck
- Applied Epigenetics Program, Myeloid Neoplasm Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, 08916 Badalona, Barcelona, Spain; Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Barcelona, Spain
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, LMU Munich, 81377 Munich, Germany
| | | | - Andreas G Ladurner
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
31
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
32
|
Lorton BM, Warren C, Ilyas H, Nandigrami P, Hegde S, Cahill S, Lehman SM, Shabanowitz J, Hunt DF, Fiser A, Cowburn D, Shechter D. Glutamylation of Npm2 and Nap1 acidic disordered regions increases DNA charge mimicry to enhance chaperone efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558337. [PMID: 37790377 PMCID: PMC10542154 DOI: 10.1101/2023.09.18.558337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.
Collapse
Affiliation(s)
- Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Current address: Merck & Co., Inc., 2025 E Scott Ave., Rahway, NJ 07065
| | - Humaira Ilyas
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Prithviraj Nandigrami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Stephanie M Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
- GSK, Collegeville, Pennsylvania 19426
| | | | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904
| | - Andras Fiser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
33
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
34
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
35
|
Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins M, Dominguez C, Schwabe JR. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Nucleic Acids Res 2023; 51:6006-6019. [PMID: 37099381 PMCID: PMC10325919 DOI: 10.1093/nar/gkad294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.
Collapse
Affiliation(s)
- Siyu Wang
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy J Ragan
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dipti Vashi
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyril Dominguez
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
36
|
Ohtomo H, Yamane T, Oda T, Kodera N, Kurita JI, Tsunaka Y, Amyot R, Ikeguchi M, Nishimura Y. Dynamic solution structures of whole human NAP1 dimer bound to one and two histone H2A-H2B heterodimers obtained by integrative methods. J Mol Biol 2023:168189. [PMID: 37380014 DOI: 10.1016/j.jmb.2023.168189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Nucleosome assembly protein 1 (NAP1) binds to histone H2A-H2B heterodimers, mediating their deposition on and eviction from the nucleosome. Human NAP1 (hNAP1) consists of a dimerization core domain and intrinsically disordered C-terminal acidic domain (CTAD), both of which are essential for H2A-H2B binding. Several structures of NAP1 proteins bound to H2A-H2B exhibit binding polymorphisms of the core domain, but the distinct structural roles of the core and CTAD domains remain elusive. Here, we have examined dynamic structures of the full-length hNAP1 dimer bound to one and two H2A-H2B heterodimers by integrative methods. Nuclear magnetic resonance (NMR) spectroscopy of full-length hNAP1 showed CTAD binding to H2A-H2B. Atomic force microscopy revealed that hNAP1 forms oligomers of tandem repeated dimers; therefore, we generated a stable dimeric hNAP1 mutant exhibiting the same H2A-H2B binding affinity as wild-type hNAP1. Size exclusion chromatography (SEC), multi-angle light scattering (MALS) and small angle X-ray scattering (SAXS), followed by modelling and molecular dynamics simulations, have been used to reveal the stepwise dynamic complex structures of hNAP1 binding to one and two H2A-H2B heterodimers. The first H2A-H2B dimer binds mainly to the core domain of hNAP1, while the second H2A-H2B binds dynamically to both CTADs. Based on our findings, we present a model of the eviction of H2A-H2B from nucleosomes by NAP1.
Collapse
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Romain Amyot
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan.
| |
Collapse
|
37
|
Li Y, Huang H. Structural basis for H2A-H2B recognitions by human Spt16. Biochem Biophys Res Commun 2023; 651:85-91. [PMID: 36801613 DOI: 10.1016/j.bbrc.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The human facilitates chromatin transcription (FACT) complex, consisting of Spt16 and SSRP1, is a versatile histone chaperone that can engage free H2A-H2B dimer and H3-H4 tetramer (or dimer), and partially unraveled nucleosome. The C-terminal domain of human Spt16 (hSpt16-CTD) is the decisive element for engaging H2A-H2B dimer and partially unraveled nucleosome. The molecular basis of the H2A-H2B dimer recognitions by hSpt16-CTD is not fully comprehended. Here, we present a high-resolution snapshot of the recognitions of the H2A-H2B dimer by hSpt16-CTD via an acidic intrinsically disordered (AID) segment, and reveal some distinct structural features of hSpt16-CTD as compared to the budding yeast Spt16-CTD.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology & Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology & Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
39
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
40
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D’Arcy S. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525896. [PMID: 36747879 PMCID: PMC9901172 DOI: 10.1101/2023.01.27.525896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.
Collapse
Affiliation(s)
- Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Oladimeji S. Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| |
Collapse
|
41
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
42
|
Okuda M, Tsunaka Y, Nishimura Y. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophys Rev 2022; 14:1449-1472. [PMID: 36659983 PMCID: PMC9842849 DOI: 10.1007/s12551-022-01014-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| |
Collapse
|
43
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
44
|
Liu X, Zhang J, Zhou J, Bu G, Zhu W, He H, Sun Q, Yu Z, Xiong W, Wang L, Wu D, Dou C, Yu L, Zhou K, Wang S, Fan Z, Wang T, Hu R, Hu T, Zhang X, Miao Y. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200057. [PMID: 35717671 PMCID: PMC9376818 DOI: 10.1002/advs.202200057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Indexed: 05/09/2023]
Abstract
Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.
Collapse
|
45
|
Fontaine E, Papin C, Martinez G, Le Gras S, Nahed RA, Héry P, Buchou T, Ouararhni K, Favier B, Gautier T, Sabir JSM, Gerard M, Bednar J, Arnoult C, Dimitrov S, Hamiche A. Dual role of histone variant H3.3B in spermatogenesis: positive regulation of piRNA transcription and implication in X-chromosome inactivation. Nucleic Acids Res 2022; 50:7350-7366. [PMID: 35766398 PMCID: PMC9303386 DOI: 10.1093/nar/gkac541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.
Collapse
Affiliation(s)
- Emeline Fontaine
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Christophe Papin
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Guillaume Martinez
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Stéphanie Le Gras
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Patrick Héry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Thierry Buchou
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Khalid Ouararhni
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Bertrand Favier
- Université de Grenoble Alpes, Etablissement Français du Sang, EA 7408, BP35, 38701 La Tronche, France
| | - Thierry Gautier
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Matthieu Gerard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Christophe Arnoult
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, La Tronche 38700, France.,"Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35330, Turkey
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France.,Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
46
|
Liu Y, Li Y, Bao H, Liu Y, Chen L, Huang H. Epstein-Barr Virus Tegument Protein BKRF4 is a Histone Chaperone. J Mol Biol 2022; 434:167756. [PMID: 35870648 DOI: 10.1016/j.jmb.2022.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Histone chaperones, which constitute an interaction and functional network involved in all aspects of histone metabolism, have to date been identified only in eukaryotes. The Epstein-Barr virus tegument protein BKRF4 is a histone-binding protein that engages histones H2A-H2B and H3-H4, and cellular chromatin, inhibiting the host DNA damage response. Here, we identified BKRF4 as a bona fide viral histone chaperone whose histone-binding domain (HBD) forms a co-chaperone complex with the human histone chaperone ASF1 in vitro. We determined the crystal structures of the quaternary complex of the BKRF4 HBD with human H3-H4 dimer and the histone chaperone ASF1b and the ternary complex of the BKRF4 HBD with human H2A-H2B dimer. Through structural and biochemical studies, we elucidated the molecular basis for H3-H4 and H2A-H2B recognition by BKRF4. We also revealed two conserved motifs, D/EL and DEF/Y/W, within the BKRF4 HBD, which may represent common motifs through which histone chaperones target H3-H4 and H2A-H2B, respectively. In conclusion, our results identify BKRF4 as a histone chaperone encoded by the Epstein-Barr virus, representing a typical histone chaperone found in a non-eukaryote. We envision that more histone chaperones await identification and characterization in DNA viruses and even archaea.
Collapse
Affiliation(s)
- Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yue Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyu Bao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
47
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
48
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
49
|
Kreienbaum C, Paasche LW, Hake SB. H2A.Z's 'social' network: functional partners of an enigmatic histone variant. Trends Biochem Sci 2022; 47:909-920. [PMID: 35606214 DOI: 10.1016/j.tibs.2022.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.
Collapse
Affiliation(s)
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
50
|
Luo S, Su T, Zhou X, Hu WX, Hu J. Chromosome 1 instability in multiple myeloma: Aberrant gene expression, pathogenesis, and potential therapeutic target. FASEB J 2022; 36:e22341. [PMID: 35579877 DOI: 10.1096/fj.202200354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
Multiple myeloma (MM), the terminally differentiated B cells malignancy, is widely considered to be incurable since many patients have either developed drug resistance or experienced an eventual relapse. To develop precise and efficient therapeutic strategies, we must understand the pathogenesis of MM. Thus, unveiling the driver events of MM and its further clonal evolution will help us understand this complicated disease. Chromosome 1 instabilities are the most common genomic alterations that participate in MM pathogenesis, and these aberrations of chromosome 1 mainly include copy number variations and structural changes. The chromosome 1q gains/amplifications and 1p deletions are the most frequent structural changes of chromosomes in MM. In this review, we intend to focus on the genes that are affected by chromosome 1 instability: some tumor suppressors were lost or down regulated in 1p deletions, and others that contributed to tumorigenesis were upregulated in 1q gains/amplifications. We have summarized their biological function as well as their roles in the MM pathogenesis, hoping to uncover potential novel therapeutical targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Saiqun Luo
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Tao Su
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|