1
|
Arias-Aragón F, Sánchez-Hidalgo AC, Gruart A, Martinez-Mir A, Delgado-García JM, Scholl FG. Impaired synaptic plasticity in behaving mice by inactivation of presenilin and accumulation of the neurexin gamma-secretase proteolytic substrate. Exp Neurol 2025; 389:115241. [PMID: 40187476 DOI: 10.1016/j.expneurol.2025.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in presenilin (PSEN1/2) genes are the main cause of familial Alzheimer's disease (fAD). Presenilin (PS) form the active component of the gamma-secretase complex, a protease that cleaves the C-terminal fragment (CTF) of multiple membrane proteins. The generation of mice lacking Psen1/2 genes in adult forebrain and of knockin mice expressing fAD-linked PSEN1 mutations favored a loss of function mechanism for PS/gamma-secretase in AD. In vitro, inactivation of PS impairs short- and long-term plasticity, but if PS regulates synaptic plasticity in vivo is not known, nor is it known the contribution of specific gamma-secretase substrates. In this study, we performed electrophysiological recordings at medial prefrontal cortex-basolateral (mPFC-BLA) synapse of behaving mice during fear conditioning, a type of associative memory. In controls, fear-conditioning decreases paired-pulse facilitation of the mPFC-BLA synapse, likely reflecting a memory-dependent increase in release probability. In contrast, PScKOtam mice lacking Psen1/2 genes in forebrain neurons in a tamoxifen-regulated manner show decreased paired-pulse facilitation at mPFC-BLA synapse along with impaired memory. Neurexins (Nrxns) are presynaptic membrane proteins processed by PS/gamma-secretase. Importantly, paired-pulse facilitation is further decreased in PScKOtam;NrxnCTF mice expressing increased NrxnCTF levels in PS-deficient neurons. Moreover, high-frequency stimulation induces long-term potentiation (LTP) at mPFC-BLA synapse of control mice, but LTP is impaired in PScKOtam mice and fully inhibited in PScKOtam;NrxnCTF mice. These findings suggest that PS enables learning-dependent adaptations in short and long-term synaptic plasticity by, at least in part, preventing the accumulation of NrxnCTF, pointing at NrxnCTF as a relevant factor downstream of PS dysfunction in AD.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | | | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
2
|
Wall EK, Virakorn EA, Baker KD, Cohen EM, Richardson R. Preclinical behavioral and pharmacological treatments for enhancing fear extinction in adolescence. Neurosci Biobehav Rev 2025; 172:106090. [PMID: 40049540 DOI: 10.1016/j.neubiorev.2025.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Adolescence is a window of vulnerability for the development of anxiety disorders but also a window of opportunity for treatments to minimize the long-term impact of such disorders. Current first-line treatments, primarily exposure-based cognitive-behavioral therapy (CBT), have limited long-term efficacy in adolescents. The urgent need for more effective interventions is underscored by the frequent reports of extinction impairments in adolescents as well as the rising anxiety rates in youth, particularly post-COVID-19. Preclinical research on the extinction of learned fear in adolescents may contribute to developing better treatment approaches to anxiety in this age group. Unfortunately, this is still a largely under-explored area. However, both pharmacological and behavioral augmentation strategies can be used to enhance extinction learning and consolidation. Here we describe work exploring such adjuncts, focusing on pre-clinical work with rodents. Much of the research to date shows striking developmental differences in response to various pharmacological treatments, with only a few shown to be effective in adolescents. Further, recent experience of stress reduces the efficacy of these treatments in adolescence. This review highlights the necessity for tailored strategies, especially when it comes to pharmacological adjuncts, that address developmental differences in drug responses as well as the impact of stressful experiences on treatment efficacy.
Collapse
Affiliation(s)
- Emily K Wall
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Kathryn D Baker
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia; Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
| | - E Myfanwy Cohen
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Sazhina T, Tsurugizawa T, Mochizuki Y, Saito A, Joji-Nishino A, Ouchi K, Yagishita S, Emoto K, Uematsu A. Time- and sex-dependent effects of juvenile social isolation on mouse brain morphology. Neuroimage 2025; 310:121117. [PMID: 40049304 DOI: 10.1016/j.neuroimage.2025.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
During early life stages, social isolation disrupts the proper brain growth and brain circuit formation, which is associated with the risk of mental disorders and cognitive deficits in adulthood. Nevertheless, the impact of juvenile social isolation on brain development, particularly regarding variations across age and sex, remains poorly understood. Here, we investigate the effects of social isolation stress (SIS) during early (3-5 weeks old) or late (5-7 weeks old) juvenile period on brain morphology in adult male and female mice using ultra high-field MRI (11.7 T). We found that both early and late SIS in female mice led to volumetric increases in multiple brain regions, such as the medial prefrontal cortex (mPFC) and hippocampus. Correlation tractography revealed that the fiber tracts in the right corpus callosum and right amygdala were positively correlated with SIS in female mice. In male mice, early SIS resulted in small volumetric increases in the isocortex, whereas late SIS led to reductions in the isocortex and hypothalamus. Furthermore, early SIS caused a negative correlation, while late SIS exhibited a positive correlation, with fiber tracts in the corpus callosum and amygdala in male mice. Using a Random Forest classifier, we achieved effective discrimination between socially isolated and control conditions in the brain volume of female mice, with the limbic areas playing a key role in the model's accuracy. Finally, we discovered that SIS led to context fear generalization in a sex-dependent manner. Our findings highlight the importance of considering both the time- and sex-dependent effects of juvenile SIS on brain development and emotional processing, providing new insights into its long-term consequences.
Collapse
Affiliation(s)
- Tatiana Sazhina
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Yuki Mochizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Aika Saito
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Joji-Nishino
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| | - Akira Uematsu
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Cao Z, Yung WH, Ke Y. Repeated activation of preoptic area recipient neurons in posterior paraventricular nucleus mediates chronic heat-induced negative emotional valence and hyperarousal states. eLife 2025; 13:RP101302. [PMID: 40202515 PMCID: PMC11981607 DOI: 10.7554/elife.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.
Collapse
Affiliation(s)
- Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong KongChina
| | - Wing-Ho Yung
- Department of Neuroscience, College of Biomedicine, City University of Hong KongHong KongChina
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong KongChina
| |
Collapse
|
5
|
Machen B, Miller SN, Xin A, Lampert C, Assaf L, Tucker J, Pereira F, Loewinger G, Beas S. The encoding of interoceptive-based predictions by the paraventricular nucleus of the thalamus D2+ neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642469. [PMID: 40161660 PMCID: PMC11952474 DOI: 10.1101/2025.03.10.642469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how the brain integrates internal physiological states with external sensory cues to guide behavior is a fundamental question in neuroscience. This process relies on interoceptive predictions-internal models that anticipate changes in the body's physiological state based on sensory inputs and prior experiences. Despite recent advances in identifying the neural substrates of interoceptive predictions, the precise neuronal circuits involved remain elusive. In our study, we demonstrate that Dopamine 2 Receptor (D2+) expressing neurons in the paraventricular nucleus of the thalamus (PVT) play key roles in interoception and interoceptive predictions. Specifically, these neurons are engaged in behaviors leading to physiologically relevant outcomes, with their activity highly dependent on the interoceptive state of the mice and the expected outcome. Furthermore, we show that chronic inhibition of PVT D2+ neurons impairs the long-term performance of interoceptive-guided motivated behavior. Collectively, our findings provide insights into the role of PVT D2+ neurons in learning and updating state-dependent predictions, by integrating past experiences with current physiological conditions to optimize goal-directed behavior.
Collapse
|
6
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025; 219:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Stokes EG, Vasquez JJ, Azouz G, Nguyen M, Tierno A, Zhuang Y, Galinato VM, Hui M, Toledano M, Tyler I, Shi X, Hunt RF, Aoto J, Beier KT. Cationic peptides cause memory loss through endophilin-mediated endocytosis. Nature 2025; 638:479-489. [PMID: 39814881 DOI: 10.1038/s41586-024-08413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP)1 when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP2,3, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect requires endophilin-A2-mediated endocytosis and is fully blocked by drugs suppressing macropinocytosis. ZIP and other cationic peptides remove newly inserted AMPA receptor nanoclusters at potentiated synapses, providing a mechanism by which these peptides erase memories without altering basal synaptic function. When delivered in vivo, cationic peptides can modulate memories on local and brain-wide scales, and these mechanisms can be leveraged to prevent memory loss in a model of traumatic brain injury. Our findings uncover a previously unknown synaptic mechanism by which memories are maintained or lost.
Collapse
Affiliation(s)
- Eric G Stokes
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO, USA
| | - Jose J Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ghalia Azouz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Megan Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Alexa Tierno
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Vivienne Mae Galinato
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Michael Toledano
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Isabella Tyler
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Robert F Hunt
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Epilepsy Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jason Aoto
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz, Aurora, CO, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Kirouac GJ. Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits. Neurosci Biobehav Rev 2025; 169:105989. [PMID: 39730100 DOI: 10.1016/j.neubiorev.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
The paraventricular nucleus of the thalamus (PVT) is generating interest because evidence establishes a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala. These findings have been complemented by recent tracing evidence examining the organization of the PVT's efferent and afferent connections. An updated view of the organization of projection neurons in PVT is provided with a focus on the input-output relationship of these neurons. The review emphasizes recent findings demonstrating that the PVT is composed of intermixed populations of neurons with axons that collateralize to densely innervate limbic striatal regions while being reciprocally connected with limbic cortical areas that innervate the same regions of the striatum. An updated perspective of the PVT's anatomical relationship with limbic corticostriatal circuits is presented to stimulate research on how the PVT regulates behavioral responses associated with emotion and motivation.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
9
|
Jász A, Biró L, Buday Z, Király B, Szalárdy O, Horváth K, Komlósi G, Bódizs R, Kovács KJ, Diana MA, Hangya B, Acsády L. Persistently increased post-stress activity of paraventricular thalamic neurons is essential for the emergence of stress-induced alterations in behaviour. PLoS Biol 2025; 23:e3002962. [PMID: 39836670 PMCID: PMC11750107 DOI: 10.1371/journal.pbio.3002962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice. This increase in activity had a causal role in stress-induced changes in spontaneous behaviour. Attenuating PVT/CR+ neuronal activity for only 1 h after the stress event rescued both the protracted increase in PVT/CR+ firing rate and the stress-induced behavioural alterations. Activation of the key forebrain targets (basolateral amygdala, prelimbic cortex, and nucleus accumbens) that mediate defensive behaviour has also been reduced by this post-stress inhibition. Reduction of PVT/CR+ cell activity 5 days later remained still effective in ameliorating stress-induced changes in spontaneous behaviour. The results demonstrate a critical role of the prolonged, post-stress changes in firing activity of PVT/CR+ neurons in shaping the behavioural changes associated with stress. Our data proposes a therapeutic window for intervention in acute stress-related disorders, offering potential avenues for targeted treatment strategies.
Collapse
Affiliation(s)
- Anna Jász
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Neurosciences PhD School, Semmelweis University, Budapest, Hungary
| | - László Biró
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Buday
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Neurosciences PhD School, Semmelweis University, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Szalárdy
- Psychophysiology and Chronobiology Research Group, Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Komlósi
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Róbert Bódizs
- Psychophysiology and Chronobiology Research Group, Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Marco A. Diana
- Université Paris Cité, CNRS, Saint-Pères Paris Institute for the Neurosciences, Paris, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Acsády
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
11
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural signatures of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578828. [PMID: 38370807 PMCID: PMC10871263 DOI: 10.1101/2024.02.05.578828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.
Collapse
Affiliation(s)
- Cana B. Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M. Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P. Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L. Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O. Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S. Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fabricio H. Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Aquino-Miranda G, Jalloul D, Zhang XO, Li S, Kirouac GJ, Beierlein M, Do Monte FH. Functional properties of corticothalamic circuits targeting paraventricular thalamic neurons. Neuron 2024; 112:4060-4080.e7. [PMID: 39504962 DOI: 10.1016/j.neuron.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Corticothalamic projections to sensorimotor thalamic nuclei show modest firing rates and serve to modulate the activity of thalamic relay neurons. By contrast, here we find that high-order corticothalamic projections from the prelimbic (PL) cortex to the anterior paraventricular thalamic nucleus (aPVT) maintain high-frequency activity and evoke strong synaptic excitation of aPVT neurons in rats. In a significant fraction of aPVT cells, such high-frequency excitation of PL-aPVT projections leads to a rapid decay of action potential amplitudes, followed by a depolarization block (DB) that strongly limits aPVT maximum firing rates, thereby regulating both defensive and appetitive behaviors in a frequency-dependent manner. Strong inhibitory inputs from the anteroventral portion of the thalamic reticular nucleus (avTRN) inhibit the firing rate of aPVT neurons during periods of high-spike fidelity but restore it during prominent DB, suggesting that avTRN activity can modulate the effects of PL inputs on aPVT firing rates to ultimately control motivated behaviors.
Collapse
Affiliation(s)
- Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dounya Jalloul
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Xu O Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Sa Li
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Tian Y, Zheng J, Zhu X, Liu X, Li H, Wang J, Yang Q, Zeng LH, Shi Z, Gong M, Hu Y, Xu H. A prefrontal-habenular circuitry regulates social fear behaviour. Brain 2024; 147:4185-4199. [PMID: 38963812 DOI: 10.1093/brain/awae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
The medial prefrontal cortex (mPFC) has been implicated in the pathophysiology of social impairments, including social fear. However, the precise subcortical partners that mediate mPFC dysfunction on social fear behaviour have not been identified. Using a social fear conditioning paradigm, we induced robust social fear in mice and found that the lateral habenula (LHb) neurons and LHb-projecting mPFC neurons are activated synchronously during social fear expression. Moreover, optogenetic inhibition of the mPFC-LHb projection significantly reduced social fear responses. Importantly, consistent with animal studies, we observed an elevated prefrontal-habenular functional connectivity in subclinical individuals with higher social anxiety characterized by heightened social fear. These results unravel a crucial role of the prefrontal-habenular circuitry in social fear regulation and suggest that this pathway could serve as a potential target for the treatment of social fear symptoms often observed in many psychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Junqiang Zheng
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiao Zhu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xue Liu
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haoyang Li
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Wang
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qian Yang
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhiguo Shi
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengyuan Gong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Han Xu
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
16
|
Calderon-Williams DR, de Souza RR, Tseng CT, Abdi H, Sandoval-Flores A, Ploski JE, Thorn CA, McIntyre CK. Optogenetic inhibition of the locus coeruleus blocks vagus nerve stimulation-induced enhancement of extinction of conditioned fear in rats. Learn Mem 2024; 31:a053958. [PMID: 39681462 DOI: 10.1101/lm.053958.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/15/2024] [Indexed: 12/18/2024]
Abstract
Vagus nerve stimulation (VNS) is a therapeutic intervention previously shown to enhance fear extinction in rats. VNS is approved for use in humans for the treatment of epilepsy, depression, and stroke, and it is currently under investigation as an adjuvant to exposure therapy in the treatment of PTSD. However, the mechanisms by which VNS enhances extinction of conditioned fear remain unresolved. VNS increases norepinephrine levels in extinction-related pathways, but recent studies indicate that norepinephrine release from the locus coeruleus interferes with extinction learning. The purpose of this study is to elucidate the role of the locus coeruleus (LC) in VNS-enhanced fear extinction. Adult male and female tyrosine hydroxylase (Th)-Cre rats were implanted with a stimulating cuff electrode around the left cervical vagus nerve, and a Cre-dependent viral vector expressing the inhibitory opsin ArchT3.0 was infused bilaterally into the LC. Rats then underwent auditory fear conditioning followed by extinction training. During extinction training, rats were divided into four treatment groups: Sham stimulation, Sham with LC inhibition, VNS, and VNS with LC inhibition. Consistent with previous findings, VNS treatment during extinction training significantly reduced freezing 24 h and 2 weeks later. This effect was blocked by optogenetic LC inhibition, suggesting that VNS enhances extinction by engaging the LC.
Collapse
Affiliation(s)
| | | | - Ching T Tseng
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Hervé Abdi
- Texas Biomedical Device Center, Richardson, Texas 75080, USA
| | | | - Jonathan E Ploski
- Department of Psychology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Christa K McIntyre
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
17
|
Romero LR, Acharya N, Nabás JF, Marín I, Andero R. Sex Differences in Neural Circuits Underlying Fear Processing. Curr Top Behav Neurosci 2024. [PMID: 39587012 DOI: 10.1007/7854_2024_543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuitry involved in anxiety and fear-related disorders exhibits strong sexual modulation. A limited number of studies integrating female and male data have revealed differences in neural networks, and distinct interconnectivity between these brain areas. Despite the efforts to incorporate female or mixed-sex data, there is compelling evidence that sex, as a biological variable, significantly influences fear processing. This chapter presents primary findings on sex differences in fear circuitry. It is imperative to consider this factor to ensure scientific research's integrity and understand how fear is processed in the central nervous system.
Collapse
Affiliation(s)
| | - Neha Acharya
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Marín
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universistat Autònoma de Barcelona, Barcelona, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Translational, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universistat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
18
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Gao JH, Liu YY, Xu HX, Wu K, Zhang LL, Cheng P, Peng XH, Cao JL, Hua R, Zhang YM. Divergent input patterns to the central lateral amygdala play a duet in fear memory formation. iScience 2024; 27:110886. [PMID: 39319272 PMCID: PMC11421289 DOI: 10.1016/j.isci.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Somatostatin (SOM)-expressing neurons in the central lateral amygdala (CeL) are responsible for fear memory learning, but the circuit and molecular mechanisms underlying this biology remain elusive. Here, we found that glutamatergic neurons in the lateral parabrachial nucleus (LPB) directly dominated the activity of CeLSOM neurons, and that selectively inhibiting the LPBGlu→CeLSOM pathway suppressed fear memory acquisition. By contrast, inhibiting CeL-projecting glutamatergic neurons in the paraventricular thalamic nucleus (PVT) interfered with consolidation-related processes. Notably, CeLSOM-innervating neurons in the LPB were modulated by presynaptic cannabinoid receptor 1 (CB1R), and knock down of CB1Rs in LPB glutamatergic neurons enhanced excitatory transmission to the CeL and partially rescued the impairment in fear memory induced by CB1R activation in the CeL. Overall, our study reveals the mechanisms by which CeLSOM neurons mediate the formation of fear memories during fear conditioning in mice, which may provide a new direction for the clinical research of fear-related disorders.
Collapse
Affiliation(s)
- Jing-Hua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng 224008, Jiangsu, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Hui-Xiang Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
20
|
Otten J, Dan S, Rostin L, Profetto AE, Lardenoije R, Klengel T. Spatial transcriptomics reveals modulation of transcriptional networks across brain regions after auditory threat conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614979. [PMID: 39386587 PMCID: PMC11463379 DOI: 10.1101/2024.09.25.614979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Prior research has demonstrated genome-wide transcriptional changes related to fear and anxiety across species, often focusing on individual brain regions or cell types. However, the extent of gene expression differences across brain regions and how these changes interact at the level of transcriptional connectivity remains unclear. To address this, we performed spatial transcriptomics RNAseq analyses in an auditory threat conditioning paradigm in mice. We generated a spatial transcriptomic atlas of a coronal mouse brain section covering cortical and subcortical regions, corresponding to histologically defined regions. Our finding revealed widespread transcriptional responses across all brain regions examined, particularly in the medial and lateral habenula, and the choroid plexus. Network analyses highlighted altered transcriptional connectivity between cortical and subcortical regions, emphasizing the role of steroidogenic factor 1. These results provide new insights into the transcriptional networks involved in auditory threat conditioning, enhancing our understanding of molecular and neural mechanisms underlying fear and anxiety disorders.
Collapse
|
21
|
Vazquez K, Parsons RG. Sex differences in contextual fear expression are associated with altered medial prefrontal cortex activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611834. [PMID: 39314297 PMCID: PMC11419059 DOI: 10.1101/2024.09.07.611834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Understanding the neural basis of fear expression in rodents has implications for understanding pathological fear responses that characterize posttraumatic stress disorder. Even though posttraumatic stress disorder is more common in females, little is known about the neural circuit interactions supporting fear expression in female rodents. In this study, we were interested in determining whether neural activity associated with the expression of contextual fear differed between males and females within the projections from the medial prefrontal cortex to the ventrolateral periaqueductal gray, and in the medial prefrontal cortex in neurons that do not project to the periaqueductal gray. We infused a viral retrograde tracer into the ventrolateral periaqueductal gray in male and female rats and trained them in a contextual fear conditioning task. The following day rats were re-exposed to the conditioning context and were sacrificed shortly thereafter. Neural activity was measured using EGR1 immunofluorescence. The behavioral results showed that males exhibited higher levels of freezing during the context test than females. Male rats that underwent training and testing showed an increase in the proportion of viral infected cells that express EGR1 in the PL compared to rats that had only received context exposure. Trained female rats were not different than controls, however a direct comparison between sexes was not different. In cells not labeled by the tracer, males showed higher levels of fear-induced EGR1 expression in the prelimbic cortex than females. Conversely, females showed higher levels of EGR1 expression in the infralimbic cortex following testing as compared to males. These results suggest that sex differences in the expression of contextual fear may involve differences in the relative activity levels of the prelimbic and infralimbic cortex.
Collapse
Affiliation(s)
- Katherine Vazquez
- Stony Brook University, Department of Psychology, 100 Nicolls Rd., Stony Brook, NY, 11794
| | - Ryan G Parsons
- Stony Brook University, Department of Psychology, 100 Nicolls Rd., Stony Brook, NY, 11794
| |
Collapse
|
22
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 PMCID: PMC11956751 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
23
|
Ma J, O'Malley JJ, Kreiker M, Leng Y, Khan I, Kindel M, Penzo MA. Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus. Nat Commun 2024; 15:6598. [PMID: 39097600 PMCID: PMC11297946 DOI: 10.1038/s41467-024-50941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Current concepts of corticothalamic organization in the mammalian brain are mainly based on sensory systems, with less focus on circuits for higher-order cognitive functions. In sensory systems, first-order thalamic relays are driven by subcortical inputs and modulated by cortical feedback, while higher-order relays receive strong excitatory cortical inputs. The applicability of these principles beyond sensory systems is uncertain. We investigated mouse prefronto-thalamic projections to the midline thalamus, revealing distinct top-down control. Unlike sensory systems, this pathway relies on indirect modulation via the thalamic reticular nucleus (TRN). Specifically, the prelimbic area, which influences emotional and motivated behaviors, impacts instrumental avoidance responses through direct and indirect projections to the paraventricular thalamus. Both pathways promote defensive states, but the indirect pathway via the TRN is essential for organizing avoidance decisions through disinhibition. Our findings highlight intra-thalamic circuit dynamics that integrate cortical cognitive signals and their role in shaping complex behaviors.
Collapse
Affiliation(s)
- Jun Ma
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
- Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, China
| | - John J O'Malley
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Malaz Kreiker
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Yan Leng
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Isbah Khan
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Morgan Kindel
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Mario A Penzo
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Casanova JP, Pouget C, Treiber N, Agarwal I, Brimble MA, Vetere G. Threat-dependent scaling of prelimbic dynamics to enhance fear representation. Neuron 2024; 112:2304-2314.e6. [PMID: 38772375 DOI: 10.1016/j.neuron.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Promptly identifying threatening stimuli is crucial for survival. Freezing is a natural behavior displayed by rodents toward potential or actual threats. Although it is known that the prelimbic cortex (PL) is involved in both risk evaluation and in fear and anxiety-like behavior expression, here we explored whether PL neuronal activity can dynamically represent different internal states of the same behavioral output (i.e., freezing). We found that freezing can always be decoded from PL activity at a population level. However, the sudden presentation of a fearful stimulus quickly reshaped the PL to a new neuronal activity state, an effect not observed in other cortical or subcortical regions examined. This shift changed PL freezing representation and is necessary for fear memory expression. Our data reveal the unique role of the PL in detecting threats and internally adjusting to distinguish between different freezing-related states in both unconditioned and conditioned fear representations.
Collapse
Affiliation(s)
- José Patricio Casanova
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Ishaant Agarwal
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Mark Allen Brimble
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
25
|
Zhang SR, Wu DY, Luo R, Wu JL, Chen H, Li ZM, Zhuang JP, Hu NY, Li XW, Yang JM, Gao TM, Chen YH. A Prelimbic Cortex-Thalamus Circuit Bidirectionally Regulates Innate and Stress-Induced Anxiety-Like Behavior. J Neurosci 2024; 44:e2103232024. [PMID: 38886059 PMCID: PMC11255430 DOI: 10.1523/jneurosci.2103-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Sheng-Rong Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rong Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Lin Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Pai Zhuang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Cui K, Qi X, Liu Z, Sun W, Jiao P, Liu C, Tong J, Sun X, Sun H, Fu S, Wang J, Zheng Y, Liu T, Cui S, Liu F, Mao J, Zheng J, Wan Y, Yi M. Dominant activities of fear engram cells in the dorsal dentate gyrus underlie fear generalization in mice. PLoS Biol 2024; 22:e3002679. [PMID: 38995985 PMCID: PMC11244812 DOI: 10.1371/journal.pbio.3002679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.
Collapse
Affiliation(s)
- Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zilong Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peijie Jiao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang Liu
- Beijing Life Science Academy, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
27
|
Velazquez-Hernandez G, Miller NW, Curtis VR, Rivera-Pacheco CM, Lowe SM, Moy SS, Zannas AS, Pégard NC, Burgos-Robles A, Rodriguez-Romaguera J. Social threat alters the behavioral structure of social motivation and reshapes functional brain connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599379. [PMID: 38948883 PMCID: PMC11212885 DOI: 10.1101/2024.06.17.599379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.
Collapse
|
28
|
Liu Y, Ye S, Li XN, Li WG. Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neurosci Bull 2024; 40:777-794. [PMID: 37812300 PMCID: PMC11178705 DOI: 10.1007/s12264-023-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fear extinction is a biological process in which learned fear behavior diminishes without anticipated reinforcement, allowing the organism to re-adapt to ever-changing situations. Based on the behavioral hypothesis that extinction is new learning and forms an extinction memory, this new memory is more readily forgettable than the original fear memory. The brain's cellular and synaptic traces underpinning this inherently fragile yet reinforceable extinction memory remain unclear. Intriguing questions are about the whereabouts of the engram neurons that emerged during extinction learning and how they constitute a dynamically evolving functional construct that works in concert to store and express the extinction memory. In this review, we discuss recent advances in the engram circuits and their neural connectivity plasticity for fear extinction, aiming to establish a conceptual framework for understanding the dynamic competition between fear and extinction memories in adaptive control of conditioned fear responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Shuai Ye
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Wang J, Yang Q, Liu X, Li J, Wen YL, Hu Y, Xu TL, Duan S, Xu H. The basal forebrain to lateral habenula circuitry mediates social behavioral maladaptation. Nat Commun 2024; 15:4013. [PMID: 38740778 DOI: 10.1038/s41467-024-48378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Qian Yang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue Liu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya-Lan Wen
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Tian-Le Xu
- Center for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shumin Duan
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Han Xu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
30
|
Wang Z, Wang Z, Zhou Q. Modulation of learning safety signals by acute stress: paraventricular thalamus and prefrontal inhibition. Neuropsychopharmacology 2024; 49:961-973. [PMID: 38182776 PMCID: PMC11039638 DOI: 10.1038/s41386-023-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Distinguishing between cues predicting safety and danger is crucial for survival. Impaired learning of safety cues is a central characteristic of anxiety-related disorders. Despite recent advances in dissecting the neural circuitry underlying the formation and extinction of conditioned fear, the neuronal basis mediating safety learning remains elusive. Here, we showed that safety learning reduces the responses of paraventricular thalamus (PVT) neurons to safety cues, while activation of these neurons controls both the formation and expression of safety memory. Additionally, the PVT preferentially activates prefrontal cortex somatostatin interneurons (SOM-INs), which subsequently inhibit parvalbumin interneurons (PV-INs) to modulate safety memory. Importantly, we demonstrate that acute stress impairs the expression of safety learning, and this impairment can be mitigated when the PVT is inhibited, indicating PVT mediates the stress effect. Altogether, our findings provide insights into the mechanism by which acute stress modulates safety learning.
Collapse
Affiliation(s)
- Zongliang Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zeyi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Kooiker CL, Birnie MT, Floriou-Servou A, Ding Q, Thiagarajan N, Hardy M, Baram TZ. Paraventricular Thalamus Neuronal Ensembles Encode Early-life Adversity and Mediate the Consequent Sex-dependent Disruptions of Adult Reward Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591547. [PMID: 38746198 PMCID: PMC11092514 DOI: 10.1101/2024.04.28.591547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Early-life adversity increases risk for mental illnesses including depression and substance use disorders, disorders characterized by dysregulated reward behaviors. However, the mechanisms by which transient ELA enduringly impacts reward circuitries are not well understood. In mice, ELA leads to anhedonia-like behaviors in males and augmented motivation for palatable food and sex-reward cues in females. Here, the use of genetic tagging demonstrated robust, preferential, and sex-specific activation of the paraventricular nucleus of the thalamus (PVT) during ELA and a potentiated reactivation of these PVT neurons during a reward task in adult ELA mice. Chemogenetic manipulation of specific ensembles of PVT neurons engaged during ELA identified a role for the posterior PVT in ELA-induced aberrantly augmented reward behaviors in females. In contrast, anterior PVT neurons activated during ELA were required for the anhedonia-like behaviors in males. Thus, the PVT encodes adverse experiences early-in life, prior to the emergence of the hippocampal memory system, and contributes critically to the lasting, sex-modulated impacts of ELA on reward behaviors.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Amalia Floriou-Servou
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Qinxin Ding
- School of Biological Sciences, University of California-Irvine, Irvine, CA, USA
| | - Neeraj Thiagarajan
- School of Biological Sciences, University of California-Irvine, Irvine, CA, USA
| | - Mason Hardy
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Kawatake-Kuno A, Li H, Inaba H, Hikosaka M, Ishimori E, Ueki T, Garkun Y, Morishita H, Narumiya S, Oishi N, Ohtsuki G, Murai T, Uchida S. Sustained antidepressant effects of ketamine metabolite involve GABAergic inhibition-mediated molecular dynamics in aPVT glutamatergic neurons. Neuron 2024; 112:1265-1285.e10. [PMID: 38377990 PMCID: PMC11031324 DOI: 10.1016/j.neuron.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan; Kyoto University Medical Science and Business Liaison Organization, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
33
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
34
|
Li H, Kawatake-Kuno A, Inaba H, Miyake Y, Itoh Y, Ueki T, Oishi N, Murai T, Suzuki T, Uchida S. Discrete prefrontal neuronal circuits determine repeated stress-induced behavioral phenotypes in male mice. Neuron 2024; 112:786-804.e8. [PMID: 38228137 DOI: 10.1016/j.neuron.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.
Collapse
Affiliation(s)
- Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuka Miyake
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Kyoto University Medical Science and Business Liaison Organization, Medical Innovation Center, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
35
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
36
|
Pessoa L. Noncortical cognition: integration of information for close-proximity behavioral problem-solving. Curr Opin Behav Sci 2024; 55:101329. [PMID: 38655379 PMCID: PMC11034795 DOI: 10.1016/j.cobeha.2023.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Animals face behavioral problems that can be conceptualized in terms of a gradient of spatial and temporal proximity. I propose that solving close-proximity behavioral problems involves integrating disparate types of information in complex and flexible ways. In this framework, the midbrain periaqueductal gray (PAG) is understood as a key region involved in close-proximity motivated cognition. Anatomically, the PAG has access to signals across the neuroaxis via extensive connectivity with cortex, subcortex, and brainstem. However, the flow of signals is not unidirectional, as the PAG projects to the cortex directly, and further ascending signal flow is attained via the midline thalamus. Overall, the anatomical organization of the PAG allows is to be a critical hub engaged in cognition "here and now".
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, Department of Electrical and Computer Engineering, Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
37
|
Palchaudhuri S, Osypenko D, Schneggenburger R. Fear Learning: An Evolving Picture for Plasticity at Synaptic Afferents to the Amygdala. Neuroscientist 2024; 30:87-104. [PMID: 35822657 DOI: 10.1177/10738584221108083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unraveling the neuronal mechanisms of fear learning might allow neuroscientists to make links between a learned behavior and the underlying plasticity at specific synaptic connections. In fear learning, an innocuous sensory event such as a tone (called the conditioned stimulus, CS) acquires an emotional value when paired with an aversive outcome (unconditioned stimulus, US). Here, we review earlier studies that have shown that synaptic plasticity at thalamic and cortical afferents to the lateral amygdala (LA) is critical for the formation of auditory-cued fear memories. Despite the early progress, it has remained unclear whether there are separate synaptic inputs that carry US information to the LA to act as a teaching signal for plasticity at CS-coding synapses. Recent findings have begun to fill this gap by showing, first, that thalamic and cortical auditory afferents can also carry US information; second, that the release of neuromodulators contributes to US-driven teaching signals; and third, that synaptic plasticity additionally happens at connections up- and downstream of the LA. Together, a picture emerges in which coordinated synaptic plasticity in serial and parallel circuits enables the formation of a finely regulated fear memory.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Cum M, Santiago Pérez JA, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. A systematic review and meta-analysis of how social memory is studied. Sci Rep 2024; 14:2221. [PMID: 38278973 PMCID: PMC10817899 DOI: 10.1038/s41598-024-52277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli-a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Amelia R Chambers
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
39
|
Li SH, Li S, Kirouac GJ. Analysis of Monosynaptic Inputs to Thalamic Paraventricular Nucleus Neurons Innervating the Shell of the Nucleus Accumbens and Central Extended Amygdala. Neuroscience 2024; 537:151-164. [PMID: 38056620 DOI: 10.1016/j.neuroscience.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.
Collapse
Affiliation(s)
- Shuang Hong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada; Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
40
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
41
|
Zhang XO, Zhang Y, Cho CE, Engelke DS, Smolen P, Byrne JH, Do-Monte FH. Enhancing Associative Learning in Rats With a Computationally Designed Training Protocol. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:165-181. [PMID: 38298784 PMCID: PMC10829654 DOI: 10.1016/j.bpsgos.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 02/02/2024] Open
Abstract
Background Learning requires the activation of protein kinases with distinct temporal dynamics. In Aplysia, nonassociative learning can be enhanced by a computationally designed learning protocol with intertrial intervals (ITIs) that maximize the interaction between fast-activated PKA (protein kinase A) and slow-activated ERK (extracellular signal-regulated kinase). Whether a similar strategy can enhance associative learning in mammals is unknown. Methods We simulated 1000 training protocols with varying ITIs to predict an optimal protocol based on empirical data for PKA and ERK dynamics in rat hippocampus. Adult male rats received the optimal protocol or control protocols in auditory fear conditioning and fear extinction experiments. Immunohistochemistry was performed to evaluate pCREB (phosphorylated cAMP response element binding)\protein levels in brain regions that have been implicated in fear acquisition. Results Rats exposed to the optimal conditioning protocol with irregular ITIs exhibited impaired extinction memory acquisition within the session using a standard footshock intensity, and stronger fear memory retrieval and spontaneous recovery with a weaker footshock intensity, compared with rats that received massed or spaced conditioning protocols with fixed ITIs. Rats exposed to the optimal extinction protocol displayed improved extinction of contextual fear memory and reduced spontaneous recovery compared with rats that received standard extinction protocols. Moreover, the optimal conditioning protocol increased pCREB levels in the dentate gyrus of the dorsal hippocampus, suggesting enhanced induction of long-term potentiation. Conclusions These findings demonstrate that a computational model-driven behavioral intervention can enhance associative learning in mammals and may provide insight into strategies to improve cognition in humans.
Collapse
Affiliation(s)
- Xu O. Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yili Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Claire E. Cho
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Douglas S. Engelke
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John H. Byrne
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fabricio H. Do-Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
42
|
Zeidler Z, DeNardo L. The Role of Prefrontal Ensembles in Memory Across Time: Time-Dependent Transformations of Prefrontal Memory Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:67-78. [PMID: 39008011 DOI: 10.1007/978-3-031-62983-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in recalling recent and remote fearful memories. Modern neuroscience techniques, such as projection-specific circuit manipulation and activity-dependent labeling, have illuminated how mPFC memory ensembles are reorganized over time. This chapter discusses the implications of new findings for traditional theories of memory, such as the systems consolidation theory and theories of memory engrams. It also examines the specific contributions of mPFC subregions, like the prelimbic and infralimbic cortices, in fear memory, highlighting how their distinct connections influence memory recall. Further, it elaborates on the cellular and molecular changes within the mPFC that support memory persistence and how these are influenced by interactions with the hippocampus. Ultimately, this chapter provides insights into how lasting memories are dynamically encoded in prefrontal circuits, arguing for a key role of memory ensembles that extend beyond strict definitions of the engram.
Collapse
Affiliation(s)
- Zachary Zeidler
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Laura DeNardo
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Zhang Y, Roy DS. Memory Storage in Distributed Engram Cell Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:29-43. [PMID: 39008009 DOI: 10.1007/978-3-031-62983-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
One of the most fascinating aspects of the brain is its ability to acquire new information from experience and retain it over time as memory. The search for physical correlates of memory, the memory engram, has been a longstanding priority in modern neurobiology. Advanced genetic approaches have led to the localization of engram cells in a few brain regions, including the hippocampus and cortex. Additionally, engram cells exhibit learning-induced, persistent modifications and have at least two states, active and silent. However, it has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Recent tissue-clearing techniques have permitted high-throughput analyses of intact brain samples, which have been used to obtain a map of the engram complex for a contextual fear memory. Careful examination of these engram complex maps has revealed a potentially underappreciated contribution of subcortical regions, specifically thalamic nuclei, to memory function. These more holistic studies support the unified engram complex hypothesis for memory storage and have important implications for understanding dysfunctional engrams in the context of human disease.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Dheeraj S Roy
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
44
|
Cum M, Pérez JS, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. Mind the gap: A systematic review and meta-analysis of how social memory is studied. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572606. [PMID: 38187659 PMCID: PMC10769336 DOI: 10.1101/2023.12.20.572606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli - a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
|
45
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Haubrich J, Nader K. Network-level changes in the brain underlie fear memory strength. eLife 2023; 12:RP88172. [PMID: 38047914 PMCID: PMC10695559 DOI: 10.7554/elife.88172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The strength of a fear memory significantly influences whether it drives adaptive or maladaptive behavior in the future. Yet, how mild and strong fear memories differ in underlying biology is not well understood. We hypothesized that this distinction may not be exclusively the result of changes within specific brain regions, but rather the outcome of collective changes in connectivity across multiple regions within the neural network. To test this, rats were fear conditioned in protocols of varying intensities to generate mild or strong memories. Neuronal activation driven by recall was measured using c-fos immunohistochemistry in 12 brain regions implicated in fear learning and memory. The interregional coordinated brain activity was computed and graph-based functional networks were generated to compare how mild and strong fear memories differ at the systems level. Our results show that mild fear recall is supported by a well-connected brain network with small-world properties in which the amygdala is well-positioned to be modulated by other regions. In contrast, this connectivity is disrupted in strong fear memories and the amygdala is isolated from other regions. These findings indicate that the neural systems underlying mild and strong fear memories differ, with implications for understanding and treating disorders of fear dysregulation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill UniversityMontréalCanada
- Department of Neurophysiology, Ruhr-University BochumBochumGermany
| | - Karim Nader
- Department of Psychology, McGill UniversityMontréalCanada
| |
Collapse
|
47
|
Wang F, Chen X, Bo B, Zhang T, Liu K, Jiang J, Wang Y, Xie H, Liang Z, Guan JS. State-dependent memory retrieval: insights from neural dynamics and behavioral perspectives. Learn Mem 2023; 30:325-337. [PMID: 38114331 PMCID: PMC10750866 DOI: 10.1101/lm.053893.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Memory retrieval is strikingly susceptible to external states (environment) and internal states (mood states and alcohol), yet we know little about the underlying mechanisms. We examined how internally generated states influence successful memory retrieval using the functional magnetic resonance imaging (fMRI) of laboratory mice during memory retrieval. Mice exhibited a strong tendency to perform memory retrieval correctly only in the reinstated mammillary body-inhibited state, in which mice were trained to discriminate auditory stimuli in go/no-go tasks. fMRI revealed that distinct auditory cues engaged differential brain regions, which were primed by internal state. Specifically, a cue associated with a reward activated the lateral amygdala, while a cue signaling no reward predominantly activated the postsubiculum. Modifying these internal states significantly altered the neural activity balance between these regions. Optogenetic inhibition of those regions in the precue period blocked the retrieval of type-specific memories. Our findings suggest that memory retrieval is under the control of two interrelated neural circuits underlying the neural basis of state-dependent memory retrieval.
Collapse
Affiliation(s)
- Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xu Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Binshi Bo
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianfu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kaiyuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Life of Science, Tsinghua University, Beijing 100084, China
| | - Jun Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Headache Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hong Xie
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
48
|
Stokes E, Zhuang Y, Toledano M, Vasquez J, Azouz G, Hui M, Tyler I, Shi X, Aoto J, Beier KT. Cationic peptides erase memories by removing synaptic AMPA receptors through endophilin-mediated endocytosis. RESEARCH SQUARE 2023:rs.3.rs-3559525. [PMID: 38045269 PMCID: PMC10690331 DOI: 10.21203/rs.3.rs-3559525/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Administration of the Zeta Inhibitory Peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP). However, mice lacking its putative target, the protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making ZIP's mechanism unclear. Here, we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect was fully blocked by drugs that block macropinocytosis and is dependent on endophilin A2 (endoA2)-mediated endocytosis. ZIP and other cationic peptides selectively removed newly inserted AMPAR nanoclusters, providing a mechanism by which these peptides erase memories without effects on basal synaptic function. Lastly, cationic peptides can be administered locally and/or systemically and can be combined with local microinjection of macropinocytosis inhibitors to modulate memories on local and brain-wide scales. Our findings have critical implications for an entire field of memory mechanisms and highlight a previously unappreciated mechanism by which memories can be lost.
Collapse
Affiliation(s)
- Eric Stokes
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Toledano
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jose Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Ghalia Azouz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Isabella Tyler
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jason Aoto
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA 92697-4560
| |
Collapse
|
49
|
Bertocchi I, Rocha-Almeida F, Romero-Barragán MT, Cambiaghi M, Carretero-Guillén A, Botta P, Dogbevia GK, Treviño M, Mele P, Oberto A, Larkum ME, Gruart A, Sprengel R, Delgado-García JM, Hasan MT. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience 2023; 26:108050. [PMID: 37876798 PMCID: PMC10590821 DOI: 10.1016/j.isci.2023.108050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Florbela Rocha-Almeida
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | | | - Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alejandro Carretero-Guillén
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Paolo Botta
- CNS drug development, Copenhagen, Capital Region, Denmark
| | - Godwin K. Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Health Canada, 70 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - Mario Treviño
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paolo Mele
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Alessandra Oberto
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Matthew E. Larkum
- NeuroCure, Charité-Universitatsmedizin, Virchowweg 6, 10117 Berlin, Germany
| | - Agnes Gruart
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Mazahir T. Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
- Ikerbasque – Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|