1
|
Abdo L, Batista-Silva LR, Bonamino MH. Cost-effective strategies for CAR-T cell therapy manufacturing. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200980. [PMID: 40291594 PMCID: PMC12022644 DOI: 10.1016/j.omton.2025.200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
CAR-T cell therapy has revolutionized cancer treatment, with approvals for conditions like acute B-leukemia, large B cell lymphoma (LBCL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma. However, its high costs limit accessibility. Key factors driving these costs include the need for personalized, autologous treatments, transportation to specialized facilities, reliance on viral vectors requiring advanced laboratories, and lengthy cell expansion processes. To address these challenges, alternative strategies aim to simplify and reduce production complexity. Non-viral vectors, such as Sleeping Beauty, piggyBac, and CRISPR, delivered via nanoparticles or electroporation, present promising solutions. These methods could streamline manufacturing, eliminate the need for viral vectors, and reduce associated costs. Furthermore, shortening cell expansion periods and optimizing protocols could significantly accelerate production. An emerging approach involves using genetically edited T cells from healthy donors to create universal CAR-T products capable of treating multiple patients. Finally, decentralized point-of-care (POC) manufacturing of CAR-T cells minimize logistical expenses, eliminating the need for complex infrastructure, and enabling localized production closer to patients. This innovative strategy holds potential for broadening access and reducing costs, representing a step toward democratizing CAR-T therapy. Combined, these advances could make this groundbreaking treatment more feasible for healthcare systems worldwide.
Collapse
Affiliation(s)
- Luiza Abdo
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Leonardo Ribeiro Batista-Silva
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Hinnekens C, Ramon J, Birben M, Germeraad WTV, Harizaj A, De Velder M, De Smedt SC, Vandekerckhove B, Braeckmans K, Fraire JC. Gentle and efficient engineering of primary human NK cells by photoporation with polydopamine nanosensitizers. J Control Release 2025; 382:113742. [PMID: 40250627 DOI: 10.1016/j.jconrel.2025.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Over the past several years, adoptive T cell therapies have accounted for great success in treating diverse malignancies. More recently, however, NK cells are being investigated as a promising alternative. Due to the innate antiviral properties of NK cells, viral engineering has proven to be challenging, prompting the development of non-viral transfection technologies. In this work, we evaluated photoporation with polydopamine nanosensitizers as a notable upcoming transfection technology for the engineering of NK cells and compared its performance to Nucleofection. Our results demonstrated the successful transfection of NK cells with eGFP mRNA and gene editing with Cas9 ribonucleoproteins (RNPs) for knock-out of the KLRC1 gene, encoding for the inhibitory NK cell receptor NKG2A. Importantly, no alterations to the phenotype of the cells (e.g. expression of surface markers and release of cytokines) could be detected, nor was the proliferation or cytolytic capacity of the cells influenced by either of the treatments. Overall, our findings highlight the potential of polydopamine-sensitized photoporation as a gentle and efficient transfection technology for NK cell engineering.
Collapse
Affiliation(s)
- C Hinnekens
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - M Birben
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W T V Germeraad
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - M De Velder
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - S C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - B Vandekerckhove
- GMP Unit Cell therapy, Cord blood Bank and Hematopoietic Stem cell Bank, UZ Gent, Belgium
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - J C Fraire
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
3
|
Kumar ARK, Low J, Lim J, Myint B, Sun X, Wu L, Cheng HS, Yip S, Ming Cheng CZ, Manoharan T, Quek YJ, Shou Y, Tian JS, Ng YY, Gascoigne NRJ, Tan NS, Sugimura R, Chia G, Sze Cheung AM, Yawata M, Tay A. Non-viral, high throughput genetic engineering of primary immune cells using nanostraw-mediated transfection. Biomaterials 2025; 317:123079. [PMID: 39842078 DOI: 10.1016/j.biomaterials.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption. We demonstrate that NExT can deliver proteins, polysaccharides, and mRNA into primary human CD8+ and CD4+ T cells, and achieve CRISPR/Cas9 gene knockout of CXCR4 and TRAC in CD8+ T cells. We showcase NExT's versatility across a range of primary human immune cells, including CD4+ T cells, γδ-T cells, dendritic cells, NK cells, Treg cells, macrophages, and neutrophils. Finally, we developed a scalable, high-throughput multiwell NExT system capable of transfecting over 14 million cells and delivering diverse cargoes into multiple cell types from various donors simultaneously. This technology holds promise for streamlining high-throughput screening of allogeneic donors and reducing optimization costs for large-scale CAR-immune cell transfection.
Collapse
Affiliation(s)
- Arun R K Kumar
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jet Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ba Myint
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Xinhong Sun
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ling Wu
- Immunology Translational Research Programme and Department of Microbiology and Immunology, National University of Singapore, Singapore, 117545, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sophronia Yip
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Cyrus Zai Ming Cheng
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Thamizhanban Manoharan
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Johann Shane Tian
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yu Yang Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, National University of Singapore, Singapore, 117545, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rio Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Gloryn Chia
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Alice Man Sze Cheung
- Department of Haematology, Singapore General Hospital, Singapore, 169608, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, 168753, Singapore
| | - Makoto Yawata
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 119077, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
4
|
Kamli H, Khan NU. Revolutionising cancer intervention: the repercussions of CAR-T cell therapy on modern oncology practices. Med Oncol 2025; 42:228. [PMID: 40448746 DOI: 10.1007/s12032-025-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy represents a groundbreaking advance in oncology, leveraging patient-specific immune cells to target malignant tumours precisely. By equipping T cells with synthetic receptors, CAR-T therapy achieves remarkable antitumor effects and offers hope for durable cancer control. However, several limitations persist, including antigen scarcity, immunosuppressive tumour microenvironments, and T-cell exhaustion. CRISPR-Cas9 gene editing has enhanced CAR-T potency by knocking out immune checkpoints (PD-1, CTLA-4) and improving persistence, while RNA interference (RNAi) silences immune-evasion genes (e.g. SOCS1). Nanozyme-based delivery systems enable precise CRISPR-Cas9 delivery (> 70% editing efficiency) and tumour targeting, overcoming instability and off-target effects. Innovations like SUPRA CARs, armoured CAR-T cells (e.g. IL-12/IL-21-secreting TRUCKs), and dual checkpoint inhibition synergize to reprogram the tumour microenvironment, reducing relapse by 40% in trials. Despite progress, high costs, manufacturing hurdles, and ethical concerns (e.g. germline editing risks) remain critical barriers. Emerging solutions include universal off-the-shelf CAR-Ts, hybrid nano-CRISPR systems, and AI-driven design, paving the way for scalable, personalised immunotherapy. This review highlights breakthroughs in CRISPR, RNAi, and nanotechnology, underscoring CAR-T therapy's transformative potential while addressing translational challenges for broader clinical adoption.
Collapse
Affiliation(s)
- Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan.
| |
Collapse
|
5
|
Kermanshahi AZ, Ebrahimi F, Taherpoor A, Eslami N, Baghi HB. HPV-driven cancers: a looming threat and the potential of CRISPR/Cas9 for targeted therapy. Virol J 2025; 22:156. [PMID: 40400023 PMCID: PMC12096790 DOI: 10.1186/s12985-025-02783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
Cervical and other anogenital malignancies are largely caused by E6 and E7 oncogenes of high-risk human papillomaviruses (HPVs), which inhibit important tumor suppressors like p53 and pRb when they are persistently activated. The main goal of traditional treatments is to physically or chemically kill cancer cells, but they frequently only offer temporary relief, have serious side effects, and have a high risk of recurrence. Exploring the efficacy and accuracy of CRISPR-Cas9 gene editing in both inducing death in HPV-infected cancer cells and restoring the activity of tumor suppressors is our main goal. In this study, we propose a novel precision oncology strategy that targets and inhibits the detrimental effects of the E6 and E7 oncogenes using the CRISPR-Cas9 gene editing system. In order to do this, we create unique guide RNAs that target the integrated HPV DNA and reactivate p53 and pRb. Reactivation is meant to halt aberrant cell development and restart the cell's natural dying pathways. This review discusses the potential of CRISPR/Cas9 in targeting HPV oncogenes, with a focus on studies that have demonstrated its promise in cancer treatment. Given the absence of a definitive treatment for papillomavirus infection and its subsequent association with various cancers, future clinical trials and experimental investigations appear essential to establish and evaluate the therapeutic potential of CRISPR-based approaches. This approach provides a less invasive alternative to conventional treatments and opens the door to personalized care that considers the genetic makeup of each patient's tumor.
Collapse
Affiliation(s)
- Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ebrahimi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Taherpoor
- Department of Clinical Bacteriology; Virology, Faculty of Medicine and Anti-microbial Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Li Z, Li C, Xiao S, Liang H. Efficient and Precise Integration of Large DNA Sequences Using Precise Interstrand Cross-Linking of Long ssDNA and sgRNA. ACS Synth Biol 2025; 14:1451-1463. [PMID: 40326732 DOI: 10.1021/acssynbio.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Homology-directed repair (HDR) allows the precise introduction of functional constructs into the human genome through nonviral gene-editing reagents. However, its application in large DNA sequence gene editing remains limited due to challenges such as low efficiency and the off-target effect. To address these limitations, a new method named AOLP was developed to synthesize chemically modified long single-stranded DNA (lssDNA) as the template donor for Cas9-based gene editing, which has been proven to be more stable than that prepared using the commercial phosphorylation method. We propose a novel strategy involving precise ligation-based interstrand cross-linking between lssDNA and sgRNA using cyanovinylcarbazole nucleoside (CNVK), enhancing the upregulation of the HDR pathway for DSB repair induced by Cas9. The light-activated ligation between Cas9/sgRNA and lssDNA improves the knock-in (KI) efficiency, overcomes the challenges of low KI efficiency, and surpasses the low off-target effect accompanied by the lssDNA donor. Moreover, the interstrand cross-linking of lssDNA and sgRNA can subtly control the ligation sites and the degree of cross-linking of lssDNA and sgRNA to enhance the KI accuracy of HDR. Our approach improves the KI efficiency of lssDNA in K562, HEK293T, and HepG2 cells by 4- to 12-fold relative to conventional lssDNA donors prepared using the phosphorylation method. Furthermore, the KI accuracy of HDR pathway in HEK293T cells is enhanced by >4.7-fold relative to previous commercial lssDNA. Leveraging this approach, we achieved an unprecedented KI rate of approximately 36% for a gene-sized 1.4 kilobase lssDNA insertion in HEK293T cells.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Polymer Science and Engineering, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chengxu Li
- Department of Polymer Science and Engineering, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shiyan Xiao
- Department of Polymer Science and Engineering, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Shang K, Huang D, Liu J, Yu Z, Bian W, Chen J, Zhao Y, Liu L, Jiang J, Wang Y, Duan Y, Ge J, Zhang S, Zhou C, Han Y, Hu Y, Zheng W, Sun J, Huang H, Pei S, Qian P, Sun J. CD97-directed CAR-T cells with enhanced persistence eradicate acute myeloid leukemia in diverse xenograft models. Cell Rep Med 2025:102148. [PMID: 40425009 DOI: 10.1016/j.xcrm.2025.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/11/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Chimeric antigen receptor (CAR)-T therapy on acute myeloid leukemia (AML) is hindered by the absence of a suitable tumor-specific antigen. Here, we propose CD97 as a potential target for CAR-T therapy against AML based on its broader and higher expression on AML cells compared to normal hematopoietic stem and progenitor cells (HSPCs). To resolve the fratricide problem caused by CD97 expression on T cells, we knock out CD97 in CAR-T cells using CRISPR-Cas9. Our CD97KO CAR-T cells eliminate both AML cell lines and primary AML cells effectively while showing tolerable toxicity to HSPCs. Furthermore, we mutate the CD3ζ domain of the CAR and find that the optimized CD97 CAR-T cells exhibit persistent anti-tumor activity both in vitro and in multiple xenograft models. Mechanistically, transcriptional profiles reveal that the optimized CAR-T cells delay differentiation and resist exhaustion. Collectively, our study supports CD97 as a promising target for CAR-T therapy against AML.
Collapse
Affiliation(s)
- Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Deyu Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Liu
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Bian
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yin Zhao
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Lina Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jingyu Ge
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shize Zhang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - Shanshan Pei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
8
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
9
|
Zang SS, Zhang R, Zhang JR, Zhang X, Li J. Progress, Applications and Prospects of CRISPR-Based Genome Editing Technology in Gene Therapy for Cancer and Sickle Cell Disease. Hum Gene Ther 2025. [PMID: 40351170 DOI: 10.1089/hum.2024.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.
Collapse
Affiliation(s)
- Sha-Sha Zang
- Department of Geriatric Medicine, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruirui Zhang
- Department of Employee Health Care, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Run Zhang
- Putian University School of Basic Medicine, Putian, China
| | - Xi Zhang
- Department of Comprehensive Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Butterfield GL, Reisman SJ, Iglesias N, Gersbach CA. Gene regulation technologies for gene and cell therapy. Mol Ther 2025; 33:2104-2122. [PMID: 40195118 DOI: 10.1016/j.ymthe.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Gene therapy stands at the forefront of medical innovation, offering unique potential to treat the underlying causes of genetic disorders and broadly enable regenerative medicine. However, unregulated production of therapeutic genes can lead to decreased clinical utility due to various complications. Thus, many technologies for controlled gene expression are under development, including regulated transgenes, modulation of endogenous genes to leverage native biological regulation, mapping and repurposing of transcriptional regulatory networks, and engineered systems that dynamically react to cell state changes. Transformative therapies enabled by advances in tissue-specific promoters, inducible systems, and targeted delivery have already entered clinical testing and demonstrated significantly improved specificity and efficacy. This review highlights next-generation technologies under development to expand the reach of gene therapies by enabling precise modulation of gene expression. These technologies, including epigenome editing, antisense oligonucleotides, RNA editing, transcription factor-mediated reprogramming, and synthetic genetic circuits, have the potential to provide powerful control over cellular functions. Despite these remarkable achievements, challenges remain in optimizing delivery, minimizing off-target effects, and addressing regulatory hurdles. However, the ongoing integration of biological insights with engineering innovations promises to expand the potential for gene therapy, offering hope for treating not only rare genetic disorders but also complex multifactorial diseases.
Collapse
Affiliation(s)
- Gabriel L Butterfield
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Samuel J Reisman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Dan L, Kang-Zheng L. Optimizing viral transduction in immune cell therapy manufacturing: key process design considerations. J Transl Med 2025; 23:501. [PMID: 40316943 PMCID: PMC12046913 DOI: 10.1186/s12967-025-06524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
Immune cell therapies have revolutionized the treatment of cancers, autoimmune disorders, and infectious diseases. A critical step in their manufacturing is viral transduction, which enables the delivery of therapeutic genes into immune cells. However, the complexity of this process presents significant challenges for optimization and scalability. This review provides a comprehensive analysis of viral transduction process in immune cell therapy manufacturing, highlighting key design considerations to support the development of safe, effective, and scalable production methods. Additionally, it examines current technological challenges in immune cell transduction and explores future innovations poised to advance the field.
Collapse
Affiliation(s)
- Liu Dan
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.
| | - Lee Kang-Zheng
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| |
Collapse
|
12
|
Lyu Z, Niu S, Fang Y, Chen Y, Li YR, Yang L. Addressing graft-versus-host disease in allogeneic cell-based immunotherapy for cancer. Exp Hematol Oncol 2025; 14:66. [PMID: 40317083 PMCID: PMC12046680 DOI: 10.1186/s40164-025-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/13/2025] [Indexed: 05/04/2025] Open
Abstract
Allogeneic cell-based immunotherapies, particularly CAR-T cell therapy, represent a significant advancement in cancer treatment, offering scalable and consistent alternatives to autologous therapies. However, their widespread use is limited by the risk of graft-versus-host disease (GvHD). This review provides a comprehensive overview of GvHD in the context of allogeneic cell-based cancer immunotherapy and evaluates current strategies to mitigate its effects. Key strategies include genetic engineering approaches such as T cell receptor (TCR) knockout (KO) and T cell receptor alpha constant (TRAC) CAR knock-in. Alternative immune cell types like natural killer (NK) cells and natural killer T (NKT) cells offer potential solutions due to their lower alloreactivity. Additionally, stem cell technology, utilizing induced pluripotent stem cells (iPSCs), enables standardized and scalable production of engineered CAR-T cells. Clinical trials evaluating these strategies, such as UCART19 and CTX110, demonstrate promising results in preventing GvHD while maintaining anti-tumor efficacy. The review also addresses manufacturing considerations for allogeneic cell products and the challenges in translating preclinical findings into clinical success. By addressing these challenges, allogeneic cell-based immunotherapy continues to advance, paving the way for more accessible, scalable, and effective cancer treatments.
Collapse
Affiliation(s)
- Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA, 90095, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025; 20:1352-1388. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
15
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025; 24:379-397. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Golmohammadi M, Noorbakhsh N, Kavianpour M. CAR-T Cell Therapy: Managing Side Effects and Overcoming Challenges. Adv Biomed Res 2025; 14:38. [PMID: 40390814 PMCID: PMC12087935 DOI: 10.4103/abr.abr_531_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 05/21/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an innovative and promising approach to treat cancer. Clinical trials have demonstrated remarkable results, providing hope for patients who have exhausted more traditional therapies. However, this new therapy is not without challenges, as significant side effects have been associated with it. Cytokine release syndrome (CRS) is a widely recognized and consequential side effect of CAR-T cell therapy. Neurological toxicity is another potential side effect that can cause confusion and seizures in some patients. Hematologic toxicities, such as anemia and thrombocytopenia, can increase the risk of bleeding or infection. B-cell aplasia can also occur, leading to increased vulnerability to infections. Strategies to reduce the incidence and severity of toxicities include suicide, endogenous, and exogenous switches to modulate the activity of the immune system toward cancer while minimizing toxicity. Despite the obstacles faced by CAR-T cell therapy, continuous research and development in this area offer considerable potential for improving this treatment as a more reliable and efficient method for treating cancer.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- Department of Applied Cell Sciences and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Noorbakhsh
- Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
17
|
Hinckley-Boned A, Barbero-Jiménez C, Tristán-Manzano M, Maldonado-Perez N, Hudecek M, Justicia-Lirio P, Martin F. Tailoring CAR surface density and dynamics to improve CAR-T cell therapy. J Immunother Cancer 2025; 13:e010702. [PMID: 40300856 PMCID: PMC12049969 DOI: 10.1136/jitc-2024-010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/23/2025] [Indexed: 05/01/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment landscape for relapsed and/or refractory B-cell neoplasms, garnering Food and Drug Administration/European Medicines Agency approval for six commercial products. Despite this success, challenges persist, including a relapse rate of 30-50% in hematologic tumors, limited clinical efficacy in solid tumors, and severe side effects. This review addresses the critical need for therapeutic enhancement by focusing on the often-overlooked strategy of modulating CAR protein density on the cell membrane. We delve into the key factors influencing CAR surface expression, such as CAR downmodulation following antigen encounter and antigen-related factors. The dynamics of CAR downmodulation remain underexplored; however, recent data point to its modification as a useful tool for improving functionality. Notably, transcriptional control of CAR expression and the incorporation of specific elements into the CAR design have emerged as interesting strategies to tailor CAR expression profiles. Therefore, controlling CAR dynamic density may represent an attractive strategy for achieving optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Ana Hinckley-Boned
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
| | - Carmen Barbero-Jiménez
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Maria Tristán-Manzano
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Granada, Spain
| | - Noelia Maldonado-Perez
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Hudecek
- Würzburg University. Anstalt des öffentlichen Rechts Josef-Schneider-Straße 2, Würzburg, Germany
| | - Pedro Justicia-Lirio
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Andalusia, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Francisco Martin
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
18
|
Werner J, Lee AG, Zhang C, Abelson S, Xirenayi S, Rivera J, Yousuf K, Shin H, Patiño-Escobar B, Bachl S, Mandal K, Barpanda A, Ramos E, Izgutdina A, Chaudhuri S, Temple WC, Bhatnagar S, Dardis JK, Meyer J, Morales C, Meshinchi S, Loh ML, Braun B, Tasian SK, Wiita AP, Stieglitz E. Cellular immunotherapy targeting CLL-1 for juvenile myelomonocytic leukemia. Nat Commun 2025; 16:3804. [PMID: 40268927 PMCID: PMC12019388 DOI: 10.1038/s41467-025-59040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder that predominantly affects infants and young children. Hematopoietic stem cell transplantation (HSCT) is standard of care, but post-HSCT relapse is common, highlighting the need for innovative therapies. While adoptive immunotherapy with chimeric antigen receptor (CAR) T cells has improved outcomes for patients with advanced lymphoid malignancies, it has not been comprehensively evaluated in JMML. In the present study, we use bulk and single-cell RNA sequencing, mass spectrometry, and flow cytometry to identify overexpression of CLL-1 (encoded by CLEC12A) on the cell surface of cells from patients with JMML. We develop immunotherapy with CLL-1 CAR T cells (CLL1CART) for preclinical testing and report in vitro and in vivo anti-leukemia activity. Notably, CLL1CART reduce the number of leukemic stem cells and serial transplantability in vivo. These preclinical data support the development and clinical investigation of CLL-1-targeting immunotherapy in children with relapsed/refractory JMML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelomonocytic, Juvenile/therapy
- Leukemia, Myelomonocytic, Juvenile/immunology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Female
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Male
- Xenograft Model Antitumor Assays
- Child
- Mice, SCID
- Neoplastic Stem Cells/immunology
- Infant
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Juwita Werner
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
- Department of Pediatric Hematology and Oncology and Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alex G Lee
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sydney Abelson
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sherin Xirenayi
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Jose Rivera
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Khadija Yousuf
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Hanna Shin
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | | | - Stefanie Bachl
- Department of Medicine, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Kamal Mandal
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Animal Biotechnology, Gujarat Biotechnology University, Gandhinagar, India
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Adila Izgutdina
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sibapriya Chaudhuri
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - William C Temple
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, University of California, San Francisco, CA, USA
- Division of Pediatric Oncology, University of California, San Francisco, CA, USA
| | - Shubhmita Bhatnagar
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jackson K Dardis
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Carolina Morales
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Department of Pediatrics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mignon L Loh
- Seattle Children's Hospital, The Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA, USA
| | - Benjamin Braun
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Dourthe ME, Baruchel A. CAR T-cells for acute leukemias in children: current status, challenges, and future directions. Cancer Metastasis Rev 2025; 44:47. [PMID: 40266383 DOI: 10.1007/s10555-025-10261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
CAR T-cells therapy is seen as one of the most promising immunotherapies for leukemias, since targeting CD19 has revolutionized the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) in children, adolescents, and young adults. Early phase clinical trials have shown a very high initial response rate confirmed by follow up and real-world studies. However, almost half of patients relapse with the available commercial product currently suggesting the need of a consolidative treatment after CAR T-cell infusion in well-defined cases, according to several pre- and post-CAR clinical and biological factors. This finding highlights that numerous challenges exist before the extension of CAR T-cell indications (first relapse and high-risk first line) in the field of B-ALL: to enhance persistence of CAR T-cells to avoid CD19-positive relapse and to avoid CD19-negative relapse by reducing tumor burden pre-CAR-T infusion and/or by multitargeting. Promising approaches with exciting early clinical data are emerging in the field of T-cell ALL. The use of CAR T-cells for acute myeloid leukemias remains challenging due to the lack of leukemia-specific antigens and to the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Marie Emilie Dourthe
- Pediatric Hematology-Immunology Department, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris (APHP) and Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades (INEM), Institut National de La Santé Et de La Recherche Médicale (Inserm) U1151, Assistance Publique-Hôpitaux de Paris (APHP), Necker Enfants-Malades Hospital, Université Paris Cité, Paris, France
| | - André Baruchel
- Pediatric Hematology-Immunology Department, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris (APHP) and Université Paris Cité, Paris, France.
- Institut de Recherche Saint-Louis, ECSTRRA team, Université Paris Cité, Paris, France.
| |
Collapse
|
20
|
Du B, Qin J, Lin B, Zhang J, Li D, Liu M. CAR-T therapy in solid tumors. Cancer Cell 2025; 43:665-679. [PMID: 40233718 DOI: 10.1016/j.ccell.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
While chimeric antigen receptor (CAR) T cell therapy has shown great success in hematologic malignancies, the effectiveness in solid tumors has been limited by several factors, including antigenic heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). In this review, we discuss the advancements made in clinical studies and challenges faced by CAR-T therapy for solid tumors. To enhance CAR-T cell efficacy in solid tumors, we explore strategies such as enhancing T cell persistence and cytotoxicity, targeting multiple antigens, and utilizing innovative allogeneic CAR-T cell manufacturing. Additionally, we highlight the potential benefits of combining CAR-T therapies with immune checkpoint inhibitors and other treatment modalities to overcome TME limitations. We remain optimistic about the future of CAR-T cell therapy in solid tumors, emphasizing the need for continued research to refine therapeutic approaches and address the clinical needs of patients with cancer.
Collapse
Affiliation(s)
- Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Stewart CM, Siegler EL, Kenderian SS. The road ahead for chimeric antigen receptor T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf047. [PMID: 40209174 DOI: 10.1093/jimmun/vkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
Chimeric antigen receptor T (CART) cell therapy is an innovative form of immunotherapy that has shown remarkable and long-term responses in patients with B-cell malignancies. Over the years, the field has made significant progress in our understanding of the successes and challenges associated with CART cell therapy. In this review, we provide an overview of the current state of CART cell therapy in the clinic. We detail current challenges including patient access, CART-associated toxicity, tumor heterogeneity, CART cell trafficking, the tumor microenvironment, and different CART cell fates. With each challenge, we review lessons learned, potential solutions and outline areas for future development. Finally, we discuss how the field of engineered cell therapy is moving into the treatment of solid tumors and other diseases beyond cancer.
Collapse
Affiliation(s)
- Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
23
|
Jia J, Hao Y, Zhang L, Cao X, An L, Wang H, Ma Q, Jin X, Ma X. Development and validation of optimized lentivirus-like particles for gene editing tool delivery with Gag-Only strategy. Eur J Med Res 2025; 30:242. [PMID: 40186294 PMCID: PMC11969815 DOI: 10.1186/s40001-025-02499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The development of gene editing tools such as CRISPR-Cas9 and base editors (BE) is critical for genetic diseases and cancer. Lentivirus-like particles (LVLPs) grows into an auspicious platform for delivering mRNA or ribonucleic proteins (RNPs) due to it integrates the advantage of viral and non-viral vectors. Current LVLP systems predominantly utilize HIV-Gag and Pol proteins. However, the reverse transcriptase and integrase of Pol, pose risks of genomic integration and potential tumorigenesis. Enhancing the safety of VLP system is essential. This study focuses on improving the LVLP to minimize these risks. METHODS We implemented a Gag-Only strategy, constructing LVLPs with HIV-Gag protein, thereby eliminating the integration risks linked to Pol. By leveraging the interactions between MS2-MCP (MS2 coat protein), PP7 and PP7 BP (PP7 binding protein), and the psi (HIV packaging signal) with HIV-Gag, we encapsulated PAMless andesine base editor (CE-8e-SpRY) mRNA and sgRNA targeting the PD1 start codon (ATG) into the LVLP. Using recombinant lentiviral vector technology, we developed a stable PD1-expressing 293T cell line (PD1-293T) to assess the editing efficiency of LVLP. RESULTS The psi-LVLP demonstrated effective packaging capabilities, achieving 15% base editing efficiency in 293T cells. By optimizing plasmid ratios, we observed increased CE-8e-SpRY mRNA copy numbers, with 30% base editing efficiency. Additionally, the integration of HDVrz (hepatitis delta virus ribozyme) and psi into sgRNA (HDVrz-psi-LVLP) substantially enhanced sgRNA copy numbers, resulting in approximately 50% base editing efficiency in 293T cells and 20% base editing efficiency in Jurkat cells. Mendelian randomization analyses revealed significant genetic correlations between PD1, B2M, CIITA, and TIGIT genes with various cancer risks. Furthermore, HDVrz-psi-LVLPs targeting the start codons of B2M, CIITA, and TIGIT exhibited high base editing activity in both Jurkat and 293T cells. CONCLUSION In conclusion, this optimized platform effectively encapsulates CE-8e-SpRY mRNA and sgRNA, achieving high editing efficiencies across multiple genes and cell types. We introduce a safer and more efficient gene editing tool delivery system by constructing LVLPs based on the Gag-Only strategy. Our study presents a promising implication for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinlin Jia
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Yanzhe Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China.
| | - Lu Zhang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Xiaofang Cao
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Hu Wang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Qi Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| |
Collapse
|
24
|
Wang Y, Jiang J, Shang K, Xu X, Sun J. Turning "trashed" genomic loci into treasurable sites for integrating chimeric antigen receptors in T and NK cells. Mol Ther 2025; 33:1368-1379. [PMID: 39980196 PMCID: PMC11997492 DOI: 10.1016/j.ymthe.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Chimeric antigen receptor (CAR)-based immune cell therapy involves genetically engineering immune cells, such as T cells and natural killer (NK) cells, to express CARs that can specifically recognize target antigens. This modification enables T/NK cells to selectively eliminate tumor cells following adoptive transfer. One common approach to stably integrate CARs into the genome of T/NK cells is through retroviral or lentiviral vectors. However, these vectors mediate semi-random gene integration, posing risks such as oncogenic mutations, gene silencing, and variable CAR expression levels. Targeted integration of CAR genes into the specific genomic locus could overcome these limitations, but identifying the optimal integration sites to maximize the safety and efficacy of CAR-T/NK cell products remains a critical question. Improper integration sites may disturb the endogenous genes surrounding the integration sites, raising safety concerns. Additionally, regulatory elements at the integration sites, such as promoters, can influence the expression level of CAR genes, thus affecting the efficacy of CAR-T/NK cells. In this review, we summarized current strategies for selecting integration sites and promoters in the engineering of CAR-T/NK cells to achieve potent anti-tumor efficacy in preclinical studies.
Collapse
Affiliation(s)
- Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Xiaobao Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
25
|
Duan M, Gao P, Zhang YZ, Hu YL, Zhou L, Xu ZC, Qiu HY, Tong XH, Ji RJ, Lei XL, Yin H, Guo CL, Zhang Y. TOPO-seq reveals DNA topology-induced off-target activity by Cas9 and base editors. Nat Chem Biol 2025:10.1038/s41589-025-01867-7. [PMID: 40175512 DOI: 10.1038/s41589-025-01867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/25/2025] [Indexed: 04/04/2025]
Abstract
With the increasing use of CRISPR-Cas9, detecting off-target events is essential for safety. Current methods primarily focus on guide RNA (gRNA) sequence mismatches, often overlooking the impact of DNA topology in regulating off-target activity. Here we present TOPO-seq, a high-throughput and sensitive method that identifies genome-wide off-target effects of Cas9 and base editors while accounting for DNA topology. TOPO-seq revealed that topology-induced off-target sites frequently harbor higher mismatches than the relaxed DNA sequence, with over 50% of off-target sites containing six mismatches, which are usually overlooked using previous methods. Applying TOPO-seq to three therapeutic gRNAs in hematopoietic stem cells identified 47 bona fide off-target loci, six of which are specifically induced by DNA topology. These findings highlight DNA topology as a regulator of off-target editing rates, establish TOPO-seq as a robust method for capturing DNA topology-induced off-target events and underscore its importance in off-target detection for developing safe genome-editing therapies.
Collapse
Affiliation(s)
- Min Duan
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pan Gao
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yi-Zhou Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu-Long Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Zhou
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhong-Chen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Hou-Yuan Qiu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Han Tong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rui-Jin Ji
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin-Lin Lei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hao Yin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Departments of Urology and Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cun-Lan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Perica K, Kotchetkov IS, Mansilla-Soto J, Ehrich F, Herrera K, Shi Y, Dobrin A, Gönen M, Sadelain M. HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature 2025; 640:793-801. [PMID: 39884316 DOI: 10.1038/s41586-025-08657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Autologous chimeric antigen receptor (CAR) T cells are a genetically engineered therapy that is highly effective against B cell malignancies and multiple myeloma1. However, the length and cost of personalized manufacturing limits access and leaves patients vulnerable to disease progression. Allogeneic cell therapies have the potential to increase patient access and improve treatment outcomes but are limited by immune rejection2,3. To devise a strategy to protect allogeneic CAR T cells from host immune cells, we turned to lymphotropic viruses that have evolved integrated mechanisms for immune escape of virus-infected lymphocytes4. We find that viral evasins that partially reduce human leukocyte antigen class I expression can shelter CAR T cells from mismatched CD8+ T cells without triggering 'missing-self' rejection by natural killer cells. However, this protection alone is insufficient to sustain effective allogeneic CAR T cell therapy. HIV-1 Nef uniquely also acts through the serine/threonine kinase Pak2 to abate activation-induced cell death and promote survival of CAR T cells in vivo. Thus, virus-like immune escape can harness several mechanisms that act in concert to enhance the therapeutic efficacy of allogeneic CAR T cells.
Collapse
Affiliation(s)
- Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan S Kotchetkov
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Fiona Ehrich
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Herrera
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA
| | - Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA.
| |
Collapse
|
27
|
Kumar R, Braunreiter KM, Neidemire-Colley L, Sell N, Gao Y, Steere C, Weber M, Vanakeri D, Choi E, Choe HK, Vibhute S, Bennett C, Byersdorfer CA, Elgamal OA, Goodwin TE, Hertlein EK, Byrd JC, Ranganathan P. DHODH inhibition alters T cell metabolism limiting acute graft-versus-host disease while retaining graft-versus-leukemia response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:818-827. [PMID: 40119669 PMCID: PMC12041777 DOI: 10.1093/jimmun/vkaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/22/2025] [Indexed: 03/24/2025]
Abstract
Acute graft-versus-host disease (GVHD) is a donor T cell driven complication and the leading cause of non-relapse mortality in patients receiving an allogeneic hematopoietic cell transplantation (allo-HCT). Allogeneic donor T cells eradicate residual leukemia and prevent relapse via the graft-versus-leukemia (GVL) effect and are critical for responding against opportunistic infections post-transplant. Current regimens successful in preventing GVHD are broadly immunosuppressive and come at the cost of increased risk of relapse and/or infection. Therefore, there is an urgent need for new approaches that limit GVHD while retaining GVL responses. During GVHD, alloreactive T cells boost their energy production through oxidative phosphorylation (OXPHOS) and glycolysis, supporting heightened proliferation and pathogenicity against healthy host tissues. The enzyme dihydroorate dehydrogenase (DHODH), is essential for de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential during OXPHOS. Having shown upregulation of DHODH messenger RNA and protein expression in activated human T cells, we evaluated DHODH inhibition, via a small molecule inhibitor HOSU-53, as a therapeutic approach for GVHD. Inhibiting DHODH significantly reduced oxidative metabolism in T cells both during and after activation, while selectively suppressing inflammatory cytokine production in de novo activated, but not previously activated, T cells. In a xenogeneic model, HOSU-53 treatment limited GVHD severity, decreased pathogenic Th1 and Th17 response, and preserved beneficial GVL effects. Altogether, we identify DHODH inhibition as an innovative treatment strategy in allo-HCT recipients to reduce GVHD severity and retain effective GVL response.
Collapse
Affiliation(s)
- Rathan Kumar
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kara M Braunreiter
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Camryn Steere
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Margot Weber
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Dhruva Vanakeri
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Eunice Choi
- Department of Pathology, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Sandip Vibhute
- Drug Discovery Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Chad Bennett
- Drug Discovery Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ola A Elgamal
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas E Goodwin
- Department of Chemistry, Hendrix College, Conway, AR, United States
| | - Erin K Hertlein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Georgiadis C, Preece R, Qasim W. Clinical development of allogeneic chimeric antigen receptor αβ-T cells. Mol Ther 2025:S1525-0016(25)00214-X. [PMID: 40156192 DOI: 10.1016/j.ymthe.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Ready-made banks of allogeneic chimeric antigen receptor (CAR) T cells, produced to be available at the time of need, offer the prospect of accessible and cost-effective cellular therapies. Various strategies have been developed to overcome allogeneic barriers, drawing on cell engineering platforms including RNA interference, protein-based restriction, and genome editing, including RNA-guided CRISPR-Cas and base editing tools. Alloreactivity and the risk of graft-versus-host disease from non-matched donor cells have been mitigated by disruption of αβ-T cell receptor expression on the surface of T cells and stringent removal of any residual αβ-T cell populations. In addition, host-mediated rejection has been tackled through a combination of augmented lymphodepletion and cell engineering strategies that have allowed infused cells to evade immune recognition or conferred resistance to lymphodepleting agents to promote persistence and expansion of effector populations. Early-phase studies using off-the-shelf universal donor CAR T cells have been undertaken mainly in the context of blood malignancies, where emerging data of clinical responses have supported wider adoption and further applications. These developments offer the prospect of alternatives to current autologous approaches through the emerging application of genome engineering solutions to improve safety, persistence, and function of universal donor products.
Collapse
Affiliation(s)
- Christos Georgiadis
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Roland Preece
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Waseem Qasim
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, London WC1N 1DZ, UK.
| |
Collapse
|
30
|
Han X, Zhang J, Li W, Huang X, Wang X, Wang B, Gao L, Chen H. The role of B2M in cancer immunotherapy resistance: function, resistance mechanism, and reversal strategies. Front Immunol 2025; 16:1512509. [PMID: 40191187 PMCID: PMC11968357 DOI: 10.3389/fimmu.2025.1512509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Immunotherapy has emerged as a preeminent force in the domain of cancer therapeutics and achieved remarkable breakthroughs. Nevertheless, the high resistance has become the most substantial impediment restricting its clinical efficacy. Beta-2 microglobulin (B2M), the light chain of major histocompatibility complex (MHC) class I, plays an indispensable part by presenting tumor antigens to cytotoxic T lymphocytes (CTLs) for exerting anti-tumor effects. Accumulating evidence indicates that B2M mutation/defect is one of the key mechanisms underlying tumor immunotherapy resistance. Therefore, elucidating the role played by B2M and devising effective strategies to battle against resistance are pressing issues. This review will systematically expound upon them, aiming to provide insight into the potential of B2M as a promising target in anticancer immune response.
Collapse
Affiliation(s)
- Xiaowen Han
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jiayi Zhang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Weidong Li
- Lanzhou University Second Hospital, Lanzhou, China
| | | | - Xueyan Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China
| |
Collapse
|
31
|
Porret R, Alcaraz-Serna A, Peter B, Bernier-Latmani J, Cecchin R, Alfageme-Abello O, Ermellino L, Hafezi M, Pace E, du Pré MF, Lana E, Golshayan D, Velin D, Eyquem J, Tang Q, Petrova TV, Coukos G, Irving M, Pot C, Pantaleo G, Sollid LM, Muller YD. T cell receptor precision editing of regulatory T cells for celiac disease. Sci Transl Med 2025; 17:eadr8941. [PMID: 40106579 DOI: 10.1126/scitranslmed.adr8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Celiac disease, a gluten-sensitive enteropathy, demonstrates a strong human leukocyte antigen (HLA) association, with more than 90% of patients carrying the HLA-DQ2.5 allotype. No therapy is available for the condition except for a lifelong gluten-free diet. To address this gap, we explored the therapeutic potential of regulatory T cells (Tregs). By orthotopic replacement of T cell receptors (TCRs) through homology-directed repair, we generated gluten-reactive HLA-DQ2.5-restricted CD4+ engineered (e) T effector cells (Teffs) and eTregs and performed in vivo experiments in HLA-DQ2.5 transgenic mice. Of five validated TCRs, TCRs specific for two immunodominant and deamidated gluten epitopes (DQ2.5-glia-α1a and DQ2.5-glia-α2) were selected for further evaluation. CD4+ eTeffs exposed to deamidated gluten through oral gavage colocalized with dendritic and B cells in the Peyer's patches and gut-draining lymph nodes and specifically migrated to the intestine. The suppressive function of human eTregs correlated with high TCR functional activity. eTregs specific for one epitope suppressed the proliferation and gut migration of CD4+ eTeffs specific for the same and the other gluten epitope, demonstrating bystander suppression. The suppression requires an antigen-specific activation of eTregs given that polyclonal Tregs failed to suppress CD4+ eTeffs. These findings highlight the potential of gluten-reactive eTregs as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Raphaël Porret
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Rebecca Cecchin
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Oscar Alfageme-Abello
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Laura Ermellino
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Morteza Hafezi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Eleonora Pace
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - M Fleur du Pré
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Erica Lana
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Yannick D Muller
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
- Centre for Human Immunology Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
32
|
Tommasi A, Cappabianca D, Bugel M, Gimse K, Lund-Peterson K, Shrestha H, Arutyunov D, Williams JA, Police SR, Indurthi V, Davis SZ, Murtaza M, Capitini CM, Saha K. Efficient nonviral integration of large transgenes into human T cells using Cas9-CLIPT. Mol Ther Methods Clin Dev 2025; 33:101437. [PMID: 40123742 PMCID: PMC11930092 DOI: 10.1016/j.omtm.2025.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) combined with a nucleic acid template encoding a chimeric antigen receptor (CAR) transgene can edit human cells to produce CAR T cells with precise CAR insertion at a single locus. However, many human cells have adverse innate immune responses to foreign nucleic acids, particularly circular double-stranded DNA (dsDNA). Here, we introduce Cleaved, LInearized with Protein Template (Cas9-CLIPT), a circular plasmid containing a single target sequence for the Cas9 RNP, such that during manufacturing, Cas9-RNP binds and cleaves the plasmid to linearize the dsDNA in vitro. Cas9-RNP remains bound to the linearized template and is delivered to cells to promote precise knock-in via homology-directed repair with Cas9-CLIPT. Cas9-CLIPT Nanoplasmids generate up to 1.7-fold higher rates of precise knock-in relative to linearized dsDNA, reaching efficiencies up to 60% with non-homologous end joining inhibition. Cas9-CLIPT-manufactured GD2 TRAC-CAR T cells are potent against GD2+ neuroblastoma cells and exhibit an enriched stem cell memory phenotype. On several electroporation instruments and approaching clinically relevant yields, we successfully manufactured TRAC-CAR T cells using Cas9-CLIPT plasmids containing large (2-6 kb) transgenes. Cas9-CLIPT strategies have the potential to simplify donor template production and integrate large transgenes, allowing for more efficient nonviral manufacturing of multifunctional, genome-edited immune cell therapies.
Collapse
Affiliation(s)
- Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kirstan Gimse
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | | | | | - Sage Z. Davis
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Muhammed Murtaza
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
33
|
Cavazza A, Molina-Estévez FJ, Reyes ÁP, Ronco V, Naseem A, Malenšek Š, Pečan P, Santini A, Heredia P, Aguilar-González A, Boulaiz H, Ni Q, Cortijo-Gutierrez M, Pavlovic K, Herrera I, de la Cerda B, Garcia-Tenorio EM, Richard E, Granados-Principal S, López-Márquez A, Köber M, Stojanovic M, Vidaković M, Santos-Garcia I, Blázquez L, Haughton E, Yan D, Sánchez-Martín RM, Mazini L, Aseguinolaza GG, Miccio A, Rio P, Desviat LR, Gonçalves MA, Peng L, Jiménez-Mallebrera C, Molina FM, Gupta D, Lainšček D, Luo Y, Benabdellah K. Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102457. [PMID: 39991472 PMCID: PMC11847086 DOI: 10.1016/j.omtn.2025.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In the past decade, precise targeting through genome editing has emerged as a promising alternative to traditional therapeutic approaches. Genome editing can be performed using various platforms, where programmable DNA nucleases create permanent genetic changes at specific genomic locations due to their ability to recognize precise DNA sequences. Clinical application of this technology requires the delivery of the editing reagents to transplantable cells ex vivo or to tissues and organs for in vivo approaches, often representing a barrier to achieving the desired editing efficiency and safety. In this review, authored by members of the GenE-HumDi European Cooperation in Science and Technology (COST) Action, we described the plethora of delivery systems available for genome-editing components, including viral and non-viral systems, highlighting their advantages, limitations, and potential application in a clinical setting.
Collapse
Affiliation(s)
- Alessia Cavazza
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via del Pozzo 71, 41125 Modena, Italy
| | - Francisco J. Molina-Estévez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental, Alejandro Otero (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Victor Ronco
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Asma Naseem
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Annalisa Santini
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Heredia
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Araceli Aguilar-González
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Marina Cortijo-Gutierrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Inmaculada Herrera
- Department of Hematology, Reina Sofía University Hospital, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cell Therapy, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Emilio M. Garcia-Tenorio
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Sergio Granados-Principal
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Arístides López-Márquez
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Gran Via de les Corts Catalanes, 585, L'Eixample, 08007 Barcelona, Spain
| | - Mariana Köber
- Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marijana Stojanovic
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Irene Santos-Garcia
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
- CIBERNED, ISCIII CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Av. de Monforte de Lemos, 5, Fuencarral-El Pardo, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, Abando, 48009 Bilbao, Biscay, Spain
| | - Emily Haughton
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Dongnan Yan
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rosario María Sánchez-Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Loubna Mazini
- Technological, Medical and Academic Park (TMAP), N°109, Abdelkrim Elkhatabi, Bd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Av. de Pío XII, 55, 31008 Pamplona, Navarra, Spain
- Vivet Therapeutics, Av. de Pío XII 31, 31008 Pamplona, Navarra, Spain
| | - Annarita Miccio
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Rio
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, CIEMAT, Av. Complutense, 40, Moncloa - Aravaca, 28040 Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Av. de los Reyes Católicos, 2, Moncloa - Aravaca, 28040 Madrid, Spain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Manuel A.F.V. Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, “Equipe Labellisee Ligue Ćontre le Cancer”, Campus de Luminy, case 913, 13009 Marseille, France
| | - Cecilia Jiménez-Mallebrera
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Francisco Martin Molina
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Dhanu Gupta
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Huddinge, Sweden
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| |
Collapse
|
34
|
He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, Zhang X, Chen J, Liu Y, Xu G. TCR-T cell therapy for solid tumors: challenges and emerging solutions. Front Pharmacol 2025; 16:1493346. [PMID: 40129944 PMCID: PMC11931055 DOI: 10.3389/fphar.2025.1493346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
With the use of T cell receptor T cells (TCR-T cells) and chimeric antigen receptor T cells (CAR-T cells), T-cell immunotherapy for cancer has advanced significantly in recent years. CAR-T cell therapy has demonstrated extraordinary success when used to treat hematologic malignancies. Nevertheless, there are several barriers that prevent this achievement from being applied to solid tumors, such as challenges with tumor targeting and inadequate transit and adaption of genetically modified T-cells, especially in unfavorable tumor microenvironments The deficiencies of CAR-T cell therapy in the treatment of solid tumors are compensated for by TCR-T cells, which have a stronger homing ability to initiate intracellular commands, 90% of the proteins can be used as developmental targets, and they can recognize target antigens more broadly. As a result, TCR-T cells may be more effective in treating solid tumors. In this review, we discussed the structure of TCR-T and have outlined the drawbacks of TCR-T in cancer therapy, and suggested potential remedies. This review is crucial in understanding the current state and future potential of TCR-T cell therapy. We emphasize how important it is to use combinatorial approaches, combining new combinations of various emerging strategies with over-the-counter therapies designed for TCR-T, to increase the anti-tumor efficacy of TCR-T inside the TME and maximize treatment safety, especially when it comes to solid tumor immunotherapies.
Collapse
Affiliation(s)
- Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Muhammad Asad Farooq
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Na Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiqian Zhang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Jian Chen
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Yinxia Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
35
|
Cochrane RW, Allen E, Ferreira LMR. Expanding the engineered Treg multiverse. Mol Ther 2025; 33:833-836. [PMID: 39986268 PMCID: PMC11897745 DOI: 10.1016/j.ymthe.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Affiliation(s)
- Russell W Cochrane
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M R Ferreira
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
36
|
Du W, Noyan F, McCallion O, Drosdek V, Kath J, Glaser V, Fuster-Garcia C, Yang M, Stein M, Franke C, Pu Y, Weber O, Polansky JK, Cathomen T, Jaeckel E, Hester J, Issa F, Volk HD, Schmueck-Henneresse M, Reinke P, Wagner DL. Gene editing of CD3 epsilon to redirect regulatory T cells for adoptive T cell transfer. Mol Ther 2025; 33:997-1013. [PMID: 39905729 PMCID: PMC11897813 DOI: 10.1016/j.ymthe.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Adoptive transfer of antigen-specific regulatory T cells (Tregs) is a promising strategy to combat immunopathologies in transplantation and autoimmune diseases. However, their low frequency in peripheral blood poses challenges for both manufacturing and clinical application. Chimeric antigen receptors have been used to redirect the specificity of Tregs, using retroviral vectors. However, retroviral gene transfer is costly, time consuming, and raises safety issues. Here, we explored non-viral CRISPR-Cas12a gene editing to redirect Tregs, using human leukocyte antigen (HLA)-A2-specific constructs for proof-of-concept studies in transplantation models. Knock-in of an antigen-binding domain into the N terminus of CD3 epsilon (CD3ε) gene generates Tregs expressing a chimeric CD3ε-T cell receptor fusion construct (TRuC) protein that integrates into the endogenous TCR/CD3 complex. These CD3ε-TRuC Tregs exhibit potent antigen-dependent activation while maintaining responsiveness to TCR/CD3 stimulation. This enables preferential enrichment of TRuC-redirected Tregs over CD3ε knockout Tregs via repetitive CD3/CD28 stimulation in a good manufacturing practice-compatible expansion system. CD3ε-TRuC Tregs retained their phenotypic, epigenetic, and functional identity. In a humanized mouse model, HLA-A2-specific CD3ε-TRuC Tregs demonstrate superior protection of allogeneic HLA-A2+ skin grafts from rejection compared with polyclonal Tregs. This approach provides a pathway for developing clinical-grade CD3ε-TRuC-based Treg cell products for transplantation immunotherapy and other immunopathologies.
Collapse
Affiliation(s)
- Weijie Du
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jonas Kath
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Viktor Glaser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carla Fuster-Garcia
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mingxing Yang
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Yaolin Pu
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Olaf Weber
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Biomedical Center II, Venusberg Campus 1, 53127 Bonn, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; German Rheumatism Research Centre, Deutsches Rheuma-Forschungszentrum, ein Leibniz Institut, Berlin, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dimitrios L Wagner
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany; Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Sahu SU, Castro M, Muldoon JJ, Asija K, Wyman SK, Krishnappa N, de Oñate L, Eyquem J, Nguyen DN, Wilson RC. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. Nat Protoc 2025:10.1038/s41596-025-01154-8. [PMID: 40032999 DOI: 10.1038/s41596-025-01154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/10/2024] [Indexed: 03/05/2025]
Abstract
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in and base editing. The protocol involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) homology-directed repair template (HDRT) DNA may be included. In contrast to electroporation, PERC is appealing because it needs no dedicated hardware and has less impact on cell phenotype and viability. Because of the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Editing efficiencies can surpass 90% when using either Cas9 or Cas12a in primary T cells or HSPCs. After 3 h dedicated to reagent preparation, the PERC delivery step can be completed in 1 h, with the associated cell culture steps taking 3-7 d total. Because the protocol calls for only three readily available reagents (protein, RNA and peptide) and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes the protocol appealing for rapid deployment in research and clinical settings.
Collapse
Affiliation(s)
- Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Madalena Castro
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kunica Asija
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Lorena de Oñate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - David N Nguyen
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Yuan Y, Li Y, Li G, Lei L, Huang X, Li M, Yao Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol Pharm 2025; 22:1142-1159. [PMID: 39878334 DOI: 10.1021/acs.molpharmaceut.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP technology, which is expected to drive transformative progress in the field of gene therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Ying Li
- Research Center for Space Computing System, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Liqun Lei
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Xingxu Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
39
|
Zhang H, Zhong M, Zhang J, Chen C. Blood cancer therapy with synthetic receptors and CRISPR technology. Leuk Res 2025; 150:107646. [PMID: 39919536 DOI: 10.1016/j.leukres.2025.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 02/09/2025]
Abstract
Chimeric antigen receptor (CAR)-T and -NK cells showed great success in treating hematological malignancies, including leukemia, lymphoma, and myeloma. CRISPR technology and other synthetic receptors (GPCR and synNotch) have helped to address some of the limitations and challenges associated with CAR-based therapies. Herein, this review aims to discuss how CAR can be integrated with other synthetic receptors and various CRISPR/Cas tools for blood cancer therapy. CAR-expressing cells equipped with other synthetic receptors can conditionally execute tumoricidal functions, prevent tumor escape from immune surveillance, and minimize non-tumor off-target toxicity. We also discussed how various CRISPR-Cas tools can be harnessed to enhance CAR cells functionality and persistence. The advances, pitfalls, and future perspectives for these synthetic receptors and CRISPR technology in blood cancer therapy are comprehensively discussed.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Mingxin Zhong
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Jingdong Zhang
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Changkun Chen
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
40
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2025; 25:212-224. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Signal Transduction/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Mice
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Perico L, Casiraghi F, Benigni A, Remuzzi G. Is there a place for engineered immune cell therapies in autoimmune diseases? Trends Mol Med 2025:S1471-4914(25)00011-5. [PMID: 39984382 DOI: 10.1016/j.molmed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
The ability to engineer immune cells yielded a transformative era in oncology. Early clinical trials demonstrated the efficacy of chimeric antigen receptor (CAR) T cells in resetting the immune system, motivating the expansion of this treatment beyond cancer, including autoimmune conditions. In this review, we discuss the current state of CAR T cell research in autoimmune diseases, examining the main challenges that limit widespread adoption of this therapy, such as complex isolation protocols, stringent immunosuppression, risk of secondary malignancies, and variable efficacy. We also review the studies addressing these limitations by development of off-the-shelf allogeneic CAR T cells, tunable safety systems, and antigen-specific therapies, which hold the potential to improve safety and accessibility of this treatment in clinical practice.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
42
|
Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H. Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond. Front Immunol 2025; 16:1544532. [PMID: 40046061 PMCID: PMC11880241 DOI: 10.3389/fimmu.2025.1544532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has garnered significant attention for its transformative impact on the treatment of hematologic malignancies such as leukemia and lymphoma. Despite its remarkable success, challenges such as resistance, limited efficacy in solid tumors, and adverse side effects remain prominent. This review consolidates recent advancements in CAR-T-cell therapy and explores innovative engineering techniques and strategies to overcome the immunosuppressive tumor microenvironment (TME). We also discuss emerging applications beyond cancer, including autoimmune diseases and chronic infections. Future perspectives highlight the development of more potent CAR-T cells with increased specificity and persistence and reduced toxicity, providing a roadmap for next-generation immunotherapies.
Collapse
Affiliation(s)
- Zishan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingjun Ha
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinhan Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Yuan Z. From Origin to the Present: Establishment, Mechanism, Evolutions and Biomedical Applications of the CRISPR/Cas-Based Macromolecular System in Brief. Molecules 2025; 30:947. [PMID: 40005257 PMCID: PMC11858448 DOI: 10.3390/molecules30040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Advancements in biological and medical science are intricately linked to the biological central dogma. In recent years, gene editing techniques, especially CRISPR/Cas systems, have emerged as powerful tools for modifying genetic information, supplementing the central dogma and holding significant promise for disease diagnosis and treatment. Extensive research has been conducted on the continuously evolving CRISPR/Cas systems, particularly in relation to challenging diseases, such as cancer and HIV infection. Consequently, the integration of CRISPR/Cas-based techniques with contemporary medical approaches and therapies is anticipated to greatly enhance healthcare outcomes for humans. This review begins with a brief overview of the discovery of the CRISPR/Cas system. Subsequently, using CRISPR/Cas9 as an example, a clear description of the classical molecular mechanism underlying the CRISPR/Cas system was given. Additionally, the development of the CRISPR/Cas system and its applications in gene therapy and high-sensitivity disease diagnosis were discussed. Furthermore, we address the prospects for clinical applications of CRISPR/Cas-based gene therapy, highlighting the ethical considerations associated with altering genetic information. This brief review aims to enhance understanding of the CRISPR/Cas macromolecular system and provide insight into the potential of genetic macromolecular drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Zheng Yuan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100022, China
| |
Collapse
|
44
|
Sytsma BJ, Allain V, Bourke S, Faizee F, Fathi M, Ferreira LMR, Brewer WJ, Li L, Pan FL, Rothrock AG, Nyberg WA, Li Z, Wilson LH, Berdeaux R, Eyquem J, Pawell RS. Scalable intracellular delivery via microfluidic vortex shedding enhances the function of chimeric antigen receptor T-cells. Sci Rep 2025; 15:5749. [PMID: 39962112 PMCID: PMC11832915 DOI: 10.1038/s41598-025-89070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 × 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Leonardo M R Ferreira
- Indee Labs, Berkeley, CA, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lian Li
- Indee Labs, Berkeley, CA, USA
| | | | - Allison G Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Justin Eyquem
- Indee Labs, Berkeley, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
45
|
Castellanos-Rueda R, Wang KLK, Forster JL, Driessen A, Frank JA, Martínez MR, Reddy ST. Dissecting the role of CAR signaling architectures on T cell activation and persistence using pooled screens and single-cell sequencing. SCIENCE ADVANCES 2025; 11:eadp4008. [PMID: 39951542 PMCID: PMC11827634 DOI: 10.1126/sciadv.adp4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Chimeric antigen receptor (CAR) T cells offer a promising cancer treatment, yet challenges such as limited T cell persistence hinder efficacy. Given its critical role in modulating T cell responses, it is crucial to understand how the CAR signaling architecture influences T cell function. Here, we designed a combinatorial CAR signaling domain library and performed repeated antigen stimulation assays, pooled screens, and single-cell sequencing to systematically investigate the impact of modifying CAR signaling domains on T cell activation and persistence. Our data reveal the predominant influence of membrane-proximal domains in driving T cell phenotype. Notably, CD40 costimulation was crucial for fostering robust and lasting T cell responses. Furthermore, we correlated in vitro generated CAR T cell phenotypes with clinical outcomes in patients treated with CAR T therapy, establishing the foundation for a clinically informed screening approach. This work deepens our understanding of CAR T cell biology and may guide future CAR engineering efforts.
Collapse
Affiliation(s)
- Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Kai-Ling K. Wang
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Juliette L. Forster
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Alice Driessen
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
- IBM Research Europe, Zurich, Switzerland
| | - Jessica A. Frank
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | | | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| |
Collapse
|
46
|
Sætersmoen M, Kotchetkov IS, Torralba-Raga L, Mansilla-Soto J, Sohlberg E, Krokeide SZ, Hammer Q, Sadelain M, Malmberg KJ. Targeting HLA-E-overexpressing cancers with a NKG2A/C switch receptor. MED 2025; 6:100521. [PMID: 39423821 DOI: 10.1016/j.medj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-E is overexpressed by a large proportion of solid tumors, including malignant glioblastoma, and acts as a major checkpoint for NKG2A+ CD8+ T cells and natural killer (NK) cells in the tumor microenvironment and circulation. This axis operates alongside PD-L1 to inhibit effector responses by T and NK cells. METHODS We engineered a chimeric A/C switch receptor, combining the high HLA-E binding affinity of the NKG2A receptor ectodomain with the activating signaling of the NKG2C receptor endodomain. The cytotoxic function of A/C switch-transduced NK and T cells was evaluated against tumor cells with varying levels of HLA-E expression. In vivo efficacy was assessed using a xenograft model of glioblastoma. FINDINGS A/C switch-transduced NK and T cells exhibited superior and specific cytotoxicity against tumor cells with medium to high HLA-E expression. A/C switch-expressing human T cells demonstrated enhanced anti-tumor function in a glioblastoma xenograft model. The activity of the modified T cells was governed by an equilibrium between A/C switch levels and HLA-E expression, creating a therapeutic window to minimize on-target, off-tumor toxicities. Normal cells remained insensitive to A/C switch T cells, even after interferon (IFN)-γ pretreatment to induce HLA-E expression. CONCLUSIONS The A/C switch receptor effectively targets tumor cells expressing high levels of HLA-E, either alone or in combination with other engineered specificities, to overcome the suppressive NKG2A/HLA-E checkpoint. This approach offers a promising therapeutic strategy with a favorable safety profile for targeting HLA-E-overexpressing tumors. FUNDING This work was funded by The Research Council of Norway, the Norwegian Cancer Society, and the National Cancer Institute.
Collapse
Affiliation(s)
- Michelle Sætersmoen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ivan S Kotchetkov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lamberto Torralba-Raga
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Silje Zandstra Krokeide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
47
|
Echchannaoui H, Legscha KJ, Theobald M. Tumor-Infiltrating Lymphocytes, CAR-, and T-Cell Receptor-Modified T Cells in Solid Cancer Oncology. Oncol Res Treat 2025; 48:294-304. [PMID: 39938499 DOI: 10.1159/000543998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Adoptive cellular therapy (ACT) is a promising treatment approach aiming at enhancing T-cell antitumor immune response. ACT includes tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) and T-cell receptor gene-modified T cells. Despite a milestone achievement with CAR-T cells in hematopoietic malignancies, ACT has shown modest clinical responses in refractory solid cancers and durable responses remain limited to a minor fraction of patients. SUMMARY In this review, we highlight major advances, limitations and current developments of T-cell therapies for solid cancers. We discuss emerging promising strategies as next-generation ACT, exploring local delivery routes to maximize efficacy and improve safety, integrating predictive biomarkers to optimize selection of patients who most likely would benefit from ACT, using combination therapy to overcome the immunosuppressive tumor microenvironment, targeting multiple tumor antigen to avoid tumor antigen escape, selection of the most potent T-cell product to overcome T-cell dysfunction, and incorporating cutting-edge new technologies, such as gene-editing to further improve antitumor T-cell functions and reduce therapy-related toxicity. KEY MESSAGES Advances made in ACT trials have move the field of immunotherapy for refractory solid cancers to a new stage, by constantly incorporating new strategies to develop next-generation therapies designed to enhance efficacy and improve safety and to allow a broaden access to a large numbers of patients.
Collapse
Affiliation(s)
- Hakim Echchannaoui
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
- Institute for Immunology and Research Center for Immunotherapy, UMC of the Johannes Gutenberg University, Mainz, Germany
| | - Kevin Jan Legscha
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
- Institute for Immunology and Research Center for Immunotherapy, UMC of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
48
|
Džafo E, Hafezi M, Attianese GMPG, Reichenbach P, Grillet S, Garcia H, Cribioli E, Voize C, Tissot S, de Silly RV, Coukos G, Scholten K, Irving M, Gentner B. DNA-dependent protein kinase inhibitors PI-103 and samotolisib augment CRISPR/Cas9 knock-in efficiency in human T cells. Cytotherapy 2025:S1465-3249(25)00059-3. [PMID: 40100189 DOI: 10.1016/j.jcyt.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
The adoptive transfer of autologous peripheral blood T cells gene-modified to express preselected, tumor antigen-specific T-cell receptors (TCRs) is a promising treatment for solid cancers. While gene-transfer by viral transduction is highly efficient, the insertional site is not targeted and persistence of the T cells is oftentimes limited. In contrast, site-specific integration of the TCR into the TCR α chain (TRAC) locus by CRISPR/Cas9 has been shown to enable more consistent and physiologic levels of exogenous TCR expression coupled with superior persistence and tumor control in preclinical studies. Here, we sought to improve the efficiency of CRISPR/Cas9 mediated TCR knock-in (KI) into the TRAC locus of primary human T cells. In addition to the previously reported DNA-dependent protein kinase (DNA-PK) inhibitor M3814, we demonstrated that PI-103 and samotolisib markedly increase KI efficiency in a process that is good manufacturing process (GMP)-compatible. Importantly, samotolisib enabled the generation of a potent T-cell product, having no negative impact on T-cell viability, phenotype, expansion, effector function, and tumor control. Overall, we conclude that our GMP-compatible CRISPR/Cas9 protocol comprising samotolisib to augment TCR KI efficiency is suitable for the generation of genetically modified T cells for clinical use.
Collapse
Affiliation(s)
- Emina Džafo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Morteza Hafezi
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Stephane Grillet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Hélène Garcia
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Christel Voize
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Stephanie Tissot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Romain Vuillefroy de Silly
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kirsten Scholten
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Bernhard Gentner
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL), and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
49
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2025; 27:352-368. [PMID: 39450490 PMCID: PMC11812040 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
50
|
Chang CR, Vykunta VS, Lee JHJ, Li K, Kochendoerfer C, Muldoon JJ, Wang CH, Mazumder T, Sun Y, Goodman DB, Nyberg WA, Liu C, Allain V, Rothrock A, Ye CJ, Marson A, Shy BR, Eyquem J. SEED-Selection enables high-efficiency enrichment of primary T cells edited at multiple loci. Nat Biotechnol 2025:10.1038/s41587-024-02531-6. [PMID: 39910194 DOI: 10.1038/s41587-024-02531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Engineering T cell specificity and function at multiple loci can generate more effective cellular therapies, but current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here we develop a one-step process to enrich unlabeled cells containing knock-ins at multiple target loci using a family of repair templates named synthetic exon expression disruptors (SEEDs). SEEDs associate transgene integration with the disruption of a paired target endogenous surface protein while preserving target expression in nonmodified and partially edited cells to enable their removal (SEED-Selection). We design SEEDs to modify three critical loci encoding T cell specificity, coreceptor expression and major histocompatibility complex expression. The results demonstrate up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). This method is compatible with existing clinical manufacturing workflows and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
Collapse
Affiliation(s)
- Christopher R Chang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vivasvan S Vykunta
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jae Hyun J Lee
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ke Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Clara Kochendoerfer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Mazumder
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Sun
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Allison Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun J Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|