1
|
Menezes NA, Peterson KJ, Guo X, Castiglioni V, Kalvisa A, Filimonow K, Schachter K, Schuh CM, Pasias A, Mariani L, Brickman JM, Sedzinski J, Ferretti E. Cell-context response to germ layer differentiation signals is predetermined by the epigenome in regionalized epiblast populations. Nat Commun 2025; 16:5000. [PMID: 40442089 PMCID: PMC12122723 DOI: 10.1038/s41467-025-60348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Stem cells hold promise in regenerative medicine as they have the potential to differentiate into a variety of specialized cell types. However, mechanisms underlying stem cell potency and lineage acquisition remain elusive. Epigenetic modifications and genome accessibility prime cellular feedback to signalling cues, influencing lineage differentiation outcomes. Deciphering how this epigenetic code influences the context-dependent response of pluripotent cells to differentiation cues will elucidate how mammalian tissue diversity is established. Using in vitro and in vivo models, we show that lineage-specific epigenetic signatures precede transcriptional activation of germ layer differentiation programs. We provide evidence that while distinct chromatin accessibility and methylome states prime extraembryonic mesodermal fate decisions, it is DNA methylation, and not chromatin accessibility that predetermines the fates of neuroectoderm, definitive endoderm and neuromesodermal lineages. This study establishes that epigenetic machinery fine-tunes epiblast potency, allowing context-specific spatiotemporal responses to promiscuously used signalling cues controlling organogenesis.
Collapse
Affiliation(s)
- Niels Alvaro Menezes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kathryn Johanna Peterson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Xiaogang Guo
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Veronica Castiglioni
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Adrija Kalvisa
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Katarzyna Filimonow
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, Jastrzę biec, Poland
| | - Karen Schachter
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Christina Maria Schuh
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Athanasios Pasias
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Luca Mariani
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jakub Sedzinski
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Elisabetta Ferretti
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200, Copenhagen N, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.
- dawn-bio GmbH, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Leeke BJ, Varsally W, Ogushi S, Zohren J, Menchero S, Courtois A, Snell DM, Teissandier A, Ojarikre O, Mahadevaiah SK, Decarpentrie F, Oakey RJ, VandeBerg JL, Turner JMA. Divergent DNA methylation dynamics in marsupial and eutherian embryos. Nature 2025:10.1038/s41586-025-08992-2. [PMID: 40369084 DOI: 10.1038/s41586-025-08992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Based on seminal work in placental species (eutherians)1-10, a paradigm of mammalian development has emerged wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. Here, to resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of a marsupial, the opossum Monodelphis domestica, revealing variations from the eutherian-derived model. The difference in DNA methylation level between oocytes and sperm is less pronounced than that in eutherians. Furthermore, unlike the genome of eutherians, that of the opossum remains hypermethylated during the cleavage stages. In the blastocyst, DNA demethylation is transient and modest in the epiblast. However, it is sustained in the trophectoderm, suggesting an evolutionarily conserved function for DNA hypomethylation in the mammalian placenta. Furthermore, unlike that in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. We identify gamete differentially methylated regions that exhibit distinct fates in the embryo, with some transient, and others retained and that represent candidate imprinted loci. We also reveal a possible mechanism for imprinted X inactivation, through maternal DNA methylation of the Xist-like noncoding RNA RSX11. We conclude that the evolutionarily divergent eutherians and marsupials use DNA demethylation differently during embryogenesis.
Collapse
Affiliation(s)
- Bryony J Leeke
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Wazeer Varsally
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sugako Ogushi
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Aurélien Courtois
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Obah Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - John L VandeBerg
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Tekola-Ayele F, Biedrzycki RJ, Habtewold TD, Wijesiriwardhana P, Burt A, Marsit CJ, Ouidir M, Wapner R. Sex-differentiated placental methylation and gene expression regulation has implications for neonatal traits and adult diseases. Nat Commun 2025; 16:4004. [PMID: 40312437 PMCID: PMC12045980 DOI: 10.1038/s41467-025-58128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/10/2025] [Indexed: 05/03/2025] Open
Abstract
Sex differences in physiological and disease traits are pervasive and begin during early development, but the genetic architecture of these differences is largely unknown. Here, we leverage the human placenta, a transient organ during pregnancy critical to fetal development, to investigate the impact of sex in the regulatory landscape of placental autosomal methylome and transcriptome, and its relevance to health and disease. We find that placental methylation and its genetic regulation are extensively impacted by fetal sex, whereas sex differences in placental gene expression and its genetic regulation are limited. We identify molecular processes and regulatory targets that are enriched in a sex-specific manner, and find enrichment of imprinted genes in sex-differentiated placental methylation, including female-biased methylation within the well-known KCNQ1OT1/CDKN1C imprinting cluster of genes expressed in a parent-of-origin dependent manner. We establish that several sex-differentiated genetic effects on placental methylation and gene expression colocalize with birthweight and adult disease genetic associations, facilitating mechanistic insights on early life origins of health and disease outcomes shaped by sex.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tesfa Dejenie Habtewold
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Prabhavi Wijesiriwardhana
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Marion Ouidir
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- University of Grenoble Alpes, Inserm, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Thowfeequ S, Hanna CW, Srinivas S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat Rev Mol Cell Biol 2025; 26:255-275. [PMID: 39627419 DOI: 10.1038/s41580-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Courtney W Hanna
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
6
|
Lea G, Doria-Borrell P, Ferrero-Micó A, Varma A, Simon C, Anderson H, Biggins L, De Clercq K, Andrews S, Niakan KK, Gahurova L, McGovern N, Pérez-García V, Hanna CW. Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome. Cell Stem Cell 2025; 32:276-292.e9. [PMID: 39788122 DOI: 10.1016/j.stem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
Collapse
Affiliation(s)
- Georgia Lea
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Anakha Varma
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire Simon
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Holly Anderson
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura Biggins
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | - Kathy K Niakan
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lenka Gahurova
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Naomi McGovern
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | - Courtney W Hanna
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Xu Z, Shi J, Chen Q, Yang S, Wang Z, Xiao B, Lai Z, Jing Y, Li Y, Li X. Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos. J Biol Chem 2025; 301:107990. [PMID: 39542247 PMCID: PMC11742614 DOI: 10.1016/j.jbc.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
DNA methylation is mainly catalyzed by three DNA methyltransferase (DNMT) proteins in mammals. Usually DNMT1 is considered the primary DNMT for maintenance DNA methylation, whereas DNMT3A and DNMT3B function in de novo DNA methylation. Interestingly, we found DNMT3A and DNMT3B exerted maintenance and de novo DNA methylation in postimplantation mouse embryos. Together with DNMT1, they maintained DNA methylation at some pluripotent genes and lineage marker genes. Germline-derived DNA methylation at the imprinting control regions (ICRs) is stably maintained in embryos. DNMT1 maintained DNA methylation at most ICRs in postimplantation embryos. Surprisingly, DNA methylation was increased at five ICRs after implantation, and two DNMT3 proteins maintained the newly acquired DNA methylation at two of these five ICRs. Intriguingly, DNMT3A and DNMT3B maintained preexisting DNA methylation at four other ICRs, similar to what we found in embryonic stem cells before. These results suggest that DNA methylation is more dynamic than originally thought during embryogenesis including the ICRs of the imprinted regions. DNMT3A and DNMT3B exert both de novo and maintenance DNA methylation functions after implantation. They maintain large portions of newly acquired DNA methylation at variable degrees across the genome in mouse embryos, together with DNMT1. Furthermore, they contribute to maintenance of preexisting DNA methylation at a subset of ICRs as well as in the CpG islands and certain lineage marker gene. These findings may have some implications for the important roles of DNMT proteins in development and human diseases.
Collapse
Affiliation(s)
- Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuting Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Xiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijian Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Nicheperovich A, Schuster-Böckler B, Ní Leathlobhair M. Gestational trophoblastic disease: understanding the molecular mechanisms of placental tumours. Dis Model Mech 2025; 18:DMM052010. [PMID: 39873178 PMCID: PMC11810044 DOI: 10.1242/dmm.052010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day. However, recent findings have provided valuable insights into the potential mechanisms underlying this rare condition. Unlike previous reviews focused primarily on the clinical and diagnostic aspects of disease development, this Review consolidates the latest research concerning the role of genetics, epigenetics and microRNAs in the initiation and progression of GTD. By examining GTD from a molecular perspective, this Review provides a unique framework for understanding the pathogenesis and progression of this rare disease.
Collapse
Affiliation(s)
- Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
9
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Du Z, Hu L, Zou Z, Liu M, Li Z, Lu X, Harris C, Xiang Y, Chen F, Yu G, Xu K, Kong F, Xu Q, Huang B, Liu L, Fan Q, Wang H, Kalantry S, Xie W. Stepwise de novo establishment of inactive X chromosome architecture in early development. Nat Genet 2024; 56:2185-2198. [PMID: 39256583 DOI: 10.1038/s41588-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
X chromosome inactivation triggers a dramatic reprogramming of transcription and chromosome architecture. However, how the chromatin organization of inactive X chromosome is established de novo in vivo remains elusive. Here, we identified an Xist-separated megadomain structure (X-megadomains) on the inactive X chromosome in mouse extraembryonic lineages and extraembryonic endoderm (XEN) cell lines, and transiently in the embryonic lineages, before Dxz4-delineated megadomain formation at later stages in a strain-specific manner. X-megadomain boundary coincides with strong enhancer activities and cohesin binding in an Xist regulatory region required for proper Xist activation in early embryos. Xist regulatory region disruption or cohesin degradation impaired X-megadomains in extraembryonic endoderm cells and caused ectopic activation of regulatory elements and genes near Xist, indicating that cohesin loading at regulatory elements promotes X-megadomains and confines local gene activities. These data reveal stepwise X chromosome folding and transcriptional regulation to achieve both essential gene activation and global silencing during the early stages of X chromosome inactivation.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liangjun Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meishuo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zihan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yunlong Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
11
|
Karttunen K, Patel D, Sahu B. Transposable elements as drivers of dedifferentiation: Connections between enhancers in embryonic stem cells, placenta, and cancer. Bioessays 2024; 46:e2400059. [PMID: 39073128 DOI: 10.1002/bies.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Transposable elements (TEs) have emerged as important factors in establishing the cell type-specific gene regulatory networks and evolutionary novelty of embryonic and placental development. Recently, studies on the role of TEs and their dysregulation in cancers have shed light on the transcriptional, transpositional, and regulatory activity of TEs, revealing that the activation of developmental transcriptional programs by TEs may have a role in the dedifferentiation of cancer cells to the progenitor-like cell states. This essay reviews the recent evidence of the cis-regulatory TEs (henceforth crTE) in normal development and malignancy as well as the key transcription factors and regulatory pathways that are implicated in both cell states, and presents existing gaps remaining to be studied, limitations of current technologies, and therapeutic possibilities.
Collapse
Affiliation(s)
- Konsta Karttunen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divyesh Patel
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
13
|
Guo X, Yang J. Advances in DNA methylation of imprinted genes and folic acid regulation of growth and development. Epigenomics 2024; 16:1117-1127. [PMID: 39140401 PMCID: PMC11418287 DOI: 10.1080/17501911.2024.2384833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
DNA methylation is closely related to folate levels and acts as a mechanism linking developmental disorders to chronic diseases. Folic acid supplementation can impact DNA methylation levels of imprinted genes crucial for neonatal development. Imprinted genes are vital for regulating embryonic and postnatal fetal growth. This review summarizes imprinted genes, DNA methylation, folic acid's influence on growth and development and their correlation. It aims to provide a comprehensive overview of research advancements on imprinted genes, DNA methylation and folic acid regulation concerning growth and development.
Collapse
Affiliation(s)
- Xiaojing Guo
- Department of Biostatistics, School of Public Health & Management, Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| | - Junwei Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Batki J, Hetzel S, Schifferl D, Bolondi A, Walther M, Wittler L, Grosswendt S, Herrmann BG, Meissner A. Extraembryonic gut endoderm cells undergo programmed cell death during development. Nat Cell Biol 2024; 26:868-877. [PMID: 38849542 PMCID: PMC11178501 DOI: 10.1038/s41556-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.
Collapse
Affiliation(s)
- Julia Batki
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
16
|
Qin Y, Li T, An P, Ren Z, Xi J, Tang B. Important role of DNA methylation hints at significant potential in tuberculosis. Arch Microbiol 2024; 206:177. [PMID: 38494532 DOI: 10.1007/s00203-024-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.
Collapse
Affiliation(s)
- Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Peiyan An
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Zhi Ren
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| |
Collapse
|
17
|
Hong Y, Liu L, Feng Y, Zhang Z, Hou R, Xu Q, Shi J. mHapBrowser: a comprehensive database for visualization and analysis of DNA methylation haplotypes. Nucleic Acids Res 2024; 52:D929-D937. [PMID: 37831137 PMCID: PMC10767976 DOI: 10.1093/nar/gkad881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
DNA methylation acts as a vital epigenetic regulatory mechanism involved in controlling gene expression. Advances in sequencing technologies have enabled characterization of methylation patterns at single-base resolution using bisulfite sequencing approaches. However, existing methylation databases have primarily focused on mean methylation levels, overlooking phased methylation patterns. The methylation status of CpGs on individual sequencing reads represents discrete DNA methylation haplotypes (mHaps). Here, we present mHapBrowser, a comprehensive database for visualizing and analyzing mHaps. We systematically processed data of diverse tissues in human, mouse and rat from public repositories, generating mHap format files for 6366 samples. mHapBrowser enables users to visualize eight mHap metrics across the genome through an integrated WashU Epigenome Browser. It also provides an online server for comparing mHap patterns across samples. Additionally, mHap files for all samples can be downloaded to facilitate local processing using downstream analysis toolkits. The utilities of mHapBrowser were demonstrated through three case studies: (i) mHap patterns are associated with gene expression; (ii) changes in mHap patterns independent of mean methylation correlate with differential expression between lung cancer subtypes; and (iii) the mHap metric MHL outperforms mean methylation for classifying tumor and normal samples from cell-free DNA. The database is freely accessible at http://mhap.sibcb.ac.cn/.
Collapse
Affiliation(s)
- Yuyang Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leiqin Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Feng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rui Hou
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Xu
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Lea G, Hanna CW. Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation. Bioessays 2024; 46:e2300140. [PMID: 37994176 DOI: 10.1002/bies.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up-regulation of germline genes and impaired syncytiotrophoblast formation in the murine placenta. This defect led to embryonic lethality. We hypothesize that de-repression of germline genes in the Dnmt3b knockout underpins aspects of the placental phenotype by interfering with normal developmental processes. Specifically, we discuss molecular mechanisms by which aberrant expression of the piRNA pathway, meiotic proteins or germline transcriptional regulators may disrupt syncytiotrophoblast development.
Collapse
Affiliation(s)
- Georgia Lea
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Courtney W Hanna
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Feng Y, Zhang Z, Hong Y, Ding Y, Liu L, Gao S, Fang H, Shi J. A DNA methylation haplotype block landscape in human tissues and preimplantation embryos reveals regulatory elements defined by comethylation patterns. Genome Res 2023; 33:2041-2052. [PMID: 37940553 PMCID: PMC10760529 DOI: 10.1101/gr.278146.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
DNA methylation and associated regulatory elements play a crucial role in gene expression regulation. Previous studies have focused primarily on the distribution of mean methylation levels. Advances in whole-genome bisulfite sequencing (WGBS) have enabled the characterization of DNA methylation haplotypes (MHAPs), representing CpG sites from the same read fragment on a single chromosome, and the subsequent identification of methylation haplotype blocks (MHBs), in which adjacent CpGs on the same fragment are comethylated. Using our expert-curated WGBS data sets, we report comprehensive landscapes of MHBs in 17 representative normal somatic human tissues and during early human embryonic development. Integrative analysis reveals MHBs as a distinctive type of regulatory element characterized by comethylation patterns rather than mean methylation levels. We show the enrichment of MHBs in open chromatin regions, tissue-specific histone marks, and enhancers, including super-enhancers. Moreover, we find that MHBs tend to localize near tissue-specific genes and show an association with differential gene expression that is independent of mean methylation. Similar findings are observed in the context of human embryonic development, highlighting the dynamic nature of MHBs during early development. Collectively, our comprehensive MHB landscapes provide valuable insights into the tissue specificity and developmental dynamics of DNA methylation.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuyang Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Ding
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leiqin Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Gao
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
20
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Mai L, Wen Z, Zhang Y, Gao Y, Lin G, Lian Z, Yang X, Zhou J, Lin X, Luo C, Peng W, Chen C, Peng J, Liu D, Marjani SL, Tao Q, Cui Y, Zhang J, Wu X, Weissman SM, Pan X. Shortcut barcoding and early pooling for scalable multiplex single-cell reduced-representation CpG methylation sequencing at single nucleotide resolution. Nucleic Acids Res 2023; 51:e108. [PMID: 37870443 PMCID: PMC10681715 DOI: 10.1093/nar/gkad892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5 ± 3.9%, covering 60.0 ± 1.4% of CpG islands and 71.6 ± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R = 0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 h of hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.
Collapse
Affiliation(s)
- Liyao Mai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zhiwei Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jingjing Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xianwei Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Jiajia Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Duolian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT 06050, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
| | - Yongping Cui
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
| | - Junxiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
22
|
Pedroza M, Gassaloglu SI, Dias N, Zhong L, Hou TCJ, Kretzmer H, Smith ZD, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023; 622:574-583. [PMID: 37369348 PMCID: PMC10584676 DOI: 10.1038/s41586-023-06354-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.
Collapse
Affiliation(s)
- Monique Pedroza
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seher Ipek Gassaloglu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tien-Chi Jason Hou
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Vlasenkova R, Konysheva D, Nurgalieva A, Kiyamova R. Characterization of Cancer/Testis Antigens as Prognostic Markers of Ovarian Cancer. Diagnostics (Basel) 2023; 13:3092. [PMID: 37835834 PMCID: PMC10572515 DOI: 10.3390/diagnostics13193092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The main goal of this study was to characterize cancer/testis antigens (CTAs) as potential molecular markers of ovarian cancer. First, we gathered and analyzed a significantly large dataset of 21 selected CTAs that are encoded by 32 genes; the dataset consisted of the mutation data, expression data, and survival data of patients with ovarian cancer (n = 15,665). The 19 functionally significant missense mutations were identified in 9 CTA genes: ACRBP, CCT4, KDM5B, MAGEA1, MAGEA4, PIWIL1, PIWIL2, PRAME, and SPA17. The analysis of the mRNA expression levels of 21 CTAs in healthy and tumor ovarian tissue showed an up-regulation in the expression level of AKAP3, MAGEA4, PIWIL1, and PRAME in tumor samples and a down-regulation in the expression level of CTAG1A, CTAG1B, MAGEC1, and PIWIL2. The CCT4 up-regulation and PRAME mutations were correlated with a good prognosis for ovarian cancer, while higher levels of GAGE2A and CT45A1 mRNAs were correlated with a poor prognosis for ovarian cancer patients. Thus, GAGE2, CT45, CCT4, and PRAME cancer/testis antigens can be considered as potential prognostic markers for ovarian tumors, and GAGE2, CCT4, and PRAME were revealed to be correlated with the prognosis for ovarian cancer patients for the first time.
Collapse
Affiliation(s)
| | | | | | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (R.V.)
| |
Collapse
|
24
|
Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, Zhuang QKW, Kwon SY, Yamanaka Y, Bourque G, Bouchard M, Pastor WA. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Res 2023; 51:7314-7329. [PMID: 37395395 PMCID: PMC10415128 DOI: 10.1093/nar/gkad540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.
Collapse
Affiliation(s)
- Adda-Lee Graham-Paquin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Megan S Katz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
- Canadian Center for Computational Genomics,McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Sampath Kumar A, Tian L, Bolondi A, Hernández AA, Stickels R, Kretzmer H, Murray E, Wittler L, Walther M, Barakat G, Haut L, Elkabetz Y, Macosko EZ, Guignard L, Chen F, Meissner A. Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis. Nat Genet 2023; 55:1176-1185. [PMID: 37414952 PMCID: PMC10335937 DOI: 10.1038/s41588-023-01435-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional 'virtual embryos', which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of 'ectopic' neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes.
Collapse
Affiliation(s)
- Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Amèlia Aragonés Hernández
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert Stickels
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gabriel Barakat
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Leah Haut
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yechiel Elkabetz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Léo Guignard
- Aix Marseille University, Toulon University, Centre National de la Recherche Scientifique, Laboratoire d'Informatique et Systèmes 7020, Turing Centre for Living Systems, Marseille, France
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Lynch-Sutherland CF, McDougall LI, Stockwell PA, Almomani SN, Weeks RJ, Ludgate JL, Gamage TKJB, Chatterjee A, James JL, Eccles MR, Macaulay EC. The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours. Mol Genet Genomics 2023:10.1007/s00438-023-02033-1. [PMID: 37269361 PMCID: PMC10363060 DOI: 10.1007/s00438-023-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.
Collapse
Affiliation(s)
- Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| | - Lorissa I McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Teena K J B Gamage
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
27
|
Frost JM, Amante SM, Okae H, Jones EM, Ashley B, Lewis RM, Cleal JK, Caley MP, Arima T, Maffucci T, Branco MR. Regulation of human trophoblast gene expression by endogenous retroviruses. Nat Struct Mol Biol 2023; 30:527-538. [PMID: 37012406 PMCID: PMC10113160 DOI: 10.1038/s41594-023-00960-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters. Using epigenomic data from primary human trophoblast and trophoblast stem-cell lines, we identified multiple endogenous retrovirus families with regulatory potential that lie close to genes with preferential expression in trophoblast. These largely primate-specific elements are associated with inter-species gene expression differences and are bound by transcription factors with key roles in placental development. Using genetic editing, we demonstrate that several elements act as transcriptional enhancers of important placental genes, such as CSF1R and PSG5. We also identify an LTR10A element that regulates ENG expression, affecting secretion of soluble endoglin, with potential implications for preeclampsia. Our data show that transposons have made important contributions to human trophoblast gene regulation, and suggest that their activity may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jennifer M Frost
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Samuele M Amante
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Eleri M Jones
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brogan Ashley
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane K Cleal
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew P Caley
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tania Maffucci
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
28
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
29
|
GBE1 Promotes Glioma Progression by Enhancing Aerobic Glycolysis through Inhibition of FBP1. Cancers (Basel) 2023; 15:cancers15051594. [PMID: 36900384 PMCID: PMC10000543 DOI: 10.3390/cancers15051594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor metabolism characterized by aerobic glycolysis makes the Warburg effect a unique target for tumor therapy. Recent studies have found that glycogen branching enzyme 1 (GBE1) is involved in cancer progression. However, the study of GBE1 in gliomas is limited. We determined by bioinformatics analysis that GBE1 expression is elevated in gliomas and correlates with poor prognoses. In vitro experiments showed that GBE1 knockdown slows glioma cell proliferation, inhibits multiple biological behaviors, and alters glioma cell glycolytic capacity. Furthermore, GBE1 knockdown resulted in the inhibition of the NF-κB pathway as well as elevated expression of fructose-bisphosphatase 1 (FBP1). Further knockdown of elevated FBP1 reversed the inhibitory effect of GBE1 knockdown, restoring glycolytic reserve capacity. Furthermore, GBE1 knockdown suppressed xenograft tumor formation in vivo and conferred a significant survival benefit. Collectively, GBE1 reduces FBP1 expression through the NF-κB pathway, shifting the glucose metabolism pattern of glioma cells to glycolysis and enhancing the Warburg effect to drive glioma progression. These results suggest that GBE1 can be a novel target for glioma in metabolic therapy.
Collapse
|
30
|
Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun 2023; 14:371. [PMID: 36690623 PMCID: PMC9870994 DOI: 10.1038/s41467-023-36019-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features. Loss of Dnmt3b results in de-repression of germline genes in trophoblast lineages and impaired formation of the maternal-foetal interface in the placental labyrinth. Using Sox2-Cre to delete Dnmt3b in the embryo, leaving expression intact in placental cells, the placental phenotype was rescued and, consequently, the embryonic lethality, as Dnmt3b null embryos could now survive to birth. We conclude that de novo DNA methylation by DNMT3B during embryogenesis is principally required to regulate placental development and function, which in turn is critical for embryo survival.
Collapse
Affiliation(s)
- Simon Andrews
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
| | - Christel Krueger
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Bioinformatics Innovation Hub, Altos Labs Cambridge Institute, Cambridge, UK
| | | | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
32
|
Fritsche K, Boccellato F, Schlaermann P, Koeppel M, Denecke C, Link A, Malfertheiner P, Gut I, Meyer TF, Berger H. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics 2022; 14:193. [PMID: 36585699 PMCID: PMC9801550 DOI: 10.1186/s13148-022-01406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.
Collapse
Affiliation(s)
- Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Koeppel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Denecke
- Center for Bariatric and Metabolic Surgery, Center of Innovative Surgery (ZIC), Department of Surgery, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
33
|
Mercuri ND, Cox BJ. The need for more research into reproductive health and disease. eLife 2022; 11:e75061. [PMID: 36511240 PMCID: PMC9771341 DOI: 10.7554/elife.75061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Reproductive diseases have a significant impact on human health, especially on women's health: endometriosis affects 10% of all reproductive-aged women but is often undiagnosed for many years, and preeclampsia claims over 70,000 maternal and 500,000 neonatal lives every year. Infertility rates are also rising. However, relatively few new treatments or diagnostics for reproductive diseases have emerged in recent decades. Here, based on analyses of PubMed, we report that the number of research articles published on non-reproductive organs is 4.5 times higher than the number published on reproductive organs. Moreover, for the two most-researched reproductive organs (breast and prostate), the focus is on non-reproductive diseases such as cancer. Further, analyses of grant databases maintained by the Canadian Institutes of Health Research and the National Institutes of Health in the United States show that the number of grants for research on non-reproductive organs is 6-7 times higher than the number for reproductive organs. Our results suggest that there are too few researchers working in the field of reproductive health and disease, and that funders, educators and the research community must take action to combat this longstanding disregard for reproductive science.
Collapse
Affiliation(s)
| | - Brian J Cox
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
34
|
Loaeza-Loaeza J, Cerecedo-Castillo AJ, Rodríguez-Ruiz HA, Castro-Coronel Y, Del Moral-Hernández O, Recillas-Targa F, Hernández-Sotelo D. DNMT3B overexpression downregulates genes with CpG islands, common motifs, and transcription factor binding sites that interact with DNMT3B. Sci Rep 2022; 12:20839. [PMID: 36460706 PMCID: PMC9718745 DOI: 10.1038/s41598-022-24186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is a key epigenetic modification to regulate gene expression in mammalian cells. Abnormal DNA methylation in gene promoters is common across human cancer types. DNMT3B is the main de novo methyltransferase enhanced in several primary tumors. How de novo methylation is established in genes related to cancer is poorly understood. CpG islands (CGIs), common sequences, and transcription factors (TFs) that interact with DNMT3B have been associated with abnormal de novo methylation. We initially identified cis elements associated with DNA methylation to investigate the contribution of DNMT3B overexpression to the deregulation of its possible target genes in an epithelial cell model. In a set of downregulated genes (n = 146) from HaCaT cells with DNMT3B overexpression, we found CGI, common sequences, and TFs Binding Sites that interact with DNMT3B (we called them P-down-3B). PPL1, VAV3, IRF1, and BRAF are P-down-3B genes that are downregulated and increased their methylation in DNMT3B presence. Together these findings suggest that methylated promoters aberrantly have some cis elements that could conduce de novo methylation by DNMT3B.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Angel Josué Cerecedo-Castillo
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- grid.412856.c0000 0001 0699 2934Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Yaneth Castro-Coronel
- grid.412856.c0000 0001 0699 2934Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Oscar Del Moral-Hernández
- grid.412856.c0000 0001 0699 2934Laboratorio de Virus y Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Félix Recillas-Targa
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Daniel Hernández-Sotelo
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| |
Collapse
|
35
|
DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation. Nat Struct Mol Biol 2022; 29:1252-1265. [PMID: 36510023 DOI: 10.1038/s41594-022-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
In mammalian embryos, DNA methylation is initialized to maximum levels in the epiblast by the de novo DNA methyltransferases DNMT3A and DNMT3B before gastrulation diversifies it across regulatory regions. Here we show that DNMT3A and DNMT3B are differentially regulated during endoderm and mesoderm bifurcation and study the implications in vivo and in meso-endoderm embryoid bodies. Loss of both Dnmt3a and Dnmt3b impairs exit from the epiblast state. More subtly, independent loss of Dnmt3a or Dnmt3b leads to small biases in mesoderm-endoderm bifurcation and transcriptional deregulation. Epigenetically, DNMT3A and DNMT3B drive distinct methylation kinetics in the epiblast, as can be predicted from their strand-specific sequence preferences. The enzymes compensate for each other in the epiblast, but can later facilitate lineage-specific methylation kinetics as their expression diverges. Single-cell analysis shows that differential activity of DNMT3A and DNMT3B combines with replication-linked methylation turnover to increase epigenetic plasticity in gastrulation. Together, these findings outline a dynamic model for the use of DNMT3A and DNMT3B sequence specificity during gastrulation.
Collapse
|
36
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
37
|
Trifonova EA, Gavrilenko MM, Babovskaya AA, Zarubin AA, Svarovskaya MG, Izhoykina EV, Stepanov IA, Serebrova VN, Kutsenko IG, Stepanov VA. Alternative Splicing Landscape of Placental Decidual Cells during Physiological Pregnancy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Clark SJ, Argelaguet R, Lohoff T, Krueger F, Drage D, Göttgens B, Marioni JC, Nichols J, Reik W. Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis. Genome Biol 2022; 23:202. [PMID: 36163261 PMCID: PMC9511790 DOI: 10.1186/s13059-022-02762-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood. RESULTS Here we report a single-cell transcriptomic atlas from Dnmt and Tet mutant mouse embryos during early organogenesis. We show that both the maintenance and de novo methyltransferase enzymes are dispensable for the formation of all major cell types at E8.5. However, DNA methyltransferases are required for silencing of prior or alternative cell fates such as pluripotency and extraembryonic programmes. Deletion of all three TET enzymes produces substantial lineage biases, in particular, a failure to generate primitive erythrocytes. Single-cell multi-omics profiling moreover reveals that this is linked to a failure to demethylate distal regulatory elements in Tet triple-knockout embryos. CONCLUSIONS This study provides a detailed analysis of the effects of perturbing DNA methylation on mouse organogenesis at a whole organism scale and affords new insights into the regulatory mechanisms of cell fate decisions.
Collapse
Affiliation(s)
- Stephen J Clark
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Ricard Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Tim Lohoff
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Felix Krueger
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Deborah Drage
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Berthold Göttgens
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EG, UK
- Current address: MRC Human Genetics Unit, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Pang H, Lei D, Guo Y, Yu Y, Liu T, Liu Y, Chen T, Fan C. Three categories of similarities between the placenta and cancer that can aid cancer treatment: Cells, the microenvironment, and metabolites. Front Oncol 2022; 12:977618. [PMID: 36059660 PMCID: PMC9434275 DOI: 10.3389/fonc.2022.977618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most harmful diseases, while pregnancy is a common condition of females. Placenta is the most important organ for fetal growth, which has not been fully understand. It's well known that placenta and solid tumor have some similar biological behaviors. What's more, decidua, the microenvironment of placenta, and metabolism all undergo adaptive shift for healthy pregnancy. Interestingly, decidua and the tumor microenvironment (TME); metabolism changes during pregnancy and cancer cachexia all have underlying links. However, whether the close link between pregnancy and cancer can bring some new ideas to treat cancer is still unclear. So, in this review we note that pregnancy may offer clues to treat cancer related to three categories: from cell perspective, through the shared development process of the placenta and cancer; from microenvironment perspective, though the shared features of the decidua and TME; and from metabolism perspective, through shared metabolites changes during pregnancy and cancer cachexia. Firstly, comparing gene mutations of both placenta and cancer, which is the underlying mechanism of many similar biological behaviors, helps us understand the origin of cancer and find the key factors to restore tumorigenesis. Secondly, exploring how decidua affect placenta development and similarities of decidua and TME is helpful to reshape TME, then to inhibit cancer. Thirdly, we also illustrate the possibility that the altered metabolites during pregnancy may reverse cancer cachexia. So, some key molecules changed in circulation of pregnancy may help relieve cachexia and make survival with cancer realized.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Yu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Ogbeide S, Giannese F, Mincarelli L, Macaulay IC. Into the multiverse: advances in single-cell multiomic profiling. Trends Genet 2022; 38:831-843. [PMID: 35537880 DOI: 10.1016/j.tig.2022.03.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Single-cell transcriptomic approaches have revolutionised the study of complex biological systems, with the routine measurement of gene expression in thousands of cells enabling construction of whole-organism cell atlases. However, the transcriptome is just one layer amongst many that coordinate to define cell type and state and, ultimately, function. In parallel with the widespread uptake of single-cell RNA-seq (scRNA-seq), there has been a rapid emergence of methods that enable multiomic profiling of individual cells, enabling parallel measurement of intercellular heterogeneity in the genome, epigenome, transcriptome, and proteomes. Linking measurements from each of these layers has the potential to reveal regulatory and functional mechanisms underlying cell behaviour in healthy development and disease.
Collapse
|
42
|
Cheng S, Mittnenzweig M, Mayshar Y, Lifshitz A, Dunjić M, Rais Y, Ben-Yair R, Gehrs S, Chomsky E, Mukamel Z, Rubinstein H, Schlereth K, Reines N, Orenbuch AH, Tanay A, Stelzer Y. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 2022; 185:3169-3185.e20. [PMID: 35908548 PMCID: PMC9432429 DOI: 10.1016/j.cell.2022.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/18/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications. Chimeras with full or partial Tet deficiency are mapped over the course of gastrulation Tet-TKO cells disrupt signaling, leading to skewed whole-embryo mutant gastrulation Tet-TKO cells retain near-complete differentiation potential in a chimera context Loss of TET leads to pervasive hypermethylation and mildly perturbed gene expression
Collapse
Affiliation(s)
- Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Mukamel
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
43
|
Mitochondrial genome undergoes de novo DNA methylation that protects mtDNA against oxidative damage during the peri-implantation window. Proc Natl Acad Sci U S A 2022; 119:e2201168119. [PMID: 35858425 PMCID: PMC9335330 DOI: 10.1073/pnas.2201168119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.
Collapse
|
44
|
Hijacking of transcriptional condensates by endogenous retroviruses. Nat Genet 2022; 54:1238-1247. [PMID: 35864192 PMCID: PMC9355880 DOI: 10.1038/s41588-022-01132-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate ‘hijacking’ of transcriptional condensates in various developmental and disease contexts. TRIM28 depletion in embryonic stem cells disconnects transcriptional condensates from super-enhancers, which is rescued by knockdown of endogenous retroviruses.
Collapse
|
45
|
Bolondi A, Kretzmer H, Meissner A. Single-cell technologies: a new lens into epigenetic regulation in development. Curr Opin Genet Dev 2022; 76:101947. [PMID: 35839561 DOI: 10.1016/j.gde.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany. https://twitter.com/@adrianobolondi
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. https://twitter.com/@helenekretzmer
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|
46
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
48
|
Hetzel S, Mattei AL, Kretzmer H, Qu C, Chen X, Fan Y, Wu G, Roberts KG, Luger S, Litzow M, Rowe J, Paietta E, Stock W, Mardis ER, Wilson RK, Downing JR, Mullighan CG, Meissner A. Acute lymphoblastic leukemia displays a distinct highly methylated genome. NATURE CANCER 2022; 3:768-782. [PMID: 35590059 PMCID: PMC9236905 DOI: 10.1038/s43018-022-00370-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/25/2022] [Indexed: 04/13/2023]
Abstract
DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.
Collapse
Affiliation(s)
- Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Chemistry and Pharmacy, Freie Universität, Berlin, Germany.
| |
Collapse
|
49
|
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022; 38:676-707. [DOI: 10.1016/j.tig.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
50
|
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022; 10:845779. [PMID: 35402416 PMCID: PMC8987505 DOI: 10.3389/fbioe.2022.845779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a significant role during pregnancy. Placental dysfunction contributes to major obstetric complications, such as fetal growth restriction and preeclampsia. Currently, there is no effective treatment for placental dysfunction in the perinatal period, and prophylaxis is often delivered too late, at which point the disease manifestation cannot be prevented. However, with recent integration of nanoscience and medicine to perform elaborate experiments on the human placenta, it is expected that novel and efficient nanotherapies will be developed to resolve the challenge of managing placental dysfunction. The advent of nanomedicine has enabled the safe and targeted delivery of drugs using nanoparticles. These smart nanoparticles can load the necessary therapeutic substances that specifically target the placenta, such as drugs, targeting molecules, and ligands. Packaging multifunctional molecules into specific delivery systems with high targeting ability, diagnosis, and treatment has emerged as a novel theragnostic (both therapeutic and diagnostic) approach. In this review, the authors discuss recent advances in nanotechnology for placental dysfunction treatment. In particular, the authors highlight potential candidate nanoparticle-loaded molecules that target the placenta to improve utero-placental blood flow, and reduce reactive oxygen species and oxidative stress. The authors intend to provide basic insight and understanding of placental dysfunction, potential delivery targets, and recent research on placenta-targeted nanoparticle delivery systems for the potential treatment of placental dysfunction. The authors hope that this review will sensitize the reader for continued exploration of novel nanomedicines.
Collapse
Affiliation(s)
- Huabo Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| |
Collapse
|