1
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
2
|
Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2021; 48:12453-12482. [PMID: 33196851 PMCID: PMC7736826 DOI: 10.1093/nar/gkaa1000] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin adopts different configurations that are regulated by reversible covalent modifications, referred to as epigenetic marks. Epigenetic inhibitors have been approved for clinical use to restore epigenetic aberrations that result in silencing of tumor-suppressor genes, oncogene addictions, and enhancement of immune responses. However, these drugs suffer from major limitations, such as a lack of locus selectivity and potential toxicities. Technological advances have opened a new era of precision molecular medicine to reprogram cellular physiology. The locus-specificity of CRISPR/dCas9/12a to manipulate the epigenome is rapidly becoming a highly promising strategy for personalized medicine. This review focuses on new state-of-the-art epigenome editing approaches to modify the epigenome of neoplasms and other disease models towards a more 'normal-like state', having characteristics of normal tissue counterparts. We highlight biomolecular engineering methodologies to assemble, regulate, and deliver multiple epigenetic effectors that maximize the longevity of the therapeutic effect, and we discuss limitations of the platforms such as targeting efficiency and intracellular delivery for future clinical applications.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells. Int J Mol Sci 2021; 22:ijms22010397. [PMID: 33401508 PMCID: PMC7795359 DOI: 10.3390/ijms22010397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Reversal in the transcriptional status of desired genes has been exploited for multiple research, therapeutic, and biotechnological purposes. CRISPR/dCas9-based activators can activate transcriptionally silenced genes after being guided by gene-specific gRNA(s). Here, we performed a functional comparison between two such activators, VP64-dCas9-VP64 and dCas9-VP192, in human embryonic kidney cells by the concomitant targeting of POU5F1 and SOX2. We found 22- and 6-fold upregulations in the mRNA level of POU5F1 by dCas9-VP192 and VP64-dCas9-VP64, respectively. Likewise, SOX2 was up-regulated 4- and 2-fold using dCas9-VP192 and VP64dCas9VP64, respectively. For the POU5F1 protein level, we observed 3.7- and 2.2-fold increases with dCas9-VP192 and VP64-dCas9-VP64, respectively. Similarly, the SOX2 expression was 2.4- and 2-fold higher with dCas9-VP192 and VP64-dCas9-VP64, respectively. We also confirmed that activation only happened upon co-transfecting an activator plasmid with multiplex gRNA plasmid with a high specificity to the reference genes. Our data revealed that dCas9-VP192 is more efficient than VP64-dCas9-VP64 for activating reference genes.
Collapse
|
4
|
Xia AL, He QF, Wang JC, Zhu J, Sha YQ, Sun B, Lu XJ. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet 2018; 56:4-9. [DOI: 10.1136/jmedgenet-2018-105422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022]
Abstract
Immunotherapy has emerged as one of the most promising therapeutic strategies in cancer. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as an RNA-guided genome editing technology, is triggering a revolutionary change in cancer immunotherapy. With its versatility and ease of use, CRISPR-Cas9 can be implemented to fuel the production of therapeutic immune cells, such as construction of chimeric antigen receptor T (CAR-T) cells and programmed cell death protein 1 knockout. Therefore, CRISPR-Cas9 technology holds great promise in cancer immunotherapy. In this review, we will introduce the origin, development and mechanism of CRISPR-Cas9. Also, we will focus on its various applications in cancer immunotherapy, especially CAR-T cell-based immunotherapy, and discuss the potential challenges it faces.
Collapse
|
5
|
Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, Yost KE, Kim J, He J, Nevins SA, Chin SF, Caldas C, Liu SJ, Horlbeck MA, Lim DA, Weissman JS, Curtis C, Chang HY. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell 2018; 173:1398-1412.e22. [PMID: 29731168 PMCID: PMC5984165 DOI: 10.1016/j.cell.2018.03.068] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- CRISPR-Cas Systems
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromatin
- DNA, Neoplasm/genetics
- Enhancer Elements, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Humans
- Mice
- Mice, Inbred NOD
- Mutation
- Neoplasm Transplantation
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Seung Woo Cho
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ava C Carter
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Y Grace Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jeewon Kim
- Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Jing He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A Nevins
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Suet-Feung Chin
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Breast Cancer Program, CRUK Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 2QQ, UK
| | - S John Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Medical Center, San Francisco, San Francisco, CA 94121, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Black JB, Gersbach CA. Synthetic transcription factors for cell fate reprogramming. Curr Opin Genet Dev 2018; 52:13-21. [PMID: 29803990 DOI: 10.1016/j.gde.2018.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/22/2022]
Abstract
The ability to reprogram cell lineage specification through the activity of master regulatory transcription factors has transformed disease modeling, drug screening, and cell therapy for regenerative medicine. Recent advances in the engineering of synthetic transcription factors to modulate endogenous gene expression networks and chromatin states have generated a new set of tools with unique advantages to study and enhance cell reprogramming methods. Several studies have applied synthetic transcription factors in various cell reprogramming paradigms in human and murine cells. Moreover, the adaption of CRISPR-based transcription factors for high-throughput screening will enable the systematic identification of optimal factors and gene network perturbations to improve current reprogramming protocols and enable conversion to more diverse, highly specified, and mature cell types. The rapid development of next-generation technologies with more robust and versatile functionality will continue to expand the application of synthetic transcription factors for cell reprogramming.
Collapse
Affiliation(s)
- Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Heiderscheit EA, Eguchi A, Spurgat MC, Ansari AZ. Reprogramming cell fate with artificial transcription factors. FEBS Lett 2018; 592:888-900. [PMID: 29389011 DOI: 10.1002/1873-3468.12993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
Transcription factors (TFs) reprogram cell states by exerting control over gene regulatory networks and the epigenetic landscape of a cell. Artificial transcription factors (ATFs) are designer regulatory proteins comprised of modular units that can be customized to overcome challenges faced by natural TFs in establishing and maintaining desired cell states. Decades of research on DNA-binding proteins and synthetic molecules has provided a molecular toolkit for ATF design and the construction of genome-scale libraries of ATFs capable of phenotypic manipulation and reprogramming of cell states. Here, we compare the unique strengths and limitations of different ATF platforms, highlight the advantages of cooperative assembly, and present the potential of ATF libraries in revealing gene regulatory networks that govern cell fate choices.
Collapse
Affiliation(s)
- Evan A Heiderscheit
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Asuka Eguchi
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Mackenzie C Spurgat
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
8
|
Luo W, Wang J, Xu D, Bai H, Zhang Y, Zhang Y, Li X. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int J Mol Med 2018; 41:2169-2176. [PMID: 29344646 DOI: 10.3892/ijmm.2018.3396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023] Open
Abstract
In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.
Collapse
Affiliation(s)
- Wei Luo
- Department of General Surgery, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junxia Wang
- Department of Neonatology, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dengfeng Xu
- Department of Ophthalmology, Chongqing General Hospital, Chongqing 400014, P.R. China
| | - Huili Bai
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yangli Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuhong Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
9
|
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018. [PMID: 29524128 DOI: 10.1007/978-1-4939-7774-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
| | - Colette Moses
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mahira Arooj
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
10
|
Ruiz de Galarreta M, Lujambio A. Therapeutic editing of hepatocyte genome in vivo. J Hepatol 2017; 67:818-828. [PMID: 28527665 DOI: 10.1016/j.jhep.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
The recent development of gene editing platforms enables making precise changes in the genome of eukaryotic cells. Programmable nucleases, such as meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)-associated nucleases have revolutionized the way research is conducted as they facilitate the rapid production of mutant or knockout cellular and animal models. These same genetic tools can potentially be applied to cure or alleviate a variety of diseases, including genetic diseases that lack an efficient therapy. Thus, gene editing platforms could be used for correcting mutations that cause a disease, restoration of the expression of genes that are missing, or be used for the removal of deleterious genes or viral genomes. In the context of liver diseases, genome editing could be developed to treat not only hereditary monogenic liver diseases but also hepatitis B infection and diseases that have both genetic and non-genetic components. While the prospect of translating these therapeutic strategies to a clinical setting is highly appealing, there are numerous challenges that need to be addressed first. Safety, efficiency, specificity, and delivery are some of the obstacles that will need to be addressed before each specific gene treatment is safely used in patients. Here, we discuss the most used gene editing platforms, their mechanisms of action, their potential for liver disease treatment, the most pressing challenges, and future prospects.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
11
|
Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int 2016; 2016:8305624. [PMID: 28101109 PMCID: PMC5215608 DOI: 10.1155/2016/8305624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Embryonic Stem (ES) or induced Pluripotent Stem (iPS) cells are important sources for cardiomyocyte generation, targeted for regenerative therapies. Several in vitro protocols are currently utilized for their differentiation, but the value of cell-based approaches remains unclear. Here, we characterized a cardiovascular progenitor population derived during ES differentiation, after selection based on VE-cadherin promoter (Pvec) activity. ESCs were genetically modified with an episomal vector, allowing the expression of puromycin resistance gene, under Pvec activity. Puromycin-surviving cells displayed cardiac and endothelial progenitor cells characteristics. Expansion and self-renewal of this cardiac and endothelial dual-progenitor population (CEDP) were achieved by Wnt/β-catenin pathway activation. CEDPs express early cardiac developmental stage-specific markers but not markers of differentiated cardiomyocytes. Similarly, CEDPs express endothelial markers. However, CEDPs can undergo differentiation predominantly to cTnT+ (~47%) and VE-cadherin+ (~28%) cells. Transplantation of CEDPs in the left heart ventricle of adult rats showed that CEDPs-derived cells survive and differentiate in vivo for at least 14 days after transplantation. A novel, dual-progenitor population was isolated during ESCs differentiation, based on Pvec activity. This lineage can self-renew, permitting its maintenance as a source of cardiovascular progenitor cells and constitutes a useful source for regenerative approaches.
Collapse
|
12
|
Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 2016; 113:E8257-E8266. [PMID: 27930301 DOI: 10.1073/pnas.1611142114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.
Collapse
|
13
|
Abstract
Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13:127-37. [PMID: 26820547 DOI: 10.1038/nmeth.3733] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/16/2015] [Indexed: 02/08/2023]
Abstract
Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.
Collapse
|
15
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
16
|
Jo YI, Kim H, Ramakrishna S. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cell Mol Life Sci 2015; 72:3819-30. [PMID: 26089249 PMCID: PMC11113831 DOI: 10.1007/s00018-015-1956-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/27/2022]
Abstract
Efficient methods for creating targeted genetic modifications have long been sought for the investigation of gene function and the development of therapeutic modalities for various diseases, including genetic disorders. Although such modifications are possible using homologous recombination, the efficiency is extremely low. Zinc finger nucleases (ZFNs) are custom-designed artificial nucleases that make double-strand breaks at specific sequences, enabling efficient targeted genetic modifications such as corrections, additions, gene knockouts and structural variations. ZFNs are composed of two domains: (i) a DNA-binding domain comprised of zinc finger modules and (ii) the FokI nuclease domain that cleaves the DNA strand. Over 17 years after ZFNs were initially developed, a number of improvements have been made. Here, we will review the developments and future perspectives of ZFN technology. For example, ZFN activity and specificity have been significantly enhanced by modifying the DNA-binding domain and FokI cleavage domain. Advances in culture methods, such as the application of a cold shock and the use of small molecules that affect ZFN stability, have also increased ZFN activity. Furthermore, ZFN-induced mutant cells can be enriched using episomal surrogate reporters. Additionally, we discuss several ongoing clinical studies that are based on ZFN-mediated genome editing in humans. These breakthroughs have substantially facilitated the use of ZFNs in research, medicine and biotechnology.
Collapse
Affiliation(s)
| | - Hyongbum Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Nano Science and Technology, Yonsei University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Sungdong-gu, Seoul, South Korea.
| |
Collapse
|
17
|
Kabadi AM, Thakore PI, Vockley CM, Ousterout DG, Gibson TM, Guilak F, Reddy TE, Gersbach CA. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth Biol 2015; 4:689-99. [PMID: 25494287 PMCID: PMC4475448 DOI: 10.1021/sb500322u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | - Charles A. Gersbach
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
18
|
Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochem J 2014; 462:397-413. [PMID: 25145439 DOI: 10.1042/bj20140400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.
Collapse
|
19
|
Gersbach CA, Gaj T, Barbas CF. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 2014; 47:2309-18. [PMID: 24877793 PMCID: PMC4139171 DOI: 10.1021/ar500039w] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The understanding
of gene regulation and the structure and function
of the human genome increased dramatically at the end of the 20th
century. Yet the technologies for manipulating the genome have been
slower to develop. For instance, the field of gene therapy has been
focused on correcting genetic diseases and augmenting tissue repair
for more than 40 years. However, with the exception of a few very
low efficiency approaches, conventional genetic engineering methods
have only been able to add auxiliary genes to cells. This has been
a substantial obstacle to the clinical success of gene therapies and
has also led to severe unintended consequences in several cases. Therefore,
technologies that facilitate the precise modification of cellular
genomes have diverse and significant implications in many facets of
research and are essential for translating the products of the Genomic
Revolution into tangible benefits for medicine and biotechnology.
To address this need, in the 1990s, we embarked on a mission to develop
technologies for engineering protein–DNA interactions with
the aim of creating custom tools capable of targeting any DNA sequence.
Our goal has been to allow researchers to reach into genomes to specifically
regulate, knock out, or replace any gene. To realize these goals,
we initially focused on understanding and manipulating zinc finger
proteins. In particular, we sought to create a simple and straightforward
method that enables unspecialized laboratories to engineer custom
DNA-modifying proteins using only defined modular components, a web-based
utility, and standard recombinant DNA technology. Two significant
challenges we faced were (i) the development of zinc finger domains
that target sequences not recognized by naturally occurring zinc finger
proteins and (ii) determining how individual zinc finger domains could
be tethered together as polydactyl proteins to recognize unique locations
within complex genomes. We and others have since used this modular
assembly method to engineer artificial proteins and enzymes that activate,
repress, or create defined changes to user-specified genes in human
cells, plants, and other organisms. We have also engineered novel
methods for externally controlling protein activity and delivery,
as well as developed new strategies for the directed evolution of
protein and enzyme function. This Account summarizes our work in these
areas and highlights independent studies that have successfully used
the modular assembly approach to create proteins with novel function.
We also discuss emerging alternative methods for genomic targeting,
including transcription activator-like effectors (TALEs) and CRISPR/Cas
systems, and how they complement the synthetic zinc finger protein
technology.
Collapse
Affiliation(s)
- Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Gaj
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Kabadi AM, Gersbach CA. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression. Methods 2014; 69:188-97. [PMID: 25010559 DOI: 10.1016/j.ymeth.2014.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022] Open
Abstract
Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications.
Collapse
Affiliation(s)
- Ami M Kabadi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, United States; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
21
|
Chaikind B, Ostermeier M. Directed evolution of improved zinc finger methyltransferases. PLoS One 2014; 9:e96931. [PMID: 24810747 PMCID: PMC4014571 DOI: 10.1371/journal.pone.0096931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
The ability to target DNA methylation toward a single, user-designated CpG site in vivo may have wide applicability for basic biological and biomedical research. A tool for targeting methylation toward single sites could be used to study the effects of individual methylation events on transcription, protein recruitment to DNA, and the dynamics of such epigenetic alterations. Although various tools for directing methylation to promoters exist, none offers the ability to localize methylation solely to a single CpG site. In our ongoing research to create such a tool, we have pursued a strategy employing artificially bifurcated DNA methyltransferases; each methyltransferase fragment is fused to zinc finger proteins with affinity for sequences flanking a targeted CpG site for methylation. We sought to improve the targeting of these enzymes by reducing the methyltransferase activity at non-targeted sites while maintaining high levels of activity at a targeted site. Here we demonstrate an in vitro directed evolution selection strategy to improve methyltransferase specificity and use it to optimize an engineered zinc finger methyltransferase derived from M.SssI. The unusual restriction enzyme McrBC is a key component of this strategy and is used to select against methyltransferases that methylate multiple sites on a plasmid. This strategy allowed us to quickly identify mutants with high levels of methylation at the target site (up to ∼80%) and nearly unobservable levels of methylation at a off-target sites (<1%), as assessed in E. coli. We also demonstrate that replacing the zinc finger domains with new zinc fingers redirects the methylation to a new target CpG site flanked by the corresponding zinc finger binding sequences.
Collapse
Affiliation(s)
- Brian Chaikind
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Li Y, Ehrhardt K, Zhang MQ, Bleris L. Assembly and validation of versatile transcription activator-like effector libraries. Sci Rep 2014; 4:4857. [PMID: 24798576 PMCID: PMC4010924 DOI: 10.1038/srep04857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022] Open
Abstract
The ability to perturb individual genes in genome-wide experiments has been instrumental in unraveling cellular and disease properties. Here we introduce, describe the assembly, and demonstrate the use of comprehensive and versatile transcription activator-like effector (TALE) libraries. As a proof of principle, we built an 11-mer library that covers all possible combinations of the nucleotides that determine the TALE-DNA binding specificity. We demonstrate the versatility of the methodology by constructing a constraint library, customized to bind to a known p53 motif. To verify the functionality in assays, we applied the 11-mer library in yeast-one-hybrid screens to discover TALEs that activate human SCN9A and miR-34b respectively. Additionally, we performed a genome-wide screen using the complete 11-mer library to confirm known genes that confer cycloheximide resistance in yeast. Considering the highly modular nature of TALEs and the versatility and ease of constructing these libraries we envision broad implications for high-throughput genomic assays.
Collapse
Affiliation(s)
- Yi Li
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Kristina Ehrhardt
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Michael Q Zhang
- 1] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Molecular and Cell Biology Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Leonidas Bleris
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [3] Electrical Engineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| |
Collapse
|
23
|
Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, You W, Zhou R, Guo JT, Chen X, Peng X, Sun H, Huang H, Zhao H, Feng B. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 2014; 42:4375-90. [PMID: 24500196 PMCID: PMC3985678 DOI: 10.1093/nar/gku109] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.
Collapse
Affiliation(s)
- Jiabiao Hu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yong Lei
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Wing-Ki Wong
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Senquan Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Kai-Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiangjun He
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Wenxing You
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Rui Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jun-Tao Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiongfong Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xianlu Peng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hao Sun
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - He Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China, SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China, Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
24
|
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10:973-6. [PMID: 23892895 PMCID: PMC3911785 DOI: 10.1038/nmeth.2600] [Citation(s) in RCA: 993] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG. Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer 2013; 134:280-90. [DOI: 10.1002/ijc.28375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marloes L. de Groote
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Hinke G. Kazemier
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Christian Huisman
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Bernardina T.F. van der Gun
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marianne G. Rots
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| |
Collapse
|
26
|
Hsu PD, Zhang F. Dissecting neural function using targeted genome engineering technologies. ACS Chem Neurosci 2012; 3:603-10. [PMID: 22896804 DOI: 10.1021/cn300089k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 02/07/2023] Open
Abstract
Designer DNA-binding proteins based on transcriptional activator-like effectors (TALEs) and zinc finger proteins (ZFPs) are easily tailored to recognize specific DNA sequences in a modular manner. They can be engineered to generate tools for targeted genome perturbation. Here, we review recent advances in these versatile technologies with a focus on designer nucleases for highly precise, efficient, and scarless gene modification. By generating double stranded breaks and stimulating cellular DNA repair pathways, TALE and ZF nucleases have the ability to modify the endogenous genome. We also discuss current applications of designer DNA-binding proteins in synthetic biology and disease modeling, novel effector domains for genetic and epigenetic regulation, and finally perspectives on using customizable DNA-binding proteins for interrogating neural function.
Collapse
Affiliation(s)
- Patrick D. Hsu
- Department of Molecular and
Cellular Biology, Harvard University, Cambridge,
Massachusetts, United States
- Broad Institute of MIT and Harvard,
Cambridge, Massachusetts, United States
- McGovern Institute for Brain Research,
MIT Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United
States
| | - Feng Zhang
- Broad Institute of MIT and Harvard,
Cambridge, Massachusetts, United States
- McGovern Institute for Brain Research,
MIT Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United
States
| |
Collapse
|
27
|
Lara H, Wang Y, Beltran AS, Juárez-Moreno K, Yuan X, Kato S, Leisewitz AV, Cuello Fredes M, Licea AF, Connolly DC, Huang L, Blancafort P. Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 2012; 287:29873-86. [PMID: 22782891 DOI: 10.1074/jbc.m112.360768] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers.
Collapse
Affiliation(s)
- Haydee Lara
- Department of Pharmacology, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pandian GN, Sugiyama H. Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 2012; 7:798-809. [DOI: 10.1002/biot.201100361] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/30/2012] [Accepted: 03/26/2012] [Indexed: 12/30/2022]
|
29
|
Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012; 40:6725-40. [PMID: 22561374 PMCID: PMC3413152 DOI: 10.1093/nar/gks360] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the ‘undruggable’ characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.
Collapse
Affiliation(s)
- Sabine Stolzenburg
- Epigenetic Editing, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H. Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 2012; 20:2656-60. [PMID: 22405921 DOI: 10.1016/j.bmc.2012.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/28/2022]
Abstract
Epigenetic modifications that govern the gene expression are often overlooked with the design of artificial genetic switches. N-Methylpyrrole-N-methylimidazole (PI) hairpin polyamides are programmable small DNA binding molecules that have been studied in the context of gene regulation. Recently, we synthesized a library of compounds by conjugating PI polyamides with SAHA, a chromatin-modifier. Among these novel compounds, PI polyamide-SAHA conjugate 1 was shown to epigenetically activate pluripotency genes in mouse embryonic fibroblasts. Here, we report the synthesis of the derivatives of conjugate 1 and demonstrate that these epigenetically active molecules could be developed to improve the induction of pluripotency factors.
Collapse
Affiliation(s)
- Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Wang SA, Li HY, Hsu TI, Chen SH, Wu CJ, Chang WC, Hung JJ. Heat shock protein 90 stabilizes nucleolin to increase mRNA stability in mitosis. J Biol Chem 2011; 286:43816-43829. [PMID: 21998300 PMCID: PMC3243509 DOI: 10.1074/jbc.m111.310979] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Indexed: 11/06/2022] Open
Abstract
Most studies on heat shock protein 90 (Hsp90) have focused on the involvement of Hsp90 in the interphase, whereas the role of this protein in the nucleus during mitosis remains largely unclear. In this study, we found that the level of the acetylated form of Hsp90 decreased dramatically during mitosis, which indicates more chaperone activity during mitosis. We thus probed proteins that interacted with Hsp90 by liquid chromatography/mass spectrometry (LC/MS) and found that nucleolin was one of those interacting proteins during mitosis. The nucleolin level decreased upon geldanamycin treatment, and Hsp90 maintained the cyclin-dependent kinase 1 (CDK1) activity to phosphorylate nucleolin at Thr-641/707. Mutation of Thr-641/707 resulted in the destabilization of nucleolin in mitosis. We globally screened the level of mitotic mRNAs and found that 229 mRNAs decreased during mitosis in the presence of geldanamycin. Furthermore, a bioinformatics tool and an RNA immunoprecipitation assay found that 16 mRNAs, including cadherin and Bcl-xl, were stabilized through the recruitment of nucleolin to the 3'-untranslated regions (3'-UTRs) of those genes. Overall, strong correlations exist between the up-regulation of Hsp90, nucleolin, and the mRNAs related to tumorigenesis of the lung. Our findings thus indicate that nucleolin stabilized by Hsp90 contributes to the lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis.
Collapse
Affiliation(s)
- Shao-An Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Hao-Yi Li
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Tsung-I Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan 701, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, College of Science, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chin-Jen Wu
- Department of Chemistry, College of Science, National Cheng-Kung University, Tainan 701, Taiwan
| | - Wen-Chang Chang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infection Disease and Signal Transduction Research, National Cheng-Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infection Disease and Signal Transduction Research, National Cheng-Kung University, Tainan 701, Taiwan; Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan.
| |
Collapse
|
32
|
Imanishi M, Nakamura A, Doi M, Futaki S, Okamura H. Control of Circadian Phase by an Artificial Zinc Finger Transcription Regulator. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Imanishi M, Nakamura A, Doi M, Futaki S, Okamura H. Control of circadian phase by an artificial zinc finger transcription regulator. Angew Chem Int Ed Engl 2011; 50:9396-9. [PMID: 21905187 DOI: 10.1002/anie.201103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | |
Collapse
|
34
|
Lee J, Hirsh AS, Wittner BS, Maeder ML, Singavarapu R, Lang M, Janarthanan S, McDermott U, Yajnik V, Ramaswamy S, Joung JK, Sgroi DC. Induction of stable drug resistance in human breast cancer cells using a combinatorial zinc finger transcription factor library. PLoS One 2011; 6:e21112. [PMID: 21818254 PMCID: PMC3139592 DOI: 10.1371/journal.pone.0021112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022] Open
Abstract
Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-positive breast cancer cell lines. Comparative gene expression profile analysis of the six different ZF-TF-transduced breast cancer cell lines revealed five distinct clusters of differentially expressed genes. One cluster was shared among all 6 ZF-TF-transduced cell lines and therefore constituted a common fulvestrant-resistant gene expression signature. Pathway enrichment-analysis of this common fulvestrant resistant signature also revealed significant overlap with gene sets associated with an estrogen receptor-negative-like state and with gene sets associated with drug resistance to different classes of breast cancer anti-endocrine therapeutic agents. Enrichment-analysis of the four remaining unique gene clusters revealed overlap with myb-regulated genes. Finally, we also demonstrated that the common fulvestrant-resistant signature is associated with poor prognosis by interrogating five independent, publicly available human breast cancer gene expression datasets. Our results demonstrate that artificial ZF-TF libraries can be used successfully to induce stable drug-resistance in human cancer cell lines and to identify a gene expression signature that is associated with a clinically relevant drug-resistance phenotype.
Collapse
Affiliation(s)
- Jeongeun Lee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew S. Hirsh
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ben S. Wittner
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rajasekhar Singavarapu
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Magdalena Lang
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sailajah Janarthanan
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Genome Research Limited, Hinxton, United Kingdom
| | - Vijay Yajnik
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sridhar Ramaswamy
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (DCS); (JKJ)
| | - Dennis C. Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (DCS); (JKJ)
| |
Collapse
|
35
|
Mussolino C, Sanges D, Marrocco E, Bonetti C, Di Vicino U, Marigo V, Auricchio A, Meroni G, Surace EM. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 2011; 3:118-28. [PMID: 21268285 PMCID: PMC3085076 DOI: 10.1002/emmm.201000119] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/19/2010] [Accepted: 12/27/2010] [Indexed: 01/09/2023] Open
Abstract
Despite the recent success of gene-based complementation approaches for genetic recessive traits, the development of therapeutic strategies for gain-of-function mutations poses great challenges. General therapeutic principles to correct these genetic defects mostly rely on post-transcriptional gene regulation (RNA silencing). Engineered zinc-finger (ZF) protein-based repression of transcription may represent a novel approach for treating gain-of-function mutations, although proof-of-concept of this use is still lacking. Here, we generated a series of transcriptional repressors to silence human rhodopsin (hRHO), the gene most abundantly expressed in retinal photoreceptors. The strategy was designed to suppress both the mutated and the wild-type hRHO allele in a mutational-independent fashion, to overcome mutational heterogeneity of autosomal dominant retinitis pigmentosa due to hRHO mutations. Here we demonstrate that ZF proteins promote a robust transcriptional repression of hRHO in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Furthermore, we show that specifically decreasing the mutated human RHO transcript in conjunction with unaltered expression of the endogenous murine Rho gene results in amelioration of disease progression, as demonstrated by significant improvements in retinal morphology and function. This zinc-finger-based mutation-independent approach paves the way towards a 'repression-replacement' strategy, which is expected to facilitate widespread applications in the development of novel therapeutics for a variety of disorders that are due to gain-of-function mutations.
Collapse
|
36
|
Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011; 29:149-53. [PMID: 21248753 PMCID: PMC3084533 DOI: 10.1038/nbt.1775] [Citation(s) in RCA: 592] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/12/2011] [Indexed: 11/21/2022]
Abstract
The ability to direct functional domains to specific DNA sequences is a long sought-after goal for studying and engineering biological processes. Transcription activator like effectors (TALEs) from Xanthomonas sp. present a promising platform for designing sequence-specific DNA binding proteins. Here we describe a robust and rapid method for overcoming the difficulty of constructing TALE repeat domains. We synthesized 17 designer TALEs (dTALEs) that are customized to recognize specific DNA binding sites, and demonstrate that dTALEs can specifically modulate transcription of endogenous genes (Sox2 and Klf4) from the native genome in human cells. dTALEs provide a designable DNA targeting platform for the interrogation and engineering of biological systems.
Collapse
|
37
|
Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 2010; 5:791-810. [PMID: 20360772 DOI: 10.1038/nprot.2010.34] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Engineered zinc-finger transcription factors (ZF-TF) are powerful tools to modulate the expression of specific genes. Complex libraries of ZF-TF can be delivered into cells to scan the genome for genes responsible for a particular phenotype or to select the most effective ZF-TF to regulate an individual gene. In both cases, the construction of highly representative and unbiased libraries is critical. In this protocol, we describe a user-friendly ZF technology suitable for the creation of complex libraries and the construction of customized ZF-TFs. The new technology described here simplifies the building of ZF libraries, avoids PCR-introduced bias and ensures equal representation of every module. We also describe the construction of a customized ZF-TF that can be transferred to a number of expression vectors. This protocol can be completed in 9-11 d.
Collapse
|
38
|
Nurmemmedov E, Yengo RK, Ladomery MR, Thunnissen MMGM. Kinetic behaviour of WT 1's zinc finger domain in binding to the alpha-actinin-1 mRNA. Arch Biochem Biophys 2010; 497:21-7. [PMID: 20193655 DOI: 10.1016/j.abb.2010.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
Abstract
The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Molecular Biophysics, Chemical Center, Lund University, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
39
|
Bratkovic T. Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 2010; 67:749-67. [PMID: 20196239 PMCID: PMC11115567 DOI: 10.1007/s00018-009-0192-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/18/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Phage display, the presentation of (poly)peptides as fusions to capsid proteins on the surface of bacterial viruses, celebrates its 25th birthday in 2010. The technique, coupled with in vitro selection, enables rapid identification and optimization of proteins based on their structural or functional properties. In the last two decades, it has advanced tremendously and has become widely accepted by the scientific community. This by no means exhaustive review aims to inform the reader of the key modifications in phage display. Novel display formats, innovative library designs and screening strategies are discussed. I will also briefly review some recent uses of the technology to illustrate its incredible versatility.
Collapse
Affiliation(s)
- Tomaz Bratkovic
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Abstract
Chromatin structure plays a pivotal role in defining which regions of the genome are accessible for effective transcription. Chromatin-remodeling agents are able to relax this structure, facilitating the access of transcription factors into the DNA. Herein, we describe a new method, which combines artificial transcription factors (ATFs) and chromatin-remodeling agents to specifically reactivate silenced regions of the genome and reprogram cellular phenotypes.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
41
|
Kim S, Kim EJ, Kim JS. Construction of combinatorial libraries that encode zinc finger-based transcription factors. Methods Mol Biol 2010; 649:133-47. [PMID: 20680832 DOI: 10.1007/978-1-60761-753-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Combinatorial retroviral libraries of zinc finger transcription factors (ZF-TFs) can be constructed that encode tens of thousands of different, multi-finger zinc finger proteins (ZFPs) with distinct DNA-binding specificities, each of which is fused to a transcriptional activation or repression domain. Individual zinc fingers (ZFs) recognize their target DNA subsites and retain their binding specificities in the context of artificially constructed multi-finger ZFPs. Because of this modular nature, expression libraries that specify diverse multi-finger ZF-TFs can be created by the combinatorial stitching together of individual modules in a pool of single-ZF-encoding DNA segments. When these libraries are introduced into cells, the encoded ZF-TFs are expressed and can then activate or repress the transcription of endogenous target genes. Ideally, the ZF-TF-encoding retroviral vectors in the library enter cells randomly at a ratio of approximately 1 per cell. As a result, individual cells express different ZF-TFs and thus display distinct phenotypical changes. Using an appropriate screening or selection method, one can isolate clonal cells that display phenotypes of interest. One can then identify the ZF-TFs responsible for the phenotypes and, ultimately, the genes that are targeted by the selected ZF-TFs. Here, we provide protocols for the preparation of retroviral libraries that encode ZF-TFs for use in mammalian cells.
Collapse
Affiliation(s)
- Seokjoong Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
42
|
Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production. Nat Struct Mol Biol 2009; 16:1195-9. [PMID: 19838191 PMCID: PMC2880176 DOI: 10.1038/nsmb.1677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
Through the shuffling of predefined modular zinc finger (ZF) domains with predictable target site recognition in vitro, we have generated a large repertoire of artificial transcription factors (ATFs) with five ZF domains (TFZFs). Here we report an effective strategy for the selection of ATF libraries through the coupling of the expression of transcriptional activators of the promoter of interest to the enhanced production of retroviral vector particles transferring the gene encoding the TFZF. Using this strategy, we successfully selected specific TFZFs that upregulate the expression of the γ-globin promoter. Selected transcription factors induced the expression of γ-globin when coupled to an activation domain and reduced expression when linked to a repression domain. This novel retroviral approach might be used to select other TFZFs but also might be generalized for the selection of other protein and small molecule interactions.
Collapse
|
43
|
Nurmemmedov E, Yengo RK, Uysal H, Karlsson R, Thunnissen MMGM. New insights into DNA-binding behavior of Wilms tumor protein (WT1)--a dual study. Biophys Chem 2009; 145:116-25. [PMID: 19853363 DOI: 10.1016/j.bpc.2009.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 02/03/2023]
Abstract
Wilms Tumor suppressor protein (WT1) is a transcription factor that is involved in a variety of developmental functions during organ development. It is also implicated in the pathology of several different cancer forms. The protein contains four C(2)H(2)-type zinc fingers and it specifically binds GC-rich sequences in the promoter regions of its target genes, which are either up or down regulated. Two properties make WT1 a more unusual transcription factor - an unconventional amino acid composition for zinc finger 1, and the insertion of a tri-peptide KTS in some of the splice isoforms of WT1. Using six WT1 constructs in which zinc fingers are systematically deleted, a dual study based on a bacterial 1-hybrid system and surface plasmon resonance measurements is performed. The experiments show that the effect of zinc finger 1 is not significant in terms of overall DNA-binding kinetics, however it influences both the specificity of target recognition and stability of interaction in presence of KTS. The KTS insertion, however, only mildly retards binding affinity, mainly by affecting the on-rate. We suggest that the insertion disturbs zinc finger 4 from its binding frame, thus weakening the rate of target recognition. Finally, for the construct in which both zinc fingers 1 and 4 were deleted, the two middle fingers 2-3 still could function as a 'minimal DNA-recognition domain' for WT1, however the formation of a stable protein-DNA complex is impaired since the overall affinity was dramatically reduced mainly since the off-rate was severely affected.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Center for Molecular Protein Science, Lund University, Getingevägen 60, 221 00, Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 2009; 4:1471-501. [PMID: 19798082 PMCID: PMC2858690 DOI: 10.1038/nprot.2009.98] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered zinc-finger nucleases (ZFNs) form the basis of a broadly applicable method for targeted, efficient modification of eukaryotic genomes. In recent work, we described OPEN (oligomerized pool engineering), an 'open-source,' combinatorial selection-based method for engineering zinc-finger arrays that function well as ZFNs. We have also shown in direct comparisons that the OPEN method has a higher success rate than previously described 'modular-assembly' methods for engineering ZFNs. OPEN selections are carried out in Escherichia coli using a bacterial two-hybrid system and do not require specialized equipment. Here we provide a detailed protocol for carrying out OPEN to engineer zinc-finger arrays that have a high probability of functioning as ZFNs. Using OPEN, researchers can generate multiple, customized ZFNs in approximately 8 weeks.
Collapse
Affiliation(s)
- Morgan L. Maeder
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Stacey Thibodeau-Beganny
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeffry D. Sander
- Department of Genetics, Development & Cell Biology, 1043 Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Daniel F. Voytas
- Department of Genetics, Development & Cell Biology, 1043 Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009; 61:513-26. [PMID: 19394375 DOI: 10.1016/j.addr.2009.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/10/2009] [Indexed: 11/28/2022]
Abstract
Artificial transcription factors (ATFs) are potentially a powerful molecular tool to modulate endogenous target gene expression in living cells and organisms. To date, many DNA-binding molecules have been developed as the DNA-binding domains for ATFs. Among them, ATFs comprising Cys(2)His(2)-type zinc-finger proteins (ZFPs) as the DNA-binding domain have been extensively explored. The zinc-finger-based ATFs specifically recognize targeting sites in chromosomes and effectively up- and downregulate expression of their target genes not only in vitro, but also in vivo. In this review, after briefly introducing Cys(2)His(2)-type ZFPs, I will review the studies of endogenous human gene regulation by zinc-finger-based ATFs and other applications as well.
Collapse
Affiliation(s)
- Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
46
|
Persikov AV, Osada R, Singh M. Predicting DNA recognition by Cys2His2 zinc finger proteins. ACTA ACUST UNITED AC 2008; 25:22-9. [PMID: 19008249 DOI: 10.1093/bioinformatics/btn580] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Cys(2)His(2) zinc finger (ZF) proteins represent the largest class of eukaryotic transcription factors. Their modular structure and well-conserved protein-DNA interface allow the development of computational approaches for predicting their DNA-binding preferences even when no binding sites are known for a particular protein. The 'canonical model' for ZF protein-DNA interaction consists of only four amino acid nucleotide contacts per zinc finger domain. RESULTS We present an approach for predicting ZF binding based on support vector machines (SVMs). While most previous computational approaches have been based solely on examples of known ZF protein-DNA interactions, ours additionally incorporates information about protein-DNA pairs known to bind weakly or not at all. Moreover, SVMs with a linear kernel can naturally incorporate constraints about the relative binding affinities of protein-DNA pairs; this type of information has not been used previously in predicting ZF protein-DNA binding. Here, we build a high-quality literature-derived experimental database of ZF-DNA binding examples and utilize it to test both linear and polynomial kernels for predicting ZF protein-DNA binding on the basis of the canonical binding model. The polynomial SVM outperforms previously published prediction procedures as well as the linear SVM. This may indicate the presence of dependencies between contacts in the canonical binding model and suggests that modification of the underlying structural model may result in further improved performance in predicting ZF protein-DNA binding. Overall, this work demonstrates that methods incorporating information about non-binding and relative binding of protein-DNA pairs have great potential for effective prediction of protein-DNA interactions. AVAILABILITY An online tool for predicting ZF DNA binding is available at http://compbio.cs.princeton.edu/zf/.
Collapse
Affiliation(s)
- Anton V Persikov
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
47
|
Generation and functional analysis of zinc finger nucleases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 434:277-90. [PMID: 18470651 DOI: 10.1007/978-1-60327-248-3_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The recent development of artificial endonucleases with tailored specificities has opened the door for a wide range of new applications, including the correction of mutated genes directly in the chromosome. This kind of gene therapy is based on homologous recombination, which can be stimulated by the creation of a targeted DNA double-strand break (DSB) near the site of the desired recombination event. Artificial nucleases containing zinc finger DNA-binding domains have provided important proofs of concept, showing that inserting a DSB in the target locus leads to gene correction frequencies of 1-18% in human cells. In this paper, we describe how zinc finger nucleases are assembled by polymerase chain reaction (PCR) and present two methods to assess these custom nucleases quickly in vitro and in a cell-based recombination assay.
Collapse
|
48
|
Beltran AS, Sun X, Lizardi PM, Blancafort P. Reprogramming epigenetic silencing: artificial transcription factors synergize with chromatin remodeling drugs to reactivate the tumor suppressor mammary serine protease inhibitor. Mol Cancer Ther 2008; 7:1080-90. [PMID: 18483297 DOI: 10.1158/1535-7163.mct-07-0526] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mammary serine protease inhibitor (maspin) is an important tumor suppressor gene whose expression is associated not only with tumor growth inhibition but also with decreased angiogenesis and metastasis. Maspin expression is down-regulated in metastatic tumors by epigenetic mechanisms, including aberrant promoter hypermethylation. We have constructed artificial transcription factors (ATFs) as novel therapeutic effectors able to bind 18-bp sites in the maspin promoter and reactivate maspin expression in cell lines that harbor an epigenetically silenced promoter. In this article, we have investigated the influence of epigenetic modifications on ATF-mediated regulation of maspin by challenging MDA-MB-231 breast cancer cells, comprising a methylated maspin promoter, with different doses of ATFs and chromatin remodeling drugs: the methyltransferase inhibitor 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor suberoylanilide hydroxamic acid. We found that the ATFs synergized with both inhibitors in reactivating endogenous maspin expression. The strongest synergy was observed with the triple treatment ATF-126 + 5-aza-2'-deoxycytidine + suberoylanilide hydroxamic acid, in which the tumor suppressor was reactivated by 600-fold. Furthermore, this combination inhibited tumor cell proliferation by 95%. Our data suggest that ATFs enhance the efficiency of chromatin remodeling drugs in reactivating silenced tumor suppressors. Our results document the power of a novel therapeutic approach that combines both epigenetic and genetic (sequence-specific ATFs) strategies to reactivate specifically silenced regions of the genome and reprogram cellular phenotypes.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | |
Collapse
|
49
|
Lee JY, Sung BH, Yu BJ, Lee JH, Lee SH, Kim MS, Koob MD, Kim SC. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res 2008; 36:e102. [PMID: 18641039 PMCID: PMC2532725 DOI: 10.1093/nar/gkn449] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Now that many genomes have been sequenced and the products of newly identified genes have been annotated, the next goal is to engineer the desired phenotypes in organisms of interest. For the phenotypic engineering of microorganisms, we have developed novel artificial transcription factors (ATFs) capable of reprogramming innate gene expression circuits in Escherichia coli. These ATFs are composed of zinc finger (ZF) DNA-binding proteins, with distinct specificities, fused to an E. coli cyclic AMP receptor protein (CRP). By randomly assembling 40 different types of ZFs, we have constructed more than 6.4 × 104 ATFs that consist of 3 ZF DNA-binding domains and a CRP effector domain. Using these ATFs, we induced various phenotypic changes in E. coli and selected for industrially important traits, such as resistance to heat shock, osmotic pressure and cold shock. Genes associated with the heat-shock resistance phenotype were then characterized. These results and the general applicability of this platform clearly indicate that novel ATFs are powerful tools for the phenotypic engineering of microorganisms and can facilitate microbial functional genomic studies.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bong Hyun Sung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Byung Jo Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sang Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mi Sun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael D. Koob
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Biomass Team, Korea Institute of Energy Research, Daejeon, Korea and Department of Laboratory Medicine and Pathology, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
- *To whom correspondence should be addressed. Tel: +82 42 869 2619; Fax: +82 42 869 2610;
| |
Collapse
|
50
|
Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther 2008; 15:1223-32. [PMID: 18528430 DOI: 10.1038/gt.2008.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemically inducible gene switches that regulate expression of endogenous genes have multiple applications for basic gene expression research and gene therapy. Single-chain zinc-finger transcription factors that utilize either estrogen receptor homodimers or retinoid X receptor-alpha/ecdysone receptor heterodimers are shown here to be effective regulators of ICAM-1 and ErbB-2 transcription. Using activator (VP64) and repressor (Krüppel-associated box) domains to impart regulatory directionality, ICAM-1 was activated by 4.8-fold and repressed by 81% with the estrogen receptor-inducible transcription factors. ErbB-2 was activated by up to threefold and repressed by 84% with the retinoid X receptor-alpha/ecdysone receptor-inducible transcription factors. The dynamic range of these proteins was similar to the constitutive system and showed negligible basal regulation when ligand was not present. We have also demonstrated that the regulation imposed by these inducible transcription factors is dose dependent, sustainable for at least 11 days and reversible upon cessation of drug treatment. Importantly, these proteins can be used in conjunction with each other with no detectable overlap of activity enabling concurrent and temporal regulation of multiple genes within the same cell. Thus, these chemically inducible transcription factors are valuable tools for spatiotemporal control of gene expression that should prove valuable for research and gene therapy applications.
Collapse
|